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Abstract

Adversarial training instances can severely distort a model’s behavior. This work investigates certified
regression defenses, which provide guaranteed limits on how much a regressor’s prediction may change
under a poisoning attack. Our key insight is that certified regression reduces to voting-based certified
classification when using median as a model’s primary decision function. Coupling our reduction with
existing certified classifiers, we propose six new regressors provably-robust to poisoning attacks. To
the extent of our knowledge, this is the first work that certifies the robustness of individual regression
predictions without any assumptions about the data distribution and model architecture. We also show
that the assumptions made by existing state-of-the-art certified classifiers are often overly pessimistic.
We introduce a tighter analysis of model robustness, which in many cases results in significantly improved
certified guarantees. Lastly, we empirically demonstrate our approaches’ effectiveness on both regression
and classification data, where the accuracy of up to 50% of test predictions can be guaranteed under
1% training set corruption and up to 30% of predictions under 4% corruption. Our source code is
available at https://github.com/ZaydH/certified-regression.

Keywords: Robust regression, Certified classifier, Data poisoning, Partial set cover, Partial set multicover

1 Introduction

In a poisoning attack, an adversary inserts malicious instances into a model’s training set to manipulate one or more
target predictions [BNL12; Che+17; Sha+18; Hua+20; Wal+21]. Kumar et al.’s [Kum+20] recent survey of large
corporate and governmental organizations found that poisoning attacks were their top ML security concern due to
previous successful attacks [Lee16]. Kumar et al. specifically note that most defenses against these attacks lack “fun-
damental security rigor” and acknowledge that most adversarial ML defenses are like “crypto pre-Shannon” [Car19].

Kumar et al.’s concerns primarily arise because most ML defenses (including those for poisoning attacks) are
empirical [TLM18; Per+20; Zhu+21; HL22a]; such defenses derive from insights into the underlying mechanisms of
specific attacks and in turn provide strategies to mitigate the associated vulnerability. The fatal weakness of empirical
defenses is that they provide no guarantees of their effectiveness, and attacks can be adapted to bypass them – often
with minimal effort [Gao+19; Kum+20].

In contrast, certified defenses [LRV16; SKL17; Wan+20; Web+23] provide a quantifiable guarantee of a predic-
tion’s robustness, albeit under specific assumptions. There has been significant recent progress towards lifting the
assumptions necessary to certify a classifier’s prediction. Today, non-trivial guarantees of the pointwise robustness of
individual classification predictions are possible without making assumptions about the underlying data distribution
or model architecture.

Similar progress has not yet been made for regression. Existing certified regressors generally make strong as-
sumptions about the data distribution (e.g., linearity [Liu+20], sparsity [Liu+17]) that rarely hold in practice. When
those assumptions fail to hold, these methods’ “guarantees” are not guarantees at all. Another common requirement
of existing certified regressors is that the model architecture is linear [Jag+18], despite other architectures often
performing far better [CG16; Pro+18].

∗Correspondence to zayd@cs.uoregon.edu.
This paper appeared at the first IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). The definitive,

peer-reviewed version is published in the proceedings of SatML’23 [HL23].
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A problem Q is reducible to a different problem Q′ if an efficient algorithm to solve Q′ can also efficiently solve
Q [DPV08]. Our key insight is that certified regression is reducible to voting-based certified classification. Mapping
certified regression to certified classification requires only minimal changes to the certified classifier’s architecture, with
the robustness certification function identical. Given reducibility, an important takeaway is that certified regression
can be viewed as no harder than certified classification.

Coupling our reduction with existing certified classifiers [Jia+22a; LF21; WLF22], we propose six new certifiably-
robust regressors. To the extent of our knowledge, our methods are the first to provide pointwise regression robustness
guarantees against poisoning without both distributional and model assumptions.

Our primary contributions are enumerated below.

1. We formalize three paradigms based on median perturbation to map certified regression to certified classifica-
tion. All of our certified regressors apply one of these paradigms.

2. We propose two provably-robust instance-based regressors – one based on k-nearest neighbors and the other
based on all training instances within a feature-space region.

3. We separately propose four ensemble-based certified regressors, where one pair of regressors trains submodels
on disjoint data while the other pair allows submodels to be trained on overlapping data.

4. We significantly improve the certification performance of our ensemble-based regressors and existing certified
classifiers via a tighter analysis of submodel prediction stability.

5. We demonstrate our methods’ effectiveness on both regression and classification datasets, where we certify
significant fractions of the training set and even outperform state-of-the-art certified classifiers on binary clas-
sification.

Note that all proofs are in the supplemental materials.

2 Preliminaries

We begin with a summary of our notation followed by a formalization of our threat model and objective.1

Notation Let [k] denote the set of integers {1, . . . , k}, and denote the corresponding power set 2[k]. 1[q] is the
indicator function, which equals 1 if predicate q is true and 0 otherwise. Let H(k) =

∑k
i=1

1
i

denote the k-th harmonic
number.

In this work, the term “set” refers to a multiset where multiple elements may have the same value. Denote
set A’s median medA. In cases where A’s cardinality is even, the median is the midpoint between A’s |A|

2
-th and

( |A|
2

+ 1)-th largest values. Finding the median requires only linear time, meaning median is asymptotically as fast
as mean [Blu+73].

x ∈ X is an independent variable (e.g., feature vector) of dimension d and y ∈ Y ⊆ R a response variable (e.g., tar-
get). Let Z := X × Y denote the instance space. Training set S consists of n training examples. For m ∈ N where
m ≤ n, deterministic function htr : Z → [m] partitions the instance space, and by consequence S. Let S(1), . . . , S(m)

be the m disjoint training set blocks defined by htr where S = tm
j=1S

(j).
Model f : X → R is trained on full set S. f may be a single decision function or the fusion of an ensemble of

T submodels, where for simplicity T is chosen to be odd. Let ft denote a submodel where t ∈ [T ]. Each ft has its
own training data Dt ⊂ S. Submodel training is deterministic, meaning training on fixed D always yields the same
model. We separately consider both partitioned (∀t,t′ Dt ∩ Dt′ = ∅) and overlapping (∃t,t′ Dt ∩ Dt′ 6= ∅) submodel
training data.

Threat Model For arbitrary test instance (xte, yte), the adversary’s objective is to alter the model so that the
prediction error |f(xte)− yte| is as large as possible. Our primary threat model considers an adversary that can insert
arbitrary instances into training set S and arbitrarily delete instances from S.2 The attacker has perfect knowledge of
the learner and our method. We make no assumptions about the underlying data distribution or adversarial training
instances.

Our Objective Determine certified robustness R – a guarantee on the number of training instances that can
be inserted into or deleted from training set S without the model prediction ever violating the requirement that
ξl ≤ f(xte) ≤ ξu, where ξl, ξu ∈ R are user-specified and application dependent. Note that robustness R is pointwise,
meaning each prediction f(xte) is certified individually.

1Supplemental Sec. A provides a full nomenclature reference.
2Sec. 9 considers a somewhat restricted threat model where attackers only make arbitrary deletions but no insertions. This

allows us to empirically evaluate our method despite few base models fully utilizing our threat model.
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2.1 One-Sided vs. Two-Sided Certification Bounds

For simplicity, the remaining sections exclusively describe how to certify a one-sided upper bound, f(x) ≤ ξ, since all
other bounds reduce to this base case. For example, certifying a one-sided lower bound reduces to certifying an upper
bound via negation as f(x) ≥ ξ ⇔ −f(x) ≤ −ξ. Likewise, a two-sided bound is equivalent to the worst one-sided
robustness as

ξl ≤ f(x) ≤ ξu ⇔
(
f(x) ≥ ξl

)
∧
(
f(x) ≤ ξu

)
⇔
(
−f(x) ≤ −ξl

)
∧
(
f(x) ≤ ξu

)
.

(1)

2.2 Relating Regression and Binary Classification

Binary classification can be viewed as a simple form of regression where Y = {±1}. The model’s decision function
becomes sgn f(xte) where sgn a = +1 if a > 0 and −1 otherwise. While our primary focus is regression, our methods
also achieve state-of-the-art results for binary classification.

3 Related Work

Techniques to mitigate (regression) models’ implicit fragility have been studied for over half a century. Below we
partition these methods into three categories with progressively stronger robustness guarantees.

Resilient Regression Early methods were rooted in robust statistics and focused on mitigating the effect of training
set outliers. For example, various trimmed loss functions (e.g., Huber [Hub64], Tukey [BT74]) cap an outlier’s influence
on a model [JW78; Lec89]. Methods like RANSAC [FB81] employ another common robustness strategy of detecting
and removing training set outliers [TZ00; RH11].

Adversarially-Robust Regression The above methods primarily target random noise/outliers. Adversarial train-
ing instances can be much more insidious since they are crafted to avoid detection by appearing uninfluential and
may only affect a very small fraction of test predictions [Che+17; Wal+21]. These factors can combine to make
adversarial training instances difficult for resilient methods to fully detect and correct [Li+22].

Some existing adversarial regression defenses do provide pointwise robustness guarantees, albeit under strong
assumptions about the underlying data distribution [KKM18]. For example, some work assumes that the training
set follows a linear data distribution with arbitrary white, Gaussian noise [CCM13; Liu+20]. Others assume the
data distribution’s feature matrix is low rank [Liu+17]. Conditioning a guarantee on a specific data distribution is
inherently precarious – in particular if the strong distributional assumption rarely holds and cannot be easily verified.
If the distributional assumption does not hold, any guarantee is no guarantee at all.

Note that there are adversarially-robust regression defenses that provide guarantees without making distributional
assumptions [Jag+18; KKM18]. However, their robustness guarantees are themselves distributional. For example,
Jagielski et al. [Jag+18] bound the clean training data’s mean error but provide no pointwise guarantees. In other
words, such methods do not provide insight into each prediction’s robustness.

A major strength of our approach to certified regression is that we provide pointwise guarantees without any
assumptions.

Lastly, many existing adversarially-robust regressors consider exclusively linear models [CCM13; Liu+17; Jag+18;
Liu+20]. However, state-of-the-art regressors increasingly leverage non-linear methods [CG16; Pro+18; AP21;
BHL22]. In contrast, our ensemble-based certified regressors support any submodel architecture.

Certified Classification Recent work has proposed numerous classifiers provably robust to poisoning and backdoor
attacks [SKL17; Wan+20; Ros+20; JCG21; Web+23]. These state-of-the-art certified classifiers all rely on majority
voting-based methods and derive their guarantees by (lower) bounding the number of training set modifications
needed for the label with the second-most votes to overtake the plurality label. Jia et al.’s [Jia+22a] certified
k-nearest neighbor (kNN) classifier is the simplest such method, where the set of “votes” is the training labels from
the test instance’s neighborhood. Due to space, we defer a detailed discussion and analysis of Jia et al. [Jia+22a]’s
method to suppl. Sec. D.

Levine and Feizi [LF21] propose deep partition aggregation (DPA), a general, ensemble-based certified classifier.
Suppl. Sec. E describes DPA in detail, but briefly, DPA’s deterministic submodels are fully-independent since they
are trained on disjoint data. Given a test instance, each submodel predicts a label, and the overall prediction is the
ensemble’s plurality label. To turn these labels (i.e., votes) into a robustness guarantee, DPA needs to certify each
submodel’s robustness. However, DPA sidesteps this by always assuming worst-case submodel robustness, which we
formalize below.

Def. 1. Unit-Cost Assumption: Any modification to a submodel’s training set changes the submodel arbitrarily.

3



In practice, there are limits to how much a single training set modification will alter a submodel and its predictions
– in particular for models with strong inductive biases. Therefore, the unit-cost assumption’s pessimism can cause
methods like DPA to underestimate a prediction’s true robustness. Nonetheless, this assumption greatly simplifies
ensemble robustness certification by reducing the task to just submodel vote counting.

Most recently, Wang et al. [WLF22] modify DPA’s ensemble so that submodels can be trained on overlapping
data, which (slightly) improves the ensemble’s certification bounds.

While voting-based methods work well for classification with nominal Y, these ideas have not yet been adapted to
regression where Y is continuous. This work fills in that gap by providing a reduction that adapts certified classifiers
to certify regression. We specifically detail the reduction for the certified classifiers proposed by Jia et al. [Jia+22a],
Levine and Feizi [LF21], and Wang et al. [WLF22]. By building on these methods, we inherit their property of not
needing to make assumptions about the data distribution or model architecture.

The fundamental challenge of our reduction is making a continuous output space behave like a robust, nominal
label space. We describe the solution to this challenge next.

4 Warmup: Perturbing a Set’s Median

Traditional center statistics such as mean have a breakdown point of 0, i.e., altering a single value in a set can shift
the mean arbitrarily. In contrast, median has maximum robustness, i.e., a breakdown of 50%. A high breakdown
point entails that a statistic is stable and resistant to change. We formalize changes to median below.

Def. 2. Median Perturbation: The task of altering a set’s contents so that its median exceeds some specified ξ ∈ R.

Throughout this work, determining pointwise robustness R simplifies to quantifying the number of changes that
can be made to a set without perturbing its median. To better foster intuitions, we first formalize robustness R w.r.t.
simply perturbing a multiset’s median and unrelated to any model. Later sections apply these ideas to link certified
regression and certified classification.

Formally, let V be a multiset of cardinality T := |V|. Denote the subset of elements in V that are at most ξ as
Vl := {νt ∈ V : νt ≤ ξ} and denote its complement Vu := V \ Vl.

Below we define three different paradigms that constrain how V is modified. Figure 1 visualizes our first two
unweighted paradigms. Note that Fig. 1’s values are repeatedly used throughout this paper, including in Fig. 2 for
our third median perturbation paradigm and later in Figs. 4 and 5. In all cases below, consider when medV ≤ ξ
since the degenerate case of medV > ξ is by definition non-robust.

4.1 Unweighted Swap Paradigm

Here, set V has fixed, odd-valued3 cardinality T . All modifications to V take the form of “swaps” where a single value
in V is replaced with any real number. Fig. 1b visualizes the unweighted swap paradigm on a simple set V = {2, . . . , 6}
of T = 5 values. Lemma 3 tightly bounds the number of arbitrary swaps R that can be made to V without perturbing
its median.

Lemma 3. For ξ ∈ R, real multiset V where medV ≤ ξ with T := |V| odd, and Vl := {νt ∈ V : νt ≤ ξ}, let Ṽ be a

multiset formed from V where elements have been arbitrarily replaced. If the number of elements replaced in Ṽ does
not exceed

R = |Vl| −
⌈
T

2

⌉
, (2)

it is guaranteed that med Ṽ ≤ ξ.

Proof sketch. For a set of odd cardinality T , the median is always the set’s
⌈
T
2

⌉
-th largest value. For V’s median to

be at most ξ, at least
⌈
T
2

⌉
items in V cannot exceed ξ. Each swap reduces the number of elements not exceeding ξ

by at most one. If there are |Vl| elements less than or equal to ξ in V and there must be at least
⌈
T
2

⌉
such elements

to avoid perturbing the median, then at most |Vl| −
⌈
T
2

⌉
swaps can be performed.

3Fixing T as odd simplifies the overall formulation and presentation since it ensures that V’s median is always an element in
V. In all cases here where T is fixed as odd, T is always a user-selected hyperparameter. Extending our formulation to consider
even T is not challenging but is verbose.
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2 3 4 5 6 ∞ ∞

Initial Median ξ

(a) Initial set V := Vl t Vu

2 3 4 5 6 ∞ ∞

New Median

(b) Unweighted swap paradigm with R = 1

2 3 4 5 6 ∞ ∞

New Median

(c) Insertion only with R = 2

2 3 4 5 6 ∞ ∞

New Median

(d) Deletion only with R = 2

Figure 1: Unweighted Median Perturbation:
(1a) Blue denotes elements in subset Vl, i.e., elements
in V with value at most ξ = 5.4. Vu’s values are red.
Each “swap” (1b) switches a value in Vl with an ar-
bitrarily large replacement. Deletions (1d) and in-
sertions (1c) are interchangeable (suppl. Lemma 14),
with both yielding the same median value in the same
number of modifications made to V. In Figs. 1b to 1d
above, any additional modifications to the set would
perturb the median.

2 3 4 5 6 ∞ ∞

3 4 5 6 7

V:

R:

Initial Median ξ

(a) Initial sets where V = {2, . . . , 6} and R = {3, . . . , 7}

2 3 4 5 6 ∞ ∞

3 0 0 0 3
(of 4) (of 5) (of 6) (of 7) (of 3)

+ + + +

V:

R =

New Median

(b) Weighted swap paradigm with R = 6

Figure 2: Weighted Swap Paradigm: Exten-
sion of Fig. 1 to weighted costs. For simplicity and
w.l.o.g., let R = {3, . . . , 7}, i.e., ∀t rt = νt + 1 Fig. 2a
is identical to Fig. 1a except below each element νt
is its corresponding weight rt. Observe ∆ = 1 and
R̃l = {3, 4}. Fig. 2b shows that for R = 6 (visualized
below each element), it is impossible to perturb the
median, and any additional weight would be suffi-
cient to swap out ν2 = 3.

4.2 Insertion/Deletion Paradigm

For the second paradigm, V is no longer fixed cardinality (it may expand or contract), and T may be even or odd. Each
modification of V takes the form of either a single deletion or insertion but not both. Figs. 1c and 1d visualize median
perturbation under insertions and deletions resp. with certified robustness R following Lem. 4. Suppl. Sec. B proves
that worst-case insertions and deletions perturb a set’s median in exactly the same way and thus are interchangeable.
That is why Figs. 1c and 1d have identical certified robustness (R = 2).

Lemma 4. For ξ ∈ R and real multiset V where medV ≤ ξ, define T := |V| and Vl := {νt ∈ V : νt ≤ ξ}. Let Ṽ be
any multiset formed from V where elements have been arbitrarily deleted and/or inserted. Then, if the total number

of inserted and deleted elements in Ṽ does not exceed

R = 2|Vl| − T − 1, (3)

it is guaranteed that med Ṽ ≤ ξ.

Eq. (2)’s bound may be non-tight by 1. We did this for consistency with other ideas. See suppl. Sec. G.1 for details.
Comparing Eqs. (2) & (3), the insertion/deletion paradigm’s robustness R is about twice that of the unweighted

swap paradigm. Intuitively, this is because one swap entails two separate operations – both an insertion and a
deletion.

4.3 Weighted Swap Paradigm

The two median-perturbation paradigms above assume that each modification to V has equivalent cost. Consider a
generalized swap paradigm where each value νt ∈ V has an associated weight/cost rt ∈ N. We seek to tightly bound
the budget an attacker could spend with it remaining guaranteed that f(xte) ≤ ξ; we still denote this budget R.

5



MedianV

Robustness
Certifier

f(xte)

R
R

sgn(·) V±1−ξ

Inputs OutputsCertified Regressor

Figure 3: Certified Regression to Certified Classification Reduction: For xte ∈ X , the decision
function is f(xte) := medV – just like voting-based certified classification. Certified regression binarizes V
into V±1, which is used by the robustness certifier (optionally with weights R) to determine R.

Given Vl as above, Rl := {rt : νt ∈ Vl} contains Vl’s corresponding weights/costs. Define ∆ := |Vl| −
⌈
T
2

⌉
, and let

multiset R∆ be the ∆ smallest values in Rl (i.e., |R∆| = ∆). Directly applying Lem. 3, an obvious but non-optimal
bound is

R ≥
∑

r∈R∆

r. (4)

Recall Fig. 1a where V = {2, . . . , 6} and ξ = 5.4. Consider its weighted extension where for simplicity and w.l.o.g.
R = {3, . . . , 7}, i.e., ∀t rt = νt + 1. Eq. (4) certifies robustness R = 3 for this example. However, Fig. 2b shows R = 6
since the budget of the second (i.e., (∆ + 1)-th) largest value in Rl can be partially used. Lemma 5 formalizes this
insight into a tight bound for median perturbation under weighted swaps.

Lemma 5. For ξ ∈ R and real multiset V where medV ≤ ξ, let R be V’s corresponding integral weight multiset where
T := |V| = |R| is fixed and odd. Define Rl := {rt ∈ R : νt ≤ ξ}, and let R̃l be the smallest (|V| −

⌈
T
2

⌉
+ 1) values in

Rl. Then the cost to perturb V’s median exceeds

R =
∑
r∈R̃l

r − 1. (5)

5 Reducing Regression to Voting-Based Binary Classification

We now show how methods used to certify binary classification can be adapted to certify regression. During inference,
all voting-based certified methods (both classifiers and regressors) follow the same basic procedure.

First, the model generates a multiset of votes, which for binary classification we denote V±1. Certified classifiers
only differ in how V±1 is constructed and in the consequences that construction has on certifying R. For example,
V±1 could be a kNN neighborhood or the submodel predictions in an ensemble. Nonetheless, for binary classification,
V±1 contains at most two unique values (+1 and −1), meaning V±1’s majority label is also its median. In other
words, f(xte) = medV±1.

To certify robustness R, existing methods rely on a function we term the robustness certifier. The function’s
inputs are votes V±1 and optionally weights/costs R. Implicitly, the certifier knows how the votes were generated
and how changes to training set S could affect V±1. Generally, a simple procedure to construct V±1 entails a simple
certifier, and complex construction implies a complex certifier. Fundamentally, for voting-based, binary classification,
robustness certification always reduces to the same core idea. If f(xte) = medV±1, then for the runner-up label to
overtake the majority label, V±1’s median must be perturbed. Therefore, certifying voting-based, binary classification
is simply certifying median perturbation.

To generalize a voting-based, certified classifier to certify regression, two primary modifications are required; we
visualize our regression to classification reduction in Fig. 3.

First, the model is modified from generating binary votes V±1 to generating real-valued ones denoted V. The
changes necessary to make this switch are specific to the underlying certified classifier. In some cases, no change
is required [Jia+22a]; for others, ensemble submodel classifiers are simply replaced with submodel regressors [LF21;
WLF22].

The second modification is more subtle. If V is real-valued, a robustness certifier expecting binary votes cannot
be directly applied. That is where ξ ∈ R fits in; it partitions V into two subsets: Vl containing all “votes” at most ξ
and Vu containing all “votes” exceeding ξ. We can think of these subsets as two different classes where if f(xte) ≤ ξ,
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Vl is the majority class and Vu runner-up. For any prediction f(xte) := medV, the robustness certifier’s output R
equals the number of training set modifications that can be made without ever perturbing medV beyond ξ.

Lemma 6 formalizes the connection between real-valued and binarized robustness. This symmetry in robustness
derives from both tasks’ (implicit) shared reliance on median.

Lemma 6. For ξ′ ∈ R and real multiset V ′ where medV ′ ≤ ξ′, let V±1 := {sgn (νt − ξ′) : νt ∈ V ′}. Let R be the cor-
responding integral weight multiset of V ′ where |V ′| = |R|. Then, under the (un)weighted swap and insertion/deletion
paradigms, both V = V ′ with ξ = ξ′ and V = V±1 with ξ = 0 have equivalent robustness R.

By binarizing V, Lem. 6 enables us to directly reuse robustness certifiers from binary classification to certify regression.
Our reduction to certified classification entails two primary benefits. First, it allows us to repurpose for regression

the diverse set of voting-based, certified classifiers that already exist [Jia+22a; LF21; WLF22]. Moreover, as new
voting-based, certified classifiers are proposed in the future, these yet undiscovered methods can also be reformulated
as certified regressors.

Although this work focuses on certified poisoning defenses, other types of certified defenses also rely on voting-
based schemes, including randomized smoothing methods for evasion attacks [LF20; Jia+22b]. Our certified regression
to certified classification reduction can also be applied to these other types of voting-based defenses as well.

As mentioned above, the procedure to construct the set of votes and to certify robustness is unique to each
classifier. The next three sections describe how to certify regression using progressively more complex models, with
each method based on a reduction to an existing voting-based certified classifier.

6 Certified Instance-Based Regression

For the first method, recall from Sec. 3 that Jia et al. [Jia+22a] propose a state-of-the-art certified classifier based
on kNN. Nearest-neighbor methods are a specific type of instance-based learner (IBL), where predictions are made
using memorized training instances [AKA91]. IBLs generally rely on the intuition that instances close together in
feature space (X ) have similar target values (Y). Specifically, IBLs search for stored training instances most similar
to xte and derive the model prediction from these retrieved neighbors.

We partition IBLs into two subcategories:

• Fixed-population neighborhood methods specify the exact number of “neighbors” when making a prediction.

• Region-based neighborhood methods define a neighborhood as all training instances in a specific feature-space
region.

These two subcategories calculate certified robustness differently and are discussed separately below.
All IBLs considered here use the same decision rule. Formally, given xte ∈ X and real multiset neighbor-

hood N (xte) returned by the IBL, the model’s prediction is the neighborhood’s median, i.e., f(xte) := medN (xte).
Recall that our goal is to certify that if at most R arbitrary insertions or deletions are made to S, it is guaranteed
that f(xte) ≤ ξ.

6.1 Fixed-Population Neighborhood

As the name indicates, fixed-population neighborhood IBLs make predictions using a fixed number of training in-
stances, i.e., ∀xte T = |N (xte)|. k-nearest neighbors is perhaps the best-known fixed-population method. Tradition-
ally, kNN returns the neighborhood’s mean value. For clarity, we will refer to the version of kNN that uses the
neighborhood’s median value as k-Nearest Neighbors Median, or simply kNN-m.

Our threat model allows the adversary to insert arbitrary training instances and/or delete any existing instances.
Fig. 4b visualizes an example attack on a kNN-m regressor. Since k is fixed, inserting a new instance ( ) into
the neighborhood causes one neighborhood instance to be ejected; in other words, insertions are simply instance
swaps. As a worst-case, we assume that the ejected element equals at most threshold ξ, meaning each insertion
always maximally increases the neighborhood’s median. Under this simplifying assumption, adversarial insertions
are always at least as harmful as deletions for fixed-population neighborhood IBLs.

Neighborhood size k is a user-specified hyperparameter so let k be odd-valued. Therefore, these fixed-population
neighborhood IBL regressors satisfy all of the criteria of median perturbation under the unweighted swap paradigm
where T = k. Theorem 7 then follows directly from Lemma 3.

Theorem 7. Let f be an instance-based regressor trained on set S. Given ξ ∈ R and xte ∈ X , let real multiset N (xte)
be xte’s neighborhood under f with fixed, odd-valued cardinality T := |N (xte)|. Define Vl := {y ∈ N (xte) : y ≤ ξ}.
Given f(xte) := medN (xte) ≤ ξ, then if model f is trained on a modified S where the total number of inserted and
deleted training instances does not exceed

7



xte

2
3

45

6

(a) Unperturbed

xte

2
3

45

6

∞

(b) Fixed-population
R = 1

xte

2
3

45

6

∞∞

(c) Region-based
R = 2

Figure 4: Certified Instance-Based Regression: Fig. 4a visualizes an unperturbed IBL model. Test
instance xte’s neighborhood is visualized as a dashed line with neighborhood N (xte) identical to V in Fig. 1a.
Fig. 4b shows an attack on a kNN-m model where the neighborhood’s cardinality (T = 5) is fixed, and the
one attack instance ( ) replaces one instance in Vl ( ) (source Fig. 1b). A rNN-median model is shown in
Fig. 4c, where the two inserted instances ( ) do not change the neighborhood’s radius (source Fig. 1c).

R = |Vl| −
⌈
T

2

⌉
, (6)

it is guaranteed that f(xte) ≤ ξ.

We denote kNN-m certified regression as kNN-CR. Due to space, we defer to suppl. Sec. D the proof that when
under binary classification, kNN-CR and Jia et al.’s [Jia+22a] kNN classifier yield identical robustness guarantees.

6.2 Region-Based Neighborhood

Neighborhood membership does not need to be tied to the number of neighbors. Rather, a neighborhood can be
defined by specific criteria, with all stored training instances satisfying those criteria included in the neighborhood.
For instance, radius nearest neighbors (rNN) defines xte’s neighborhood as all training instances within a given
distance of xte [Ben75]. Alternatively, fully-random decision trees recursively partition the feature space into disjoint
regions, and a neighborhood is defined as all instances within the same feature region [GEW06].

Fig. 4c visualizes an attack on an rNN-median learner, where the adversary inserts malicious instances ( ) to
perturb the median prediction. Unlike fixed-population neighborhoods, the inserted instances do not cause any
existing training instances to be ejected. Rather, inserting and deleting training instances are distinct operations.

It is easy to see that region-based IBLs with median as the decision operator follow Sec. 4.2’s insertion/deletion
paradigm. Theorem 8 then follows directly from Lemma 4.

Theorem 8. Let f be an instance-based regressor trained on S that partitions X into disjoint regions. Given xte ∈ X ,
let real multiset N (xte) be xte’s neighborhood under f where T := |N (xte)|. For ξ ∈ R, define Vl := {y ∈ N (xte) : y ≤ ξ}.
If model f is trained on a modified S where the total number of inserted and deleted training instances does not exceed

R = 2|Vl| − T − 1, (7)

it is guaranteed that f(xte) ≤ ξ.

Jia et al. propose an rNN-based certified classifier, with the robustness certifier identical to their kNN method.
By using our insertion/deletion paradigm for the robustness certifier instead of Jia et al.’s approach, Eq. (7)’s R
roughly doubles.

6.3 Computational Complexity

Eqs. (6) and (7) require determining Vl’s cardinality, which has complexity O(T ). However, constructing neighbor-
hood N (xte) can require scanning the entire training set and has complexity O(n). Therefore, certifying each IBL
regression prediction’s robustness is in O(n) – the same as Jia et al.’s certified kNN and rNN classifiers.
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7 Certified Regression for General Models

Instance-based learners lend themselves to robustness certification. However, there are many applications where IBLs
perform poorly. This section explores reducing certified regression to a second certified classifier, which will now allow
us to use whichever model architecture has the best performance.

Recall that Levine and Feizi’s [LF21] certified classifier, DPA, uses an ensemble trained on partitioned training
data. In this section, we first reduce certified regression to certified classification using DPA. We then improve the
certification performance of DPA and by extension our certified regressor by using tighter, weighted analysis. All
certified regression ensembles we consider have T submodels denoted f1, . . . , fT , and the ensemble decision function
uses median, i.e., f(xte) := med {f1(xte), . . . , fT (xte)} .

Since ensemble size T is always a user-specified hyperparameter, select odd T . For arbitrary xte ∈ X , let
V := {ft(xte) : t ∈ [T ]}. Our goal remains to determine R – a pointwise guarantee on the total number of train-
ing set modifications where it remains guaranteed that f(xte) ≤ ξ.

7.1 Partitioned Certified Regression

Here, the T submodel regressors are fully-independent, meaning their training sets are disjoint, and each submodel
prediction provides no direct insight into any other submodel’s behavior. This simple framework makes no assump-
tions about the submodel architecture; the submodels may be non-parametric or parametric, deep or shallow, etc. The
only requirement is that each submodel returns a deterministic prediction given its training set and feature vector xte.

Levine and Feizi enforce disjoint submodel training sets by using deterministic function htr to partition training
set S into T disjoint blocks, S(1), . . . , S(T ). Formally, for all t ∈ [T ], submodel ft’s training set is Dt = S(t).

Since each training instance is assigned to exactly one submodel, any training set modification can only affect
one submodel. Under the unit-cost assumption (Def. 1), each training set modification changes the corresponding
submodel’s prediction from ft(xte) to ∞ in the worst case. Thus, perturbing a partitioned ensemble’s median
prediction follows Sec. 4.1’s unweighted swap paradigm where, as explained above, each perturbed submodel entails
one training set modification.

Via reduction to DPA, Theorem 9 directly applies Lemma 3 to certify unit-cost, partitioned regression’s robustness
under arbitrary training set insertions and deletions.

Theorem 9. For xte ∈ X , ξ ∈ R, and deterministic function htr that partitions set S into disjoint blocks S(1), . . . , S(T ),
let f be an ensemble of T submodels where T is odd, and each deterministic submodel ft is trained on block S(t). De-
fine Vl := {ft(xte) : ft(xte) ≤ ξ}. Given f(xte) := med {f1(xte), . . . , fT (xte)} ≤ ξ, if model f is trained on a modified
S where the total number of inserted and deleted training instances does not exceed

R = |Vl| −
⌈
T

2

⌉
, (8)

it is guaranteed that f(xte) ≤ ξ.

We denote this disjoint ensemble regressor as partitioned certified regression (PCR). Suppl. Sec. E proves that
when regression is used for binary classification, PCR and DPA yield identical robustness guarantees (R).

7.2 Weighted Partitioned Certified Regression

Levine and Feizi only consider the maximally pessimistic unit-cost assumption. For a feature vector xte, it may take
multiple training set insertions/deletions to corrupt a submodel’s prediction. For example, Theorems 7 and 8 prove
that IBL predictions are robust to multiple training set modifications.

Fixing the regressor’s overall architecture, one obvious way to improve certified robustness R is to improve the
robustness certifier. Below, we introduce tighter analysis of each PCR submodel’s pointwise robustness so as to
move beyond unit cost. Let rt ∈ N denote the minimum number of insertions/deletions required to change4 the
submodel enough where ft(xte) > ξ. By definition, if ft(xte) > ξ without any training set modifications, rt = 0.
When ∃t rt > 1, better certified guarantees are possible through a weighted framework. Theorem 10 directly applies
Lemma 5’s weighted swap paradigm to adapt PCR (and DPA) to weighted perturbation costs. We denote this
extension weighted partitioned certified regression (W-PCR).

4Certified robustness R is the total number of training set modifications that can be made with it remaining guaranteed
that f(xte) ≤ ξ. In contrast, rt is minimum the number of modifications needed to perturb submodel t’s prediction enough
that ft(xte) > ξ. If Rt were the certified robustness of just submodel t, then rt = Rt + 1. rt’s definition here follows related
work [Ran+21].
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Figure 5: Overlapping Certified Ensemble: Simple visualization of the ensemble architecture for
(weighted) overlapping certified regression. Function htr partitions training set S into (m = 7) blocks. Func-
tion hf defines each of the T = 5 submodel training sets, D1, . . . ,D5. The ensemble prediction is the median
submodel prediction, i.e., f(xte) := med {f1(xte), . . . , fT (xte)}.

Theorem 10. For xte ∈ X , ξ ∈ R, and function htr that partitions set S into disjoint blocks S(1), . . . , S(T ), let f be
an ensemble of T submodels where T is odd. Each deterministic submodel ft is trained on block S(t) and requires at
least rt ∈ Z+ modifications to S(t) for ft(xte) > ξ. For R := {rt : ft(xte) ≤ ξ}, let R̃l be R’s smallest |R| −

⌈
T
2

⌉
+ 1

values. Given f(xte) := med {f1(xte), . . . , fT (xte)} ≤ ξ, if model f is trained on a modified S where the total number
of inserted and deleted training instances does not exceed

R =
∑
r∈R̃l

r − 1, (9)

it is guaranteed that f(xte) ≤ ξ.

It can be easily shown that W-PCR always yields certified robustness at least as good as PCR. Although
proposed in the context of regression, our weighted formulation also notably improves certified classification as shown
in Sec. 10.2.

7.3 Computational Complexity

Both PCR and W-PCR require training O(T ) models. As established by Lemmas 3 and 5, the computational
complexity of PCR and W-PCR (resp.) to certify each ensemble prediction is O(T ) [Blu+73] – the same complexity
as DPA.5

8 Certified Regression Using Overlapping Training Data

This section reduces certified regression to a third certified classifier, specifically Wang et al.’s [WLF22] reformulation
of DPA where the submodels are trained on overlapping data. This makes the submodels interdependent, meaning one
training set modification may alter multiple submodel predictions. Fig. 5 visualizes an ensemble trained on overlapping
training sets. Again, T is the number of submodels.6 Function htr : Z → [m] still partitions the instance space into
m disjoint blocks, where m ≥ T . Following Wang et al., a second deterministic function hf : [m]→ 2[T ] maps each
training set block to one or more submodel training sets. Formally, submodel ft’s training set is Dt :=

⊔
t∈hf (j) S

(j).

5Not included in W-PCR’s complexity is the time to determine r1, . . . , rT .
6In practice, for overlapping certified regression to guarantee better robustness than (W-)PCR the number of submodels

generally must increase by several folds over partitioned regression.
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Let d(j) := |hf (j)| denote S(j)’s spread degree, i.e., the number of models that use S(j) during training. Denote the
maximum spread degree as dmax := max{d(1), . . . , d(m)}. The ensemble’s decision function is still the median submodel
prediction.

Below, we first consider certified regression on overlapping data under the unit-cost assumption. We then improve
overlapping regression by leveraging our weighted reformulation.

8.1 Overlapping Certified Regression

Irrespective of whether the submodels are trained on disjoint or overlapping data, under the unit-cost assumption, at
least |Vl| −

⌈
T
2

⌉
submodel predictions must exceed ξ to perturb the ensemble’s median. Observe that each submodel

training set Dt ⊂ S is composed of one or more dataset blocks. Perturbing any block in Dt is sufficient to perturb
the submodel’s prediction, with an optimal attacker minimizing the number of training set (block) modifications.

If the goal were to perturb all T submodels, then for arbitrary block mapping function hf , determining the
minimum number of blocks that need to be modified reduces to minimum set cover, which is NP-hard [Sla97a].
Specifically, the set to cover is Tl := {t : ft(xte) ≤ ξ}, i.e., the submodels predicting at most ξ, and the collection of
subsets is S :=

{
{j : t ∈ hf (j)} : ft(xte) ≤ ξ

}
, which contains the dataset blocks each relevant submodel is trained

on.
However, recall that for median perturbation under unweighted swaps, we only need to perturb (i.e., cover)

|Vl| −
⌈
T
2

⌉
submodels – not all of them. Therefore, rather than mapping to set cover, our problem reduces to the

related problem of partial set cover, where only a constant fraction of the instances (i.e., submodels) need to be
covered. For arbitrary block mapping function hf , Lemma 11 below establishes that finding the optimal R here is
NP-hard [Sla97b; EK10].

Lemma 11. Finding optimal certified robustness R for overlapping certified regression is NP-hard.

Although our problem is NP-hard, it is polynomial-time approximable. Specifically, the approximation uses
the famous greedy set-cover algorithm where in each iteration, the subset (training block S(j)) covering the most
remaining elements (submodels) is selected [Chv79; Sla97b]. Let G denote the bound found by this greedy method,
and define ∆ := |Vl| −

⌈
T
2

⌉
. Then for the non-naive case where ∆ ≥ 2,

R ≥
⌈

G

min{H(dmax), ln ∆− ln ln ∆ + 3 + ln ln 32− ln 32}

⌉
, (10)

where H(dmax) is the dmax-th harmonic number. This bound follows directly from partial set cover approximation
factor analysis ([Sla97a, Thm. 4]; [Sla97b, Thm. 3]).7 Slav́ık [Sla97a] shows that the difference between this approxi-
mation factor’s overall lower and upper bound is only roughly 1.1, meaning this general approximation is quite good
overall.

However, in most cases, the performance advantage of overlapping versus disjoint unit-cost regressors is small
enough that the greedy optimality gap wipes out all gains. Instead, we rely on Fig. 6’s integer linear program (ILP)
to bound R in the overlapping case.8 This ILP is directly adapted from standard partial set-cover, where for unit
costs ∀t rt = 1.

While the ILP is still NP-hard in the worst case, modern LP solvers often find a (near) optimal solution in
reasonable time (e.g., a few seconds) [Gur22]. In cases where finding true robustness R is computationally expensive,
these solvers generally return guaranteed bounds on R that are (much) better than the greedy approximation [Van14].9

We refer to this unit-cost, ILP-based approach as overlapping certified regression (OCR).

8.2 Weighted Overlapping Certified Regression

Recall that Sec. 7.2 improves certified regressor PCR by reformulating DPA so as not to be restricted by the unit-cost
assumption. Here, we follow the same approach of improving certified regressor OCR by generalizing Wang et al.’s
[WLF22] certified classifier to non-unit costs.

As with W-PCR earlier, rt > 1 entails that submodel ft’s training set must be modified at least rt times for
ft(xte) > ξ. This prevents weighted overlapping regression from applying partial set cover since each submodel ft
now has a coverage requirement. Instead, partial set multicover (PSMC) generalizes partial set cover to support
coverage requirements rt ≥ 0 [Shi+19; Ran+21], and we adapt PSMC to weighted, overlapping regression. PSMC,
and by extension our task, is provably hard.

7Eq. (10)’s bound is tighter (often significantly so) than the much more famous approximation factor, H(∆), of Johnson
[Joh74] and Lovász [Lov75].

8Fig. 6 jointly formulates calculating R under unit and weighted costs.
9Sec. 10’s experiments use a fixed time limit to ensure tractability.
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min R =

m∑
j=1

ω(j) − σ (12a)

s.t. Tl = {t : ft(xte) ≤ ξ}, (12b)

rmax = max{rt : t ∈ [T ]} (12c)

σ = 1[rmax > 1] (12d)∑
t∈Tl

δt ≥ |Vl| −
⌈
T

2

⌉
+ σ, (Median perturb.) (12e)

rtδt ≤
∑

S(j)⊆Dt

ω(j), t ∈ Tl (12f)

δt ∈ {0,1}, t ∈ Tl (12g)

ω(j) ∈ {0, . . . , rmax}, j ∈ [m] (12h)

Figure 6: Overlapping Certified Regression Integer Linear Program: Adapted from the partial set
(multi)cover integer linear program. Calculates certified robustness R for both OCR and W-OCR with
indicator variable σ adjusting the program to account for weighted costs. For arbitrary feature vector xte,
Tl is the set of submodels that predict ft(xte) ≤ ξ. Variable ω(j) contains the number of modifications made
to training set block S(j). Binary variable δt = 1 if submodel ft has been sufficiently modified for ft(xte) > ξ

and 0 otherwise.

Corollary 12. Finding the optimal certified robustness R for weighted overlapping certified regression is NP-hard.

PSMC is far less studied than (partial) set cover. PSMC is polynomial-time approximable – albeit with worse
known bounds than partial set cover. Ran et al. [Ran+21] provide the best-known PSMC bounds; their method is
much more complicated than greedy partial set cover and relies on a reduction to another NP-hard problem, minimum
densest subcollection. Let G be the solution generated by Ran et al.’s algorithm, then

R ≥
⌈

G

4 lg TH(dmax) ln ∆ + 2 lg T
√
T

⌉
. (11)

Like with unweighted overlapping regression, Eq. (11)’s approximation factor is large enough that it usually wipes
out the performance gains derived from weighted costs. Instead, we use Fig. 6’s ILP to bound R in accordance with
Lem. 5. In the ILP, σ = 1 in the weighted case and 0 otherwise. Hence, at least (|Vl| −

⌈
T
2

⌉
+ 1) submodels must be

covered (i.e., perturbed) in the weighted case. Following Eq. (5), sum
∑m

j=1 ω
(j) is decremented by one in the ILP.

We refer to this overlapping ILP-based approach as weighted overlapping certified regression (W-OCR).

8.3 Computational Cost

See suppl. Sec. I.5 for an empirical evaluation and extended discussion of the OCR & W-OCR ILP execution time.

9 Certifying Any Model Beyond Unit Cost

The preceding sections describe the benefits of having more robust ensemble components (i.e., rt > 1) but do not
address how to find rt. Apart from IBLs and ensembles, the two methods we focus on in this work, we know of
no general method for computing insertion/deletion robustness efficiently. We attribute this scarcity to the task’s
difficulty. Nonetheless, we believe this work shows that certification beyond unit cost merits future study. This
section explores certifying beyond unit cost from two perspectives. First, we consider the obvious idea of combining
IBLs with ensembles and explain why that performs poorly. Next, we propose a simple, general approach to certify
any (sub)model beyond unit cost, albeit with a (slightly) more restricted threat model.

9.1 Combining Instance-Based Learners & Ensembles

The points raised below apply to both fixed-population and region-based IBLs. We exclusively discuss kNN-CR here
with the extension to other certified IBLs straightforward.
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In practice, function htr partitions instance space Z uniformly at random (u.a.r.) into m approximately equal-
sized regions. For simplicity and w.l.o.g., consider an ensemble of kNN-CR submodels trained on disjoint subsets
where T = m.

Let k′ and R denote the neighborhood size and certified robustness (resp.) of a kNN-CR model trained on i.i.d.

training set S. If S is partitioned u.a.r. to train T kNN-CR submodels each with k ≈ k′

T
, then each submodel’s

expected robustness is roughly R
T

. In the best case for the defender (∀t ft(xte) ≤ ξ), an adversary only needs to
perturb at most

⌈
T
2

⌉
submodels. Combining the above with Theorem 10 for W-PCR, this kNN-CR ensemble’s

expected certified robustness is approximately⌈
T

2

⌉(
R

T

)
− 1 =

R

2
+

R

2T
− 1 < R. (13)

As n, T →∞, then by Eq. (13), a kNN-CR ensemble’s expected robustness decreases by 50% versus the single
kNN-CR model baseline. Intuitively, for ensembles, an adversary only needs to directly attack about half of the
submodels and by extension half of the training data. In contrast, when there is only a single kNN-CR model trained
on all of S, the adversary must attack the whole training set.

9.2 Certifying Non-Unit Costs by Construction

Since IBLs are a poor candidate to marry with ensembles, we need an alternative approach to certify a model’s
robustness beyond r = 1. Given the dearth of existing methods (known to us), we fill in the gap and propose a
simple, general-purpose method to certify robustness against arbitrary deletions.

To be clear, this is a (slightly) restricted version of the full threat model considered so far, which allows arbitrary
insertions and deletions. Nonetheless, this restricted threat model still has broad applicability. For example, an
adversary may only be able to insert poisoned instances into a training set but not delete clean ones [Che+17;
Liu+17; Sha+18; Wal+21; HL22a].

Motivated by Cook and Weisberg’s [CW82] classic case deletion diagnostics, we use a constructive proof to certify
a (sub)model’s pointwise robustness under instance deletions. Consider training (n+ 1) deterministic models – one
model using full set S = {(xi, yi)}ni=1 and another n models on each of the leave-one-out subsets S \ (xi, yi) for
all i ∈ [n]. If all (n+ 1) trained models make the same prediction (e.g., a value not exceeding ξ for some xte), then
by construction, the model trained on all of S has, at minimum, r = 2 for arbitrary deletions. Lemma 13 generalizes
the above for an arbitrary number of deletions r < n.

Lemma 13. For xte ∈ X , training set S where 2S is its power set, r ∈ [|S| − 1], and ξ ∈ R, denote a deterministic

model trained on subset S ⊆ S as fS. Given ∀S′∈2S |S′| < r =⇒ fS\S′(xte) ≤ ξ, then for any S̃ ⊂ S, if fS̃(xte) > ξ

then at least r instances from S were deleted in S̃.

A strength of Lemma 13 is its flexibility; it can be adapted to any model class, including both classifiers and
regressors. Its clear limitation is its computational complexity.

Computational Complexity : Certifying r > 1 requires training O(n(r−1)) models; this is a one-time, amortized cost.10

Consider separately the cost to certify each prediction. During inference, the O(n(r−1)) models are checked.
While this may be problematic in some cases, it should be contextualized. Recall that Sec. 6 explores IBLs like kNN,
which have inference complexity O(n). Therefore, our method to certify r = 2 has the same time complexity during
inference as kNN.

9.3 More Submodels vs. Weighted Costs

Increasing submodel count T and using weighted costs are partially conflicting approaches to increase R. A natural
question is which of the two approaches yields better certified robustness. Above, we explain why increasing T is a
poor strategy for IBLs. For ensembles, increasing T generally means that each submodel is trained on fewer data.

As an intuition, consider when ∀t rt = 2. For a unit-cost ensemble to certify equivalent R, submodel count T
must about double, and each submodel is trained on 50% fewer data, which can significantly degrade submodel
performance. In contrast, weighted costs with r = 2 reduces submodel training set sizes by 1 (Lem. 13). By training
weighted submodels on much more data, weighted submodels can outperform submodels from ensembles with larger T .
This improved submodel performance can in turn improve certified robustness.

10It may be possible to train just one model using full training set S and then apply certified machine unlearning [Guo+20;
BL21] to get the remaining models.
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10 Evaluation

This section evaluates our five primary certified regressors: kNN-m certified regression (kNN-CR), partitioned certi-
fied regressors PCR & W-PCR as well as overlapping certified regressors OCR & W-OCR. Additional experimental
results are in the supplement, including full kNN-CR certification plots (I.2), alternate ξ value analysis (I.3), model
training times (I.4), ILP execution time (I.4), etc.

To the extent of our knowledge, we propose the first pointwise certified regression methods that make no as-
sumptions about the test distribution or model architecture. Without a clear baseline, we compare our five methods
against each other. As a reference on the clean-data performance, we report each dataset’s “uncertified” (non-robust)
accuracy.

10.1 Experimental Setup

Due to space, most evaluation setup details (e.g., hyperparameters) are deferred to suppl. Sec. H with a brief summary
below. For each experiment in this section, at least ten trials were performed. To improve readability, we only report
the mean values below with variances in suppl. Sec. I.1.

Dataset Configuration Each (sub)model is trained on 1
q
-th of the training data, where q ∈ Z>0. For kNN-CR,

always q = 1. For our four ensemble-based methods (W-)PCR and (W-)OCR, q can significantly affect the ensemble’s
accuracy and best-case certified robustness (R). As such, for each dataset, we report results with three different q
values. For all ensembles, function htr partitions training set S u.a.r.11

For our partitioned regressors (W-)PCR, S is split into q blocks, with T = q. For our overlapping regressors
(W-)OCR, we followed Wang et al.’s [WLF22] overlapping certified classifier evaluation. Specifically, S is partitioned
into qd blocks u.a.r. All blocks have fixed spread degree d > 1 (see Tab. 1), and hf assigns blocks to submodels at
random. Hence, each overlapping ensemble necessarily has T = qd submodels.

Submodel Architectures To demonstrate their generality, our ensemble methods use two different submodel
architectures, namely ridge regression and XGBoost [CG16] gradient-boosted forests. Model determinism is enforced
via a fixed random seed. Below, we report whichever submodel architecture performed the best on a held-out
validation set.

Evaluation Metric For each test instance (xte, yte), our goal is to determine the largest pointwise certified robust-
ness R that guarantees ξl ≤ f(xte) ≤ ξu. Throughout this evaluation, ξl := yte − ξ and ξu := yte + ξ. These bounds
are w.r.t. each test example’s true target value yte, not predicted value f(xte). Therefore, a large certified robustness R
means that the prediction is both accurate and stable. Here, error threshold ξ may be a specific fraction (e.g., 15%)
of each instance’s target value yte or a fixed value for the entire dataset (see Table 1). In practice, the appropriate ξ
value is application specific.

Our evaluation metric is certified accuracy, which is the fraction of instances with robustness R ≥ ψ for ψ ∈ N.
In each trial, we calculated the certified robustness (R) for at least 100 random test instances and report the mean
certified accuracy across all trials. See suppl. Sec. I.1 for the certified accuracy variance. Note that existing certified
classifiers were previously evaluated using certified accuracy [Jia+22a; LF21; WLF22] with ξ = 0, i.e., the predicted
label must match true label yte.

Datasets Our certified regressors are evaluated on six datasets: five regression and one binary classification. Like
previous work [BHL22], the datasets are preprocessed where all categorical features are transformed into one-hot
encodings. Table 1 summarizes each dataset’s key attributes, including its size, error threshold (ξ), ensemble submodel
architecture, etc. A brief description of each dataset is below.

Ames [Coc11] and Austin [Pie21] estimate home prices in two American cities. Diamonds [Wic16] predicts a
diamond’s price based on attributes such as cut, color, carat, etc. Weather [Mal+21] estimates ground temperature
(in degrees Celsius) using date, time, and longitude/latitude information. For computational efficiency, Weather’s
size was downsampled by 10× u.a.r. Life [Raj21] estimates life expectancy (in years) using epidemiological and other
national statistics. Spambase [Hop+17] is a binary classification dataset where emails are labeled as either spam or
ham. Spambase’s positive training prior is 39%.

Certifying r > 1 For our two weighted methods, W-PCR and W-OCR, our evaluation attempts to certify each
submodel’s robustness against deletions up to r = 2.

11Each dataset’s largest q value maximized the ensembles’ certified robustness (R). For each dataset, we also report small and
medium q values. In practice, q should be as small as possible while guaranteeing sufficient robustness given each application’s
maximum anticipated poisoning rate.
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Table 1: Evaluation Dataset Summary: Training set size (n), data dimension, overlapping spread
degree (d), error threshold (ξ), and submodel architecture for the six datasets. Error thresholds that are
a percentage of each instance’s true target value are denoted X% · y. Alternate ξ values are evaluated in
suppl. Sec. I.3.

Dataset Size (n) Dim. Deg. (d) Error (ξ) Submodel

Ames 2.6k 253 17 15% · y XGBoost
Austin 12k 315 13 15% · y XGBoost
Diamonds 48k 26 9 15% · y Ridge
Weather 308k 140 5 3◦ C Ridge
Life 2.6k 204 13 3 years XGBoost
Spambase 4.1k 57 17 0 Ridge

10.2 Analyzing the Certified Accuracy

Figure 7 visualizes our methods’ mean certified accuracy for the six datasets. Due to space, the corresponding
numerical values, including variance, appear in Sec. I.1. Below, we briefly summarize the experiments’ primary
takeaways.

Takeaway #1: Both our ensemble and IBL regressors certify non-trivial fractions of the training set. For the Ames
and Life datasets, W-OCR certifies 50% of test predictions up to 1% training set corruption. Similarly, kNN-CR
certifies 30% of predictions on Ames up to 4% corruption. These certified guarantees are without explicit assumptions
about the data distribution or, in the case of ensembles, the submodel’s architecture. For other datasets, we certify
predictions up to hundreds or thousands of training set modifications.

Takeaway #2: Ensemble regressors have better peak performance. Across all six datasets, the ensemble-based
methods all had better peak certified accuracy than kNN-CR. The performance gap was as large as 3.5× and is not
primarily due to feature dimension as kNN-CR performed worst on Diamonds, which has the smallest dimension by
far.

Takeaway #3: W-OCR achieves the largest certified robustness (R) amongst the ensemble methods. This is
observed using each dataset’s largest q value. For all six datasets, there is a (significant) gap between W-OCR ( )
and our second-best ensemble method, W-PCR ( ).

Takeaway #4: kNN-CR achieves the largest certified robustness. Although kNN-CR certifies (far) fewer instances
than the ensembles, for instances that it can certify, its maximum robustness R is generally far larger than that
of W-OCR. For example with Weather, kNN-CR’s maximum R is 5× larger than W-OCR’s. Suppl. Sec. I.2 best
visualizes this trend in its plots of kNN-CR’s full certified accuracy.

Takeaway #5: W-OCR achieves state-of-the-art certified accuracy for binary classification. While regression is
this work’s primary focus, recall that binary classification can be solved by a regressor. For binary classification,
kNN-CR’s R is identical to Jia et al.’s [Jia+22a] kNN classifier; PCR certifies equivalent robustness as DPA, and
OCR very closely approximates Wang et al.’s [WLF22] overlapping method. Observe that W-OCR outperforms the
unweighted ensembles and kNN-CR on Spambase’s [Hop+17] two largest q values. Note that Spambase’s maximum q
value cannot be increased further without severely degrading submodel performance. This provides empirical evidence
for Sec. 9.3’s claim that a weighted strategy can outperform increasing submodel count T .

Takeaway #6: q can significantly affect certified accuracy. Previous certified classifier evaluations [Jia+22a;
WLF22; LF21] under-explore q’s role. Those works primarily evaluate vision datasets where the training data is
supplemented by (1) using a pre-trained model to extract much better features [JCG21; Jia+22a] or (2) using vision
data augmentation [LF21; WLF22]. For the tabular datasets evaluated here, such options are not as available.

Without such augmentation, increasing q can significantly degrade an ensemble’s peak certified accuracy. As an
example, the ensembles’ peak certified accuracy can decline by up to 28% between training a model on all of S versus
a dataset’s maximum q value (compare to uncertified accuracy in Fig. 7). Therefore, when thinking about certified
classifiers and regressors, always consider the potential benefits of external (clean) data augmentation. For instance,
in our experiments, XGBoost certified ensembles’ accuracy improved by multiple percent when using mixup data
augmentation [Zha+18].
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Figure 7: Certified Accuracy: Mean certified accuracy (larger is better) for our five primary certified regressors.
kNN-CR is always trained on all of training set S (i.e., q = 1). Ensemble submodels are trained on 1

q -th of S, with
three q values tested per dataset. The x-axis is clipped to enhance readability; see suppl. Sec. I.2 for kNN-CR’s full
results. The best performing method depends on the target certified robustness R. For smaller R values, W-OCR
achieves the best certified accuracy. For larger R values, kNN-CR outperforms the ensemble methods. This result
aligns with previous findings on certified classification [Jia+22a]. Sec. 10.2 summarizes these experiments’ primary
takeaways. See Sec. I.1 for the numerical results, including variance.

16



11 Conclusions

This paper describes a novel reduction from certified regression to certified classification based on median perturba-

tion. Applying this reduction, we propose six new certified regressors that require no assumptions about the data

distribution or model architecture. As improved voting-based, certified classifiers are proposed in the future, our

reduction can be applied to those methods too. This enables certified regression to keep pace with the rapid advances

in certified classification.

While this work focuses on certified defenses against poisoning attacks, some certified evasion defenses also rely

on voting-based guarantees [LF20; Jia+22a]. Our reduction from certified regression to certified classification applies

to those certified evasion defenses as well.

Lastly, our empirical results show that improved certified guarantees are possible when the unit-cost assumption

is replaced by our tighter weighted analysis. These certification gains apply to both classification and regression,

but Sec. 9.2’s approach is computationally expensive. We advocate for better methods that efficiently certify beyond

r = 1.
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A Nomenclature Reference

Table 2: Nomenclature Reference: Related symbols are grouped together. For example, the first group
lists the acronyms of our primary certified regressors. Note that this table continues on the next page.

kNN-CR Our kNN-based certified regressor (Sec. 6.1)

PCR Our partitioned certified regressor (Sec. 7.1)

W-PCR Our weighted-cost partitioned certified regressor (Sec. 7.2)

PCR Our overlapping certified regressor (Sec. 8.1)

W-PCR Our weighted-cost overlapping certified regressor (Sec. 8.2)

R Pointwise certified robustness – number of possible training set insertions or deletions without violating
the prediction bounds – our primary goal

[k] Integer set {1, . . . , k}
2[k] Power set of integer set [k]

1[q] Indicator function where 1[q] = 1 if q is true and 0 otherwise

medA Median of (multi)set A

H(k) k-th harmonic number where H(k) =
∑k

i=1
1
i

x Feature vector

X Feature domain where ∀x x ∈ X and X ⊆ Rd

d Feature dimension

y Target value

Y Target range where ∀y y ∈ Y and Y ⊆ R
Z Instance space where Z := X × Y
(xte, yte) Arbitrary test instance

S Training set where S ⊆ Z
n Training set size where n := |S|
m Number of training set blocks

htr Training set partitioning function where htr : Z → [m]

j Training set block index where j ∈ [m]

S(j) j-th training set block where S(j) := {z ∈ S : htr(z) = j} and ∀j′ 6=j S
(j) ∩ S(j′) = ∅

f Robust regressor – either an ensemble or instance-based learner – where f : X → Y
f(xte) Regressor f ’s prediction for test feature vector xte

ξ One-sided upper bound for robustness certification where f(xte) ≤ ξ
ξl Two-sided lower bound for robustness certification where ξl ≤ f(xte) ≤ ξu
ξu Two-sided upper bound for robustness certification where ξl ≤ f(xte) ≤ ξu
kNN Vanilla k-nearest neighbors

kNN-m k-nearest neighbors with median as the decision function

rNN Radius nearest neighbors

N (xte) Nearest-neighbors neighborhood (multi)set for test feature vector xte

T Ensemble submodel count where by definition T is selected to be odd-valued

t Submodel index where t ∈ [T ]

ft t-th ensemble submodel

rt Number of training set modifications required to violate invariant ξl ≤ ft(xte) ≤ ξu. Note that rt is
one larger than ft’s certified robustness

rmax Maximum submodel modification requirement where rmax := maxt rt

hf Overlapping training set block assignment function where hf : [m]→ 2[T ]
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Table 2: Nomenclature Reference (Continued): Related symbols are grouped together.

Dt Submodel ft’s training set where for overlapping regression Dt =
⋃

j∈[m]
t∈hf (j)

S(j)

q Inverse of the fraction of the training set used to train each submodel, where ∀t q = n
|Dt|

d(j) Spread degree of training set block S(j) where d(j) := |hf (S(j))|
dmax Maximum spread degree where dmax := maxj d

(j)

Tl Set of ensemble submodels predicting ft(xte) ≤ ξ where Tl ⊆ [T ]

V Real-valued (multi)set, e.g., kNN neighborhood or ensemble submodel predictions, where T = |V|
Vl Lower thresholded real-valued multiset where Vl := {νt ∈ V : νt ≤ ξ}
Vu Upper thresholded real-valued multiset where Vu := {νt ∈ V : νt > ξ}
V±1 Binarized multiset where V±1 := {sgn (νt) : νt ∈ V}
Ṽ Adversarially perturbed real-valued (multi)set formed from (multi)set V

R Weight set where R := {rt : t ∈ [T ]}
Rl Weight set corresponding to values set Vl where Rl := {rt ∈ R : νt ∈ V}
∆ Midpoint distance where ∆ := |Vl| −

⌈
T
2

⌉
R̃l ∆ smallest values in Rl

ILP Integer linear program

ω(j) ILP integral variable representing the number of instance modifications made to training set block S(j)

δt ILP binary variable which equals 1 if submodel ft has been perturbed such that ft(xte) > ξ and
0 otherwise

σ ILP binary variable which equals 1 if in the case of weighted analysis and 0 otherwise

PSMC Partial set multicover

G Upper-bound on certified robustness R returned by a greedy algorithm
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B Worst-Case Insertions and Deletions are Interchangeable: Proof

Lemma 14. For real multiset V of cardinality T > 1, if an arbitrarily-large value is inserted into V or the smallest

value in V is deleted, the resulting sets’ medians are equivalent.

Proof. For simplicity and w.l.o.g., assume V is ordered where ν1 ≤ · · · ≤ νT . Let α ∈ [1, T ] denote the median’s index.

If T is odd, α =
⌈
T
2

⌉
; otherwise, when T is even, α = T

2
+ 1

2
, i.e., the midpoint between the T

2
-th and (T

2
+ 1)-th

largest values in V.

Consider first an arbitrarily-large insertion when T odd. Each insertion increases the set’s cardinality by 1. When
V’s cardinality is odd, then the cardinality of this new set after the first insertion is even. Therefore, this new set’s
median has index

α′ :=
T + 1

2
+

1

2
. Median’s index for new set of even size T + 1 (14)

=

⌈
T

2

⌉
+

1

2
(15)

= α+
1

2
. (16)

Since T ≥ α′ and the inserted element is larger than all values in V, the value corresponding to index (
⌈
T
2

⌉
− 1

2
) is

equivalent for both original set V and the new set after the insertion.

Next, consider the deletion case for odd T . Similar to above, the cardinality of the modified set after one deletion
is even; therefore, this modified set’s median has index

α′′ :=
T − 1

2
+

1

2
. Median’s index for new set of even size T − 1 (17)

=

⌈
T

2

⌉
− 1

2
(18)

= α− 1

2
. (19)

This new set’s cardinality is one smaller than the original set with the smallest element removed. Hence, the value

corresponding to index (
⌈
T
2

⌉
− 1

2
) in this shrunken set equals the value at index (

⌈
T
2

⌉
+ 1

2
) in original set V.

Since indices α′ and α′′ correspond to the same value in V, the resulting sets’ medians are equivalent.

The primary takeaway from Lemma 14 is that under the insertion/deletion paradigm, worst-case insertions and

deletions are interchangeable. Note that for our purposes, there is an edge case where worst-case insertions and

deletions exhibit divergent behavior. Specifically, after T deletions (i.e., all elements in V are removed), the median

of an empty set is not generally defined. In contrast, the median after T arbitrarily-large insertions is itself arbitrarily

large. For consistency, we define the empty set’s median as ∞ to match the insertion case.
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C Proofs for the Main Paper

Proof of Lemma 3

Proof. Let Vl be all elements in V that do not exceed ξ.

Under the swap paradigm, the optimal strategy to maximally increase a set’s median is to iteratively replace the

set’s smallest value with ∞. Apply this optimal strategy to V. After one swap, the resulting set contains |Vl| − 1

elements that are less than or equal to ξ. After two swaps, there are |Vl| − 2 such elements with each subsequent

swap’s effects proceeding inductively. Once the modified set contains exactly
⌈
T
2

⌉
elements less than or equal to ξ,

no additional swaps are possible without causing the resulting set’s median to exceed ξ.

Therefore, by induction, the maximum number of swaps that can be performed on V and it remains guaranteed

that the resulting set’s median does not exceed ξ is

R = |Vl| −
⌈
T

2

⌉
. (20)

Proof of Lemma 4

Proof. For simplicity and w.l.o.g., assume V is ordered where ν1 ≤ · · · ≤ νT . An attacker’s optimal insertion strategy

is to insert arbitrarily-large values into V while the optimal deletion strategy is to always delete V’s smallest value.

Lemma 14 proves that these worst-case operations perturb the median identically so we only consider insertions

below.

Let α denote the median’s index. If T is odd, α =
⌈
T
2

⌉
; otherwise, when T is even, α = T

2
+ 1

2
, i.e., the midpoint

between the T
2

-th and (T
2

+ 1)-th largest values in V.

Each insertion increases the set’s size by 1. When V’s size is odd, then the size of this new set after the first
insertion is even. Therefore, this new set’s median has index

α′ :=
T + 1

2
+

1

2
Median’s index for new even size T + 1 (21)

=

⌈
T

2

⌉
+

1

2
(22)

= α+
1

2
. (23)

The analysis is essentially identical when T is even and is excluded for brevity. Note that each insertion always

increases the median’s index α by 1
2
.

As long as α ≤ |Vl|, it is guaranteed that medV ≤ ξ. Since each insertion changes α by 1
2
, then 2(|Vl| − α) arbitrary

insertions can be made in V with it remaining guaranteed that the modified set’s median does not exceed ξ. Regardless
of whether T is odd or even,12 it holds that

R ≥ 2(|Vl| − α) = 2|Vl| − 2α = 2|Vl| − T − 1. (24)

12When T is odd, 2α = 2
⌈
T
2

⌉
= T + 1 while in the even case 2α = 2

(
T
2

+ 1
2

)
= T + 1.
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Proof of Lemma 5

Proof. The first portion of this proof follows the same argument as the proof of Lemma 3, with one primary difference.

There, the optimal strategy to perturb V’s median swapped out the smallest values in V first. For the weighted version,

the optimal (greedy) strategy swaps out whichever value in Vl ⊆ V has the smallest weight.

To perturb V’s median above ξ, it is sufficient to swap any |Vl| −
⌈
T
2

⌉
values in Vl with an arbitrarily large

replacement. For simplicity and without loss of generality, let r̃1, . . . , r̃|Vl| be the weights of the elements in Vl

arranged in ascending order. Define ∆ := |Vl| −
⌈
T
2

⌉
. Applying Lemma 3, up to ∆ values in V can be replaced

without perturbing the median. This entails a minimum cost of

R ≥
∆∑

t=1

r̃t. (25)

Denote the (∆ + 1)-th largest weight in Rl as r̃∆+1. Observe that adding r̃∆+1 − 1 to Eq. (25) is insufficient to
swap out any remaining elements in Vl since all elements with weight less than r̃∆+1 are already replaced and all
remaining elements have weight at least r̃∆+1. Therefore, the certified robustness is

R = (r̃∆+1 − 1) +

∆∑
t=1

r̃t (26)

=

∆+1∑
t=1

r̃t − 1 (27)

=

|Vl|−dT2 e+1∑
t=1

r̃t − 1 (28)

=
∑
r∈R̃l

r − 1. (29)

Moreover, increasing Eq. (29) by one would allow for the (∆ + 1)-th largest value in V to be swapped, which

would in turn perturb the set’s median above ξ. Therefore, Eq. (29)’s bound is tight.

Proof of Lemma 6

Proof. The median perturbation paradigms formalized in Lemmas 3, 4, and 5 calculate their certified robustness

using three values, namely: T , |Vl|, and
⌈
T
2

⌉
. If these three values are equivalent for V and V±1, then their associated

certified robustness (R) must also be equal.

Since |V| = |V±1|, they have equivalent T and
⌈
T
2

⌉
. By definition, the binarization of V to V±1 does not change the

value of |Vl| either. Therefore, for all three median perturbation paradigms, binary multiset V±1 and real multiset V
have equivalent certified robustness R.

Proof of Theorem 7

Proof. For fixed-population IBLs, certifying that f(xte) ≤ ξ simplifies to median perturbation under Sec. 4.1’s un-

weighted swap paradigm since all necessary criteria are met, namely that

1. f ’s decision function is a median operation over a set of values, i.e., f(xte) := medN (xte).

2. Neighborhood N (xte) has fixed cardinality T , and T is odd.

3. A worst-case modification to training set S causes an element in N (xte) to be replaced with a different one.
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Lemma 3, therefore, provides a (lower) bound on the number of training set modifications that can be made

without the resulting model violating the requirement that f(xte) ≤ ξ. That is why certified robustness R in Eqs. (6)

and (2) (Thm. 7 & Lem. 3, resp.) are equivalent.

Proof of Theorem 8

Proof. This proof follows a very similar structure as Theorem 7’s proof above. The primary distinction is that a

different median perturbation paradigm from Sec. 4 is needed here.

For region-based IBLs, certifying that f(xte) ≤ ξ simplifies to median perturbation under Sec. 4.2’s insertion/deletion

paradigm since the three necessary criteria are met:

1. f ’s decision function is a median operation over a set of values, i.e., f(xte) := medN (xte).

2. Neighborhood cardinality T is not fixed but can increase and/or decrease.

3. Each modification of N (xte) takes the form of either an insertion or deletion, i.e., not swaps.

Therefore, Lemma 4 bounds the total number of training set insertions/deletions that can be performed without

violating the requirement that f(xte) ≤ ξ. That is why R’s definition in Eq. (7) is identical to Eq. (3).

Proof of Theorem 9

Proof. Certifying here that f(xte) ≤ ξ simplifies to median perturbation under the unweighted swap paradigm since

all necessary criteria are satisfied, specifically that

1. f ’s decision function is a median operation over a set of fixed, deterministic values, i.e., f(xte) := med {f1(xte), . . . , fT (xte)}.
2. Since the submodels are trained on disjoint data/feature regions, a change to one submodel (i.e., value ft(xte))

has no effect on any other submodel (value).

3. Each submodel perturbation causes an existing value in the set to be replaced by a new value.

4. T is fixed and odd-valued.

5. The cost to change any submodel (i.e., value) is one, i.e., ∀t rt = 1.

Lemma 3 provides a (lower) bound on the number of training set modifications that can be performed without

violating the requirement that f(xte) ≤ ξ. Certified robustness R in Eq. (8) is then identical to Lemma 3’s Eq. (2).

Proof of Theorem 10

Proof. Here, we extend the argument in Theorem 9’s proof to the weighted case. Four of the five criteria in Thm. 9’s

proof still hold, specifically that

1. f ’s decision function is a median over a set of values.

2. Each submodel is independent and deterministic.

3. Modifications to the set of values take the form of swaps.

4. T is fixed and odd-valued.

The only difference is that the perturbations are weighted where each value ft(xte) now has an associated cost rt ≥ 0.

Therefore, Sec. 4.3’s weighted swap paradigm applies. Certified robustness R in Eq. (9) follows directly from and is

identical to R in Lemma 5’s Eq. (5).
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Proof of Lemma 11

Proof. To prove a problem is NP-hard, it suffices to show that there exists a polynomial time reduction from a known

NP-hard problem to it. As explained in Sec. 8.1, partial set cover is NP-hard [Sla97b; Sla97a]. Below we map partial

set cover to overlapping certified regression.

Let U := [T ′] be a ground set of T ′ elements, and let Q := {Q1, . . . ,Qm} be a collection of sets where each Qj ⊆ U
and ⋃

Q∈Q
Q = U .

The goal is to find the subcover F ⊆ Q of minimum cardinality s.t.

∆ ≤
∣∣∣∣ ⋃
Q∈F
Q
∣∣∣∣,

where ∆ ∈ [T ′].

It is straightforward to map the above to overlapping certified regression. Let the ensemble have (2T ′ + 1) sub-
models. Function htr partitions the training set into m blocks with the blocks denoted S(1), . . . , S(m). Define the
block mapping function as:

hf (j) :=

{
Qj , j ≤ T ′
∅, Otherwise

. (30)

Intuitively, each of the first T ′ submodels is trained on one of the subsets in Q, while the remaining models are not

trained on any data.

Let all submodels be constant a function. Define the submodel function as

ft(xte) :=

{
−∞, t ≤ ∆ +

⌈
T
2

⌉
∞, Otherwise

. (31)

For any finite ξ, |Vl| = ∆ +
⌈
T
2

⌉
. Applying Theorem 9, the number of submodels overlapping certified regression

perturbs is |Vl| −
⌈
T
2

⌉
= ∆.

Overlapping certified regression’s robustness R is the solution to the original partial set cover problem because

1. Only models with index t ≤ T ′ will be perturbed since all other submodels have no training data.

2. The training set of each of these T ′ submodels maps directly to a subset in Q.

3. Overlapping certified regression seeks to find the minimum number of dataset blocks that must be modified to

perturb the median prediction. In this formulation, the number of blocks to be modified is ∆ – same as in the

original partial-set cover problem.

If overlapping certified regression were solvable in polynomial-time, then partial set cover would also be solvable

in polynomial time. However, partial set cover is NP-hard, meaning overlapping certified regression must also be

NP-hard.

Proof of Corollary 12

Proof. From Lemma 11 above, (unweighted) overlapping certified regression is NP-hard. The unweighted case trivially

maps to the weighted one where ∀t rt = 1. Therefore, weighted OCR must be at least as hard as the unweighted case

meaning W-OCR is also NP-hard.
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Proof of Lemma 13

Proof. By construction

Given a deterministic training algorithm, a model’s prediction can be certified against the deletion of any subset

S ⊂ S by training a model on just dataset S \ S and verifying the prediction does not violate the associated invariant,

i.e., fS\S(xte) ≤ ξ.

Consider training a separate model on each subset of S of size at least n− r + 1. If all of those models also satisfy

the invariant, then by construction, r − 1 deletions or fewer are insufficient to violate the invariant. If r − 1 deletions

are not enough, then at least r deletions are required.

Lemma 13’s proof above only applies if model prediction and training is deterministic, i.e., repeating training and

then the prediction always yields the same predicted value. Otherwise, proof by construction would require verifying

all random seeds for each subset of S.
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D Reducing kNN-CR to Jia et al.’s Certified kNN Classifier

Sec. 3 mentions that Jia et al. [Jia+22a] propose a certified classifier by leveraging the implicit robustness of nearest

neighbor methods. In their paper, Jia et al. examine both pointwise certification13 of test instances individually as

well as joint certification of multiple test instances collectively. Here, we exclusively consider Jia et al.’s pointwise

contributions.

This section explores in detail how our certified robust regressor, kNN-CR, reduces to Jia et al.’s certified kNN

classifier. For classification, label space Y is nominal and consists of |Y| classes. Given test instance xte ∈ X , a kNN

classifier returns neighborhood N (xte), which is a multiset whose underlying set is Y. Let c and c′ be the labels with

the largest and second-largest multiplicity in N (xte). In other words, c and c′ are the first and second most popular

labels in xte’s neighborhood. Denote the multiplicity of labels c and c′ as Tc and Tc′ , respectively.

Jia et al. [Jia+22a, Thm. 1] specify their certified kNN classifier’s robustness bound as

R =

⌈
Tc − Tc′ + 1[c > c′]

2

⌉
− 1, (32)

where indicator function 1[c > c′] breaks ties by choosing whichever label is assigned the larger number.

Lemma 15 below establishes that for binary classification, Jia et al.’s method and kNN-CR certify equivalent

robustness guarantees (R). This symmetry between Jia et al.’s method and kNN-CR extends beyond classification

to regression as well.

Recall that Lemma 6 establishes symmetry between certified robustness in a real-valued domain and robustness

in a binarized domain. Applying that insight here, Jia et al.’s certified kNN (binary) classifier is extended from the

binary domain to certify the robustness of kNN-CR’s real-valued regression predictions. Observe that this interplay

is the fundamental concept underpinning any reduction. Put simply, Jia et al.’s certification algorithm serves as, in

essence, a “subroutine” within Fig. 3’s certified regressor framework.

Lemma 15. For xte ∈ X and f a k-nearest neighbor classifier, let N (xte) be xte’s neighborhood under f with

T := |N (xte)| odd. For binary classification, Jia et al. [Jia+22a] and kNN-CR certify equivalent robustness.

Proof. For binary classification with odd neighborhood cardinality T , there cannot be ties between labels. Moreover,
Tc − Tc′ is always odd by the pigeonhole principle. Applying these two observations, Eq. (32) simplifies to

R =

⌈
Tc − Tc′

2

⌉
− 1 . No ties (33)

=
Tc − Tc′ + 1

2
− 1. . Tc − Tc′ is odd (34)

Under binary classification, Tc + Tc′ = T meaning

R =
Tc − (T − Tc) + 1

2
− 1 (35)

=
2Tc − T − 1

2
(36)

= Tc − T + 1

2
(37)

= Tc +

⌈
T

2

⌉
. (38)

In the case of binary classification, Vl represents all models that predict majority label c. Therefore, |Vl| = Tc

meaning Eq. (38) is equivalent to Eq. (6).

13Jia et al. [Jia+22a] term “pointwise certification” as “individual certification.”
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E Reducing PCR to DPA

As detailed in Sec. 3, Levine and Feizi [LF21]’s deep partition aggregation (DPA) defense relies on an ensemble of

T fully-independent, deterministic submodels,14 each of which is trained on disjoint data. Like our certified regressors,

DPA certifies the pointwise robustness of an individual model prediction, f(xte).

In the classification case, label space Y is nominal and consists of |Y| classes. Given xte ∈ X , each submodel

assigns xte some label, i.e., ft(xte) ∈ Y. Denote the ensemble’s plurality label for xte as c ∈ Y, and denote the

number of submodels that predict c for xte as Tc ∈ [T ]. Let c′ ∈ Y \ {c} denote any label other than the ensemble’s

plurality prediction, and let Tc′ ∈ {0, . . . ,
⌈
T
2

⌉
} denote the number of submodels that predict c′ for xte.

Levine and Feizi [LF21, Thm. 1] specify DPA’s certified robustness bound as

R =

⌊
Tc −maxc′ 6=c {Tc′ + 1[c′ < c]}

2

⌋
, (39)

where 1[c′ < c] breaks ties by predicting whichever label has the lower assigned number.

Lemma 16 below establishes that DPA and PCR certify equivalent robustness guarantees for binary classification

with an odd number of submodels. This symmetry between DPA and PCR extends beyond classification to regression

as well.

Recall that Lemma 6 establishes symmetry between certified robustness in a real-valued domain and robustness

in a binarized domain. Applying that insight, it is clear then that DPA is certifying the robustness of our certified

regressor PCR, albeit using V’s surrogate V±1 := {sgn (νt − ξ) : νt ∈ V}. This is the fundamental idea behind reduc-

tions. Here, DPA’s certification algorithm serves as a type of “subroutine” within the certified regressor framework

(Fig. 3).

Lemma 16. Let f be an ensemble of T fully-independent, deterministic submodels where each submodel is trained

on disjoint data with T odd. For binary classification, DPA and PCR certify equivalent robustness.

Proof. This proof is very similar to that of Lem. 15. Nonetheless, we repeat the full details to make each proof

standalone.

Let xte ∈ X be any feature vector. Given ensemble f , xte’s non-majority label c′ is unique so Eq. (39) simplifies
to

R =

⌊
Tc − (Tc′ + 1[c′ < c])

2

⌋
. (40)

Similarly for odd T , ties are not possible making the indicator function unnecessary and able to be ignored depending
how c and c′ are chosen to be defined. This simplifies Eq. (40) to

R =

⌊
Tc − Tc′

2

⌋
. (41)

Eq. (41) can be rewritten as

R =
Tc − Tc′ − 1

2
. Tc − Tc′ always odd when T is odd (42)

=
Tc − (T − Tc)− 1

2
. Tc + Tc′ = T for binary classification (43)

= Tc − T + 1

2
(44)

= Tc −
⌈
T

2

⌉
. (45)

In the case of binary classification, Vl represents all models that predict majority label c. Therefore, |Vl| = Tc

meaning Eq. (45) is equivalent to Eq. (8).

14Levine and Feizi do not specify that T is odd, but such a choice is standard in binary classification settings.
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F Relating OCR to Wang et al.’s Overlapping Certified Classifier

As discussed in Sec. 3, Wang et al. [WLF22] propose an overlapping certified classifier they name deterministic

finite aggregation (DFA). Note the acronym similarity between DFA and Levine and Feizi’s [LF21] deep partition

aggregation (DPA).

As a basic intuition on DFA, recall that dmax is the maximum spread degree of any dataset block over the
T overlapping submodels. As detailed in Sec. 8, when certifying robustness for both classification and regression,
(partially) covering set [T ] is not the goal. Rather, the goal is to partially cover set

Tl := {t : ft(xte) ≤ ξ} ⊆ [T ], (46)

i.e., those subset of models that predict at most ξ. Over this restricted subset, the maximum block spread degree may

be less than dmax. As a very simplified explanation, Wang et al. use this insight to provide worst-case deterministic

bounds on the robustness of an overlapping classification prediction.

Our discussion of overlapping regression in Sec. 8 does not directly apply Wang et al.’s robustness certifier for

multiple reasons, including

1. Wang et al. do not explain that determining optimal R under their formulation is NP-hard. We believe this is

an important insight.

2. Wang et al. do not analyze the optimality gap of their approach. Both our ILP approach and partial set cover

approximation give optimality bounds. What is more, our ILP-based approach can actually prove optimality

gives r1, . . . , rT . In contrast, when Wang et al.’s solution is optimal, no indication of that fact is readily given.

3. Wang et al. only consider the unit-cost assumption, meaning their formulation does not natively support

weighted robustness analysis. To ensure a fair and direct comparison between OCR and W-OCR, we use an

ILP for both methods.

One clear limitation of our choice to use an ILP for overlapping robustness certification is the added computational

cost. However, in our implementation, solving a single ILP uses very few resources, e.g., just a single core in a multicore

CPU. Moreover, we enforce tractable computation times by specifying an ILP time limit. While these two factors

combined are not a panacea, they do assuage (some) computational concerns.
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G On the Tightness of Certified Regression

This section explores two cases where our certified robustness bounds may not be tight.

G.1 Region-Based Neighborhood IBL

Recall that our insertion/deletion paradigm specifies the certified robustness as

R = 2|Vl| − T − 1.

Consider the case where |Vl| < T . After R worst-case insertions into set V, the median is maxVl+minVu

2
. It is possible

that ξ can still exceed this value, meaning one more worst-case insertion/deletion is possible. In other words, Eq. (3)’s

bound would be non-tight by at most one.

To make the insertion/deletion paradigm’s certified robustness bound tight, redefine Lemma 4’s certified robust-
ness as,

R = 2|Vl| − T − 1 + 1

[
maxVl + min Ṽu

2
≤ ξ
]
, (47)

where Ṽu := Vu ∪ {∞}.15

Since Theorem 8 derives its bounds directly from Lemma 4, our certified robustness bound for region-based

neighborhood IBLs can also be non-tight by one. We deliberately simplify our formulation to exclude this case to

ensure consistency with the other presented ideas.

G.2 Weighted Overlapping Certified Regression

A weighted ensemble never has a worse true certified robustness than its unit-cost equivalent. However, there are

cases where W-OCR’s bound is one lower than OCR’s bound, i.e., Fig. 6’s ILP bound is not tight. This occurs,

when for optimal R, it is possible to perturb |Vl| −
⌈
T
2

⌉
+ 1 submodels (i.e., one more than the required |Vl| −

⌈
T
2

⌉
submodels). In such cases, Eq. (5)’s decrementing by one causes the bound to be one less than the ideal value. It

is possible to formulate a more complicated ILP to account for this corner case. However, we deliberately keep the

formulation simple, knowing R may be marginally non-tight. Sec. 10’s evaluation shows this niche case occurs only

rarely in practice – almost exclusively when T is small.

15Including ∞ addresses an edge case in Eq. (47) when V = Vl, and min ∅ is undefined. When Vu 6= ∅, the ∞ has no effect.
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H Evaluation Setup

This section details the evaluation setup used in Section 10’s experiments, including implementation details, dataset

configuration, and hyperparameter settings.

Our source code can be downloaded from https://github.com/ZaydH/certified-regression. All experiments

were implemented and tested in Python 3.7.1. Experiments were performed using one core of a fourteen-core Intel

E5-2690v4 CPU and 12GB of RAM. Ridge regression models were trained using Scikit-Learn [Ped+11], while the

decision forests used the XGBoost library [CG16].

The overlapping regressor ILPs (Fig. 6) were optimized using Gurobi [Gur22] with a time limit of 1200s. Our

implementation loads the gurobipy Gurobi python package by default. Gurobi is a commercial product and requires

a license to solve most non-trivial linear programs. Gurobi offers free, unlimited licenses for academic use, including

both for an individual system and for a cloud/HPC environment.

H.1 Dataset Configuration

Our source code automatically downloads all necessary datasets.

Regarding dataset preprocessing, categorical features were transformed into one-hot-encoded features in line with

previous work [BHL22; HL22b]. Standardizing features by dataset mean/variance breaks submodel independence and

so was not performed. Minimal manual feature engineering was performed to improve the housing datasets’ results,

e.g., adding a home’s age, total square feet, total number of bathrooms, etc.; this feature engineering was done based

on existing features in the dataset (e.g., total square feet equals the sum of the first and second-floor square footage).

None of the engineered features affect submodel independence.

Most of the six datasets in Sec. 10.1 do not have a dedicated test set. In such cases, the data was split 90%/10%

at random between training and test.

When training kNN-CR models, each feature dimension was normalized to the range [0, 1]. Without feature

normalization, kNN-CR generally prioritizes whichever feature has the largest magnitude. This transformation

implicitly restricts arbitrary insertions to the feature range in the original dataset. Such normalization is implicitly

done in certified classifier evaluation on image datasets where each pixel has a consistent, fixed range.

H.2 Dataset Target Value Statistics

Table 3 summarizes the test set’s target (y) value distribution statistics for Sec. 10’s five regression datasets.

Recall from Table 1 that the Ames, Austin, and Diamonds datasets set error threshold ξ as a fixed percentage

of yte. This choice was made because these three datasets exhibit significant y variance. For example, for Diamonds,

the largest y value ($18.8k) is about two orders of magnitude larger than the smallest y value ($339). Using a fixed

ξ value on these three datasets would have made certifying instances with small y unrealistically easy while making

certification of instances with large y unreasonably difficult. Making the error threshold a fraction of yte allows the

certification difficulty to be more consistent across the range of y values.

Datasets Weather and Life used fixed ξ values of 3 degrees (Celsius) and 3 years respectively. Both of these

threshold values are less than one-third of each dataset’s y standard deviation.

Supplemental Section I.3 evaluates the performance of our certified regressors on additional ξ values – both larger

and smaller than the ξ values used in Sec. 10.
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Table 3: Target Value Test Distribution Statistics: Mean (ȳ), standard deviation (σy), minimum value
(ymin) and maximum value (ymax) for the test instances’ target y value for Sec. 10’s five regression datasets.

Dataset ȳ σy ymin ymax

Ames $184k $83.4k $12.8k $585k
Austin $466k $266k $81.0k $2.6M
Diamonds $3.8k $3.9k $0.3k $18.8k
Weather 14.9◦C 10.3◦C −44.0◦C 54.0◦C
Life 69.3 years 9.6 years 36.3 years 89.0 years

H.3 Hyperparameters

Following Jia et al.’s [Jia+22a] certified kNN classifier evaluation, kNN-CR’s neighborhood size, k, was set to the

(larger) odd integer nearest to n
2

. We use the Minkowski distance as the neighborhood’s distance metric.

For our ensemble regressors, hyperparameters were tuned using Bayesian optimization as implemented in the

scikit-optimize library [Hea+21]. The partitioned and overlapping certified regressors (unweighted and weighted)

used the same hyperparameter settings.

Ridge Regression Hyperparameters For three datasets – Diamonds [Wic16], Weather [Mal+21], and Spam-

base [Hop+17] – our four ensemble regressors used ridge regression as the submodel architecture. For each dataset

and q value, we tuned three ridge regression hyperparameters. Below, we list those hyperparameters along with the

set of values considered.

• Weight Decay (λ): L2 regularization strength. We considered values between 10−8 and 104.

• Error Tolerance (ε): Minimum validation error that defines when a model is considered converged. The tested

values were {10−8, 10−7, . . . , 10−3}.

• Maximum Number of Iterations (# Itr.): Defines the maximum number of optimizer iterations. If the error

tolerance is achieved before the iteration count is met, the model is treated as converged, and optimization

stops. The tested values were {102, 103, . . . , 108}.

Table 4 lists the final hyperparameters for each experimental setup that used ridge regression as the submodel

architecture.

XGBoost Hyperparameters For three datasets – Ames Housing [Coc11], Austin Housing [Pie21], and Life [Raj21]

– our four ensemble regressors used XGBoost [CG16] as the submodel architecture. For each dataset and q value, we

tuned seven XGBoost hyperparameters. Below, we list those hyperparameters along with the set of values considered.

• Number of Trees (τ): Number of trees in the ensemble. The tested values were {50, 100, 250, 500, 1000}.

• Maximum Tree Depth (h): Maximum depth of each tree in the ensemble. The tested values were {1, . . . , 4}.

• Evaluation Metric (L): Applied to the validation set and is the metric being minimized. The tested values

were root mean squared error (RMSE) and mean absolute error (MAE).

• Weight Decay (λ): L2 regularization strength. We considered values between 10−3 and 105.

• Minimum Split Loss (γ): Minimum reduction in loss required to split a node instead of making it a leaf. The

values considered were {0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 1}.

• Learning Rate (η): Larger value makes the boosting more conservative. The tested values were {0.01, 0.1, 0.3, 1}.
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Table 5 lists the final hyperparameters for each experimental setup that used XGBoost as the submodel architecture.

Mixup [Zha+18] data augmentation was used to improve XGBoost’s performance.16

Table 4: Ridge Regression Hyperparameters: Hyperparameter settings for the three datasets that used
ridge regression as the ensemble submodel architecture. Hyperparameters are reported for the three q values
used in Fig. 7 and Sec. I.1. We also report the hyperparameters for uncertified accuracy when q = 1.

Dataset q λ ε # Itr.

Diamonds

1 3.16E−3 1E−6 1E6

151 6.01E−2 1E−7 1E8

501 1.00E−8 1E−6 1E8

1001 1.38E−8 1E−6 1E2

Weather

1 3.16E−3 1E−8 1E7

51 1.00E+3 1E−5 1E6

1501 3.16E+2 1E−6 1E2

3001 3.16E+2 1E−6 1E3

Spambase

1 3.16E+2 1E−6 1E5

25 3.16E−3 1E−6 1E6

151 3.16E−6 1E−7 1E6

301 3.16E−3 1E−6 1E6

Table 5: XGBoost Hyperparameters: Hyperparameter settings for the three datasets that used XGBoost
as the ensemble submodel architecture. Hyperparameters are reported for the three q values used in Fig. 7
and Sec. I.1. We also report the hyperparameters for uncertified accuracy when q = 1.

Dataset q τ h L λ γ η

Ames Housing

1 250 2 RMSE 1E−1 5E−3 0.3

25 500 2 MAE 1E−3 5E−3 0.3

125 500 3 RMSE 1E−2 5E−3 1.0

251 250 1 RMSE 1E−1 5E−3 1.0

Austin Housing

1 500 4 MAE 1E+2 1E−2 0.3

151 1000 1 RMSE 1E−2 5E−3 1.0

301 250 1 MAE 1E+0 1E−2 1.0

701 250 1 MAE 1E−2 1E−2 1.0

Life

1 500 5 RMSE 1E+1 1E−2 0.1

25 250 4 RMSE 0E+0 5E−2 0.3

101 250 3 MAE 1E+0 1E−2 1.0

201 250 4 RMSE 0E+0 5E−3 0.3

16Mixup does not apply to convex models like ridge regression.
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I Additional Experiments

Limited space prevents us from including all experimental results in the main paper. We provide additional results

below.

I.1 Detailed Experimental Results

I.1.1 Baseline Accuracy

Table 6 shows the baseline accuracy when a model is trained on all of training set S (i.e., q = 1). For each dataset, the

model architecture (either ridge regression or XGBoost) aligns with those used for Sec. 10’s ensembles. See Table 1.

Table 6: Baseline Accuracy: Summary of the baseline (i.e., uncertified) accuracy mean and standard
deviation for Sec. 10’s six datasets. Submodels were trained on all of training set S (i.e., q = 1). Beside each
dataset’s name is the submodel architecture used by the ensemble. Threshold ξ matches values in Table 1.

Dataset Submodel Base Acc. (%)

Ames XGBoost 90.4± 2.4
Austin XGBoost 71.3± 4.1
Diamonds Ridge 73.6± 4.0
Weather Ridge 85.9± 3.4
Life XGBoost 92.7± 3.1
Spambase Ridge 87.5± 2.9

I.1.2 Numerical Results

Fig. 7 visualizes our certified regressors’ certified robustness on six datasets – five regression and one binary classifi-

cation. This section provides the certified accuracy in numerical form, including the associated variance.
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Table 7: Ames Housing Full Results: Certified accuracy mean and standard deviation for the Ames
Housing [Coc11] dataset. Each ensemble submodel was trained on 1

q
-th of the training set with three

q values tested per dataset, while kNN-CR was always trained on the whole training set (i.e., q = 1). The
certified accuracy results of five robustness values (R) are reported per q value. Also reported as a baseline
is the uncertified accuracy (R = 0) when training a single model on all of training set S (q = 1). Results are
averaged across 10 trials per method, with each R’s best mean certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 90.4 ± 2.4 90.4 ± 2.4 90.4 ± 2.4 90.4 ± 2.4 54.3 ± 3.8

25

1 82.3 ± 3.1 86.8 ± 2.8 82.3 ± 3.1 85.2 ± 2.9 54.3 ± 3.8

4 76.3 ± 3.7 81.2 ± 2.9 76.3 ± 3.7 80.0 ± 2.7 54.0 ± 3.6

8 57.4 ± 3.8 69.6 ± 2.7 57.5 ± 3.7 70.1 ± 3.2 53.1 ± 3.5

12 11.0 ± 3.7 28.2 ± 3.8 23.7 ± 5.1 48.8 ± 4.4 52.2 ± 3.9

16 0.0 ± 0.0 0.0 ± 0.0 11.3 ± 3.8 15.3 ± 3.2 51.5 ± 3.8

125

1 70.4 ± 3.7 73.9 ± 1.7 70.4 ± 3.7 73.1 ± 1.6 54.3 ± 3.8

10 62.8 ± 3.4 66.5 ± 2.0 62.8 ± 3.4 65.9 ± 1.9 53.1 ± 3.5

20 44.9 ± 4.2 52.2 ± 2.9 44.9 ± 4.2 52.2 ± 3.0 51.2 ± 3.6

30 21.8 ± 4.2 28.7 ± 3.8 21.8 ± 4.2 31.1 ± 3.3 49.1 ± 3.7

40 2.5 ± 1.3 3.9 ± 1.7 2.5 ± 1.3 5.9 ± 2.3 48.5 ± 4.0

251

1 63.1 ± 3.4 66.3 ± 3.8 63.1 ± 3.4 66.0 ± 3.7 54.3 ± 3.8

20 51.8 ± 3.2 56.4 ± 2.9 51.8 ± 3.2 57.9 ± 2.9 51.2 ± 3.6

40 37.1 ± 3.2 42.5 ± 3.8 37.1 ± 3.2 45.3 ± 2.8 48.5 ± 4.0

60 15.3 ± 3.8 22.5 ± 3.4 15.3 ± 3.8 32.8 ± 3.7 44.1 ± 4.3

80 0.2 ± 0.4 0.6 ± 0.5 0.2 ± 0.4 10.9 ± 2.5 40.1 ± 3.9
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Table 8: Austin Housing Full Results: Certified accuracy mean and standard deviation for the Austin
Housing [Pie21] dataset. Each ensemble submodel was trained on 1

q
-th of the training set with three q values

tested per dataset, while kNN-CR was always trained on the whole training set (i.e., q = 1). The certified
accuracy results of five robustness values (R) are reported per q value. Also reported as a baseline is the
uncertified accuracy (R = 0) when training a single model on all of training set S (q = 1). Results are averaged
across 10 trials per method, with each R’s best mean certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 71.3 ± 4.1 71.3 ± 4.1 71.3 ± 4.1 71.3 ± 4.1 35.3 ± 4.8

51

1 59.9 ± 4.5 63.7 ± 4.6 59.9 ± 4.5 61.7 ± 4.6 35.3 ± 4.8

5 49.6 ± 5.1 52.9 ± 3.4 49.6 ± 5.1 50.8 ± 4.2 35.2 ± 4.8

10 29.9 ± 3.7 35.3 ± 2.8 29.9 ± 3.7 31.8 ± 3.2 34.9 ± 4.9

15 9.2 ± 2.0 12.6 ± 2.8 9.2 ± 2.0 10.1 ± 2.7 34.7 ± 4.9

20 0.5 ± 0.5 0.3 ± 0.7 0.5 ± 0.5 0.0 ± 0.0 34.6 ± 4.6

301

1 51.0 ± 3.9 52.0 ± 4.1 51.0 ± 3.9 51.1 ± 4.1 35.3 ± 4.8

20 41.4 ± 3.6 43.3 ± 5.9 41.4 ± 3.6 43.3 ± 5.9 34.6 ± 4.6

40 29.7 ± 4.1 32.2 ± 5.2 29.7 ± 4.1 33.7 ± 5.7 34.3 ± 4.7

60 15.4 ± 3.0 19.1 ± 4.1 15.4 ± 3.0 22.7 ± 4.9 34.0 ± 4.5

80 3.2 ± 1.8 3.1 ± 1.2 3.2 ± 1.8 7.7 ± 3.4 32.9 ± 4.5

701

1 43.9 ± 5.0 42.7 ± 5.5 43.9 ± 5.0 43.6 ± 5.7 35.3 ± 4.8

40 34.5 ± 6.0 35.0 ± 6.2 34.5 ± 6.0 36.9 ± 5.9 34.3 ± 4.7

80 25.3 ± 4.8 24.7 ± 6.1 25.3 ± 4.8 27.0 ± 6.1 32.9 ± 4.5

120 13.1 ± 2.6 14.6 ± 5.0 13.1 ± 2.6 18.9 ± 4.4 31.6 ± 4.9

160 2.7 ± 0.9 4.8 ± 3.3 2.7 ± 0.9 9.1 ± 2.9 30.0 ± 4.7
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Table 9: Diamonds Full Results: Certified accuracy mean and standard deviation for the Dia-
monds [Wic16] dataset. Each ensemble submodel was trained on 1

q
-th of the training set with three q values

tested per dataset, while kNN-CR was always trained on the whole training set (i.e., q = 1). The certified
accuracy results of five robustness values (R) are reported per q value. Also reported as a baseline is the un-
certified accuracy (R = 0) when training a single model on all of training set S (q = 1). Results are averaged
across 10 trials per method, with each R’s best mean certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 73.6 ± 4.0 73.6 ± 4.0 73.6 ± 4.0 73.6 ± 4.0 15.7 ± 3.5

151

1 74.6 ± 3.8 74.8 ± 4.5 74.6 ± 3.8 74.7 ± 4.4 15.7 ± 3.5

35 64.4 ± 4.6 67.1 ± 4.8 67.2 ± 4.6 69.7 ± 4.1 15.6 ± 3.4

70 38.6 ± 5.7 42.2 ± 4.0 62.4 ± 4.3 64.7 ± 5.2 15.5 ± 3.4

105 0.0 ± 0.0 0.0 ± 0.0 54.5 ± 5.9 57.4 ± 5.2 15.2 ± 3.3

140 0.0 ± 0.0 0.0 ± 0.0 35.4 ± 5.8 34.3 ± 7.1 14.8 ± 3.4

501

1 77.3 ± 4.2 75.8 ± 3.9 77.3 ± 4.2 75.7 ± 4.1 15.7 ± 3.5

75 66.2 ± 4.0 65.0 ± 4.4 66.3 ± 4.0 68.7 ± 4.4 15.5 ± 3.4

150 50.7 ± 4.9 48.2 ± 4.5 57.8 ± 4.7 59.6 ± 4.9 14.8 ± 3.4

300 0.0 ± 0.0 0.0 ± 0.0 38.0 ± 6.1 36.2 ± 3.2 12.3 ± 3.4

450 0.0 ± 0.0 0.0 ± 0.0 8.8 ± 3.3 9.0 ± 2.1 10.7 ± 2.9

1001

1 75.2 ± 4.1 74.9 ± 5.5 75.2 ± 4.1 74.9 ± 5.5 15.7 ± 3.5

150 56.0 ± 4.9 56.3 ± 5.8 56.0 ± 4.9 62.8 ± 6.1 14.8 ± 3.4

300 24.7 ± 4.4 25.3 ± 4.8 29.5 ± 4.1 42.3 ± 6.4 12.3 ± 3.4

450 0.0 ± 0.0 0.0 ± 0.0 16.9 ± 4.0 17.9 ± 5.1 10.7 ± 2.9

600 0.0 ± 0.0 0.0 ± 0.0 4.2 ± 1.5 3.3 ± 3.1 9.6 ± 3.1
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Table 10: Weather Full Results: Certified accuracy mean and standard deviation for the
Weather [Mal+21] dataset. Each ensemble submodel was trained on 1

q
-th of the training set with three

q values tested per dataset, while kNN-CR was always trained on the whole training set (i.e., q = 1). The
certified accuracy results of five robustness values (R) are reported per q value. Also reported as a baseline
is the uncertified accuracy (R = 0) when training a single model on all of training set S (q = 1). Results are
averaged across 10 trials per method, with each R’s best mean certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 85.9 ± 3.4 85.9 ± 3.4 85.9 ± 3.4 85.9 ± 3.4 23.8 ± 4.5

51

1 86.0 ± 3.1 86.5 ± 3.8 86.0 ± 3.1 86.5 ± 3.8 23.8 ± 4.5

10 83.9 ± 3.5 84.6 ± 3.8 83.9 ± 3.5 85.0 ± 3.8 23.8 ± 4.5

20 82.0 ± 3.5 82.3 ± 4.2 83.1 ± 3.4 84.0 ± 3.8 23.8 ± 4.5

35 0.0 ± 0.0 0.0 ± 0.0 81.8 ± 3.7 82.0 ± 4.4 23.8 ± 4.5

50 0.0 ± 0.0 0.0 ± 0.0 76.8 ± 5.1 75.8 ± 4.9 23.8 ± 4.5

1501

1 85.2 ± 3.9 85.2 ± 4.2 85.2 ± 3.9 85.2 ± 4.2 23.8 ± 4.5

300 75.8 ± 4.3 77.6 ± 4.2 76.8 ± 4.2 79.4 ± 4.2 23.4 ± 4.6

600 54.3 ± 4.7 55.1 ± 5.4 71.4 ± 3.7 72.2 ± 5.1 22.9 ± 4.3

1000 0.0 ± 0.0 0.0 ± 0.0 56.5 ± 5.1 57.4 ± 4.6 22.0 ± 4.6

1400 0.0 ± 0.0 0.0 ± 0.0 22.9 ± 2.6 22.5 ± 3.2 21.8 ± 4.8

3001

1 86.7 ± 2.7 84.6 ± 2.9 86.7 ± 2.7 84.6 ± 2.9 23.8 ± 4.5

600 67.7 ± 2.7 66.9 ± 4.0 68.1 ± 2.9 71.5 ± 4.0 22.9 ± 4.3

1200 25.7 ± 5.8 25.8 ± 4.9 55.0 ± 4.2 56.2 ± 3.8 21.9 ± 4.7

1800 0.0 ± 0.0 0.0 ± 0.0 35.8 ± 4.8 34.7 ± 4.0 21.5 ± 4.7

2400 0.0 ± 0.0 0.0 ± 0.0 9.3 ± 3.0 9.9 ± 2.5 20.5 ± 4.9
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Table 11: Life Full Results: Certified accuracy mean and standard deviation for the Life [Raj21] dataset.
Each ensemble submodel was trained on 1

q
-th of the training set with three q values tested per dataset,

while kNN-CR was always trained on the whole training set (i.e., q = 1). The certified accuracy results of
five robustness values (R) are reported per q value. Also reported as a baseline is the uncertified accuracy
(R = 0) when training a single model on all of training set S (q = 1). Results are averaged across 10 trials
per method, with each R’s best mean certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 92.7 ± 3.1 92.7 ± 3.1 92.7 ± 3.1 92.7 ± 3.1 34.6 ± 3.1

25

1 77.7 ± 4.4 80.2 ± 4.0 77.7 ± 4.4 78.3 ± 5.2 34.6 ± 3.1

5 69.3 ± 4.9 71.5 ± 4.7 69.3 ± 4.9 71.4 ± 4.7 33.8 ± 2.8

10 43.3 ± 5.6 54.2 ± 6.0 47.3 ± 5.9 60.8 ± 4.9 32.9 ± 2.8

15 0.0 ± 0.0 0.0 ± 0.0 23.8 ± 4.0 33.1 ± 3.2 32.1 ± 2.9

20 0.0 ± 0.0 0.0 ± 0.0 9.5 ± 2.9 11.4 ± 3.2 31.1 ± 2.3

101

1 71.1 ± 3.8 71.5 ± 4.3 71.1 ± 3.8 70.8 ± 4.1 34.6 ± 3.1

10 58.9 ± 4.3 61.8 ± 5.1 58.9 ± 4.3 61.8 ± 5.1 32.9 ± 2.8

20 40.5 ± 5.8 43.9 ± 4.3 40.5 ± 5.8 45.4 ± 4.7 31.1 ± 2.3

30 20.7 ± 3.8 22.8 ± 4.4 20.7 ± 3.8 26.4 ± 3.9 28.5 ± 2.5

40 4.4 ± 2.4 3.5 ± 1.4 4.6 ± 2.5 10.1 ± 2.7 26.9 ± 2.4

201

1 62.9 ± 4.1 66.3 ± 3.0 62.9 ± 4.1 65.7 ± 2.4 34.6 ± 3.1

30 46.6 ± 3.8 49.0 ± 2.8 46.6 ± 3.8 52.9 ± 3.0 28.5 ± 2.5

60 23.3 ± 2.7 24.6 ± 4.1 24.4 ± 2.6 34.4 ± 3.9 23.4 ± 2.3

90 0.1 ± 0.3 0.6 ± 0.5 12.8 ± 2.9 18.0 ± 3.6 18.1 ± 2.1

120 0.0 ± 0.0 0.0 ± 0.0 4.1 ± 1.6 4.4 ± 2.2 8.5 ± 1.4
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Table 12: Spambase Full Results: Certified accuracy mean and standard deviation for the Spam-
base [Hop+17] dataset. Each ensemble submodel was trained on 1

q
-th of the training set with three q values

tested per dataset, while kNN-CR was always trained on the whole training set (i.e., q = 1). The certified
accuracy results of five robustness values (R) are reported per q value. Also reported as a baseline is the un-
certified accuracy (R = 0) when training a single model on all of training set S (q = 1). Results are averaged
across 10 trials per method, with each R’s best mean certified accuracy in bold.

q R PCR OCR W-PCR W-OCR kNN-CR

1 0 87.5 ± 2.9 87.5 ± 2.9 87.5 ± 2.9 87.5 ± 2.9 64.0 ± 4.3

25

1 87.6 ± 3.5 87.1 ± 3.8 87.6 ± 3.5 85.8 ± 3.6 64.0 ± 4.3

5 80.3 ± 3.8 81.0 ± 3.4 81.1 ± 3.6 83.5 ± 3.7 63.6 ± 4.1

10 57.3 ± 4.5 65.0 ± 3.1 73.2 ± 3.8 76.4 ± 3.8 63.4 ± 4.3

15 0.0 ± 0.0 0.0 ± 0.0 61.5 ± 4.8 63.1 ± 2.4 63.2 ± 4.4

20 0.0 ± 0.0 0.0 ± 0.0 42.5 ± 4.4 38.7 ± 4.2 63.0 ± 4.4

151

1 87.4 ± 2.9 87.2 ± 2.2 87.4 ± 2.9 86.7 ± 2.6 64.0 ± 4.3

25 69.1 ± 4.3 70.2 ± 5.5 69.1 ± 4.3 75.7 ± 4.9 63.0 ± 4.4

50 22.8 ± 5.8 24.9 ± 4.0 35.4 ± 6.3 52.8 ± 4.0 62.0 ± 4.8

75 0.0 ± 0.0 0.0 ± 0.0 14.8 ± 3.0 23.0 ± 3.9 61.8 ± 4.7

100 0.0 ± 0.0 0.0 ± 0.0 3.4 ± 2.2 5.2 ± 2.4 61.3 ± 4.2

301

1 83.1 ± 2.8 86.2 ± 3.3 83.1 ± 2.8 86.0 ± 3.2 64.0 ± 4.3

45 65.1 ± 4.7 68.6 ± 3.9 65.1 ± 4.7 72.1 ± 3.9 62.3 ± 4.3

90 30.4 ± 3.5 34.6 ± 4.9 33.6 ± 3.2 53.7 ± 2.7 61.7 ± 4.6

135 0.5 ± 0.7 0.1 ± 0.3 23.7 ± 3.5 31.1 ± 4.6 60.2 ± 4.2

180 0.0 ± 0.0 0.0 ± 0.0 7.2 ± 2.5 11.3 ± 2.5 58.3 ± 4.3
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I.2 kNN-CR Full Certified Accuracy Plots

To improve readability, Fig. 7 does not show kNN-CR’s full certified accuracy trend. Instead, Fig. 8 below plots

kNN-CR’s full mean certified accuracy against that of W-OCR (using each dataset’s maximum q value) for each

of Sec. 10’s six datasets. Fig. 8 also visualizes the variance of each method by showing one standard deviation of

the certified accuracy as a shaded region around the mean line. In summary, while W-OCR certifies more instances

(i.e., has larger peak certified accuracy), its maximum certified robustness R is (significantly) smaller than that

of kNN-CR.
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Figure 8: kNN-CR vs. W-OCR Certified Accuracy: Full plots of the mean certified accuracy for
Sec. 10’s six datasets. The shaded regions visualize one standard deviation of the certified accuracy for each
R value. W-OCR’s q value for each dataset is in Table 13.

Table 13: W-OCR q Values: As detailed in Sec. 10.1, ensemble submodels were trained on 1
q
-th of the

training data where q varies by dataset. Below are the W-OCR q values used in Fig. 8.

Dataset Ames Austin Diamonds Weather Life Spambase

q 251 701 1,001 3,001 201 301
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I.3 Alternative ξ Evaluation

For each dataset in Sec. 10, we evaluate a single threshold value ξ. This section explores how ξ affects our certified

regressors’ performance on four regression datasets.17 Specifically, Fig. 9 considers our two best-performing methods,

W-OCR and kNN-CR. Like in Sec 10, kNN-CR uses q = 1. For W-OCR, we report results for each dataset’s two

largest q values. Note that in Table 1, Ames and Diamonds use the same (default) threshold ξ = 15% · y while both

Life and Weather use (default) value ξ = 3. In Fig. 9 below, each dataset pair considers the same alternate ξ values.

ξ’s exact effect varies across datasets, but generally, certified accuracy increases roughly linearly with ξ until the

accuracy saturates.

17For binary classification (e.g., Spambase [Hop+17]), alternate ξ values do not apply.
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Figure 9: Alternative ξ Values: Mean certified accuracy of our two best performing methods, W-OCR
and kNN-CR, across alternative error thresholds ξ. For W-OCR, we consider each dataset’s two largest
q values from Fig. 7. The “default” ξ value in each sublegend denotes the dataset’s corresponding ξ value
that is evaluated in Sec. 10 (Tab. 1). Each line’s shaded region visualizes one standard deviation around the
mean certified accuracy.
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I.4 Model Training Times

This section summarizes the time needed to train our primary certified regressors. All experiments were performed

using a single core of a fourteen-core Intel E5-2690v4 CPU with 12GB of 2400MHz DDR4 RAM. As is standard

for kNN models, kNN-CR’s training time is essentially zero since “training” simply entails instance memorization,

which is nearly instantaneous.

Table 14 details the training times of our two partitioned regressors: PCR which follows the unit-cost assumption

(i.e., ∀t rt = 1) and its weighted extension W-PCR. The training times are broken down into the time required to

train a single submodel as well as the average time to train the whole ensemble. As expected, W-PCR takes much

longer to train than PCR since the former requires training O(n+ T ) models (for rmax = 2) while the latter requires

only O(T ) models.

As q increases, each submodel is trained on fewer data. It might be assumed that submodel training time is

inversely related to q. However, Table 14 shows that this is not necessarily the case since different hyperparameter

settings can drastically affect how long a model takes to train, even after accounting for q.

Note also that all ensemble submodels can be trained fully in parallel. Hence, by simply parallelizing submodel

training, PCR’s total training time can be sped up by a factor of about T while W-PCR’s total training time can

be sped up by about a factor of (n+ T ). Moreover, while training an ensemble (partitioned or overlapping) is often

more computationally expensive than training just one model on the whole training set, this additional training time

is amortized across all test predictions that need to be certified.

Lastly, recall from Sec. 10.1’s evaluation that our overlapping certified ensembles, OCR and W-OCR, have

T = qd submodels, where d is the training set block spread degree. Therefore, the time to train OCR and W-OCR

ensembles is about d times larger than that of PCR and W-PCR, respectively. See Table 1 for each dataset’s d value.
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Table 14: (Weighted) Partitioned Certified Regression Model Training Times: Mean and standard
deviation PCR and W-PCR model training times (in seconds) for six datasets in Sec. 10. Below each dataset
name is the corresponding submodel architecture that was used – either ridge regression or XGBoost. All
experiments were performed on a single CPU core.

Dataset
(Model Type) q

PCR W-PCR

Submodel Total Submodel Total

Ames
(XGBoost)

25 2.5 ± 0.50 63.1 213.6± 28.3 5340

125 3.1 ± 0.33 384 27.5± 9.8 3437

251 1.0 ± 0.13 261 3.9± 1.7 984

Austin
(XGBoost)

51 2.2 ± 0.19 111 502.3± 109.3 25,617

301 0.37± 0.06 184 25.5± 8.9 7,688

701 0.89± 0.11 626 12.5± 8.1 8,786

Diamonds
(Ridge)

151 0.01± 0.00 0.7 2.1± 0.2 322

501 0.01± 0.00 1.9 0.6± 0.1 293

1,001 0.01± 0.00 4.2 0.3± 0.1 299

Weather
(Ridge)

51 0.05± 0.02 2.4 298.7± 109.7 15,234

1,501 0.01± 0.00 12.6 2.5± 0.2 3,776

3,001 0.02± 0.00 66.0 4.7± 10.6 14,051

Life
(XGBoost)

25 2.2 ± 0.18 56.2 203.8± 34.9 5,095

101 1.8 ± 0.31 185 33.5± 12.6 3,388

201 8.1 ± 2.6 1,624 85.5± 54.6 17,184

Spambase

(Ridge)

25 0.03± 0.01 0.8 4.4± 1.2 109

151 0.01± 0.00 1.7 0.5± 0.3 69

301 0.01± 0.00 0.9 0.1± 0.0 19
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I.5 Overlapping Regression ILP Execution Time

Recall from Sec. 8 that our two overlapping certified regressors, OCR and W-OCR, use an integer linear program

to bound certified robustness R. Under OCR’s unit-cost structure where ∀t rt ≤ 1, Fig. 6 is actually a binary integer

program since ∀j ω(j) ∈ {0,1}. In contrast, with W-OCR’s weighted costs, Fig. 6 is a true integer linear program.

While both OCR and W-OCR have the same asymptotic complexity, we observed that LP solvers generally solve

programs with only binary variables faster than integral ones.

Sec. 10’s evaluation implemented Fig. 6’s LP in Gurobi [Gur22]. All experiments were performed on a single core

of a fourteen-core Intel E5-2690v4 CPU with 12GB of RAM. Fig. 10 shows the ILP execution time distribution of

OCR and W-OCR for three datasets from Sec. 10. For each dataset, we report the ILP’s execution time for the two

largest q values. Each histogram visualizes at least 1600 trials per method.

In summary, ILP execution time is bimodal with run times clustered around 0 seconds and 1200 seconds (i.e., the

ILP’s time limit). OCR’s ILP is generally faster on average than W-OCR (observe that OCR times out less frequently,

if at all).

Note also that the ILP’s execution time distribution does not change significantly across each dataset’s two

q values.
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Figure 10: Gurobi ILP Execution Time: Histogram of the Gurobi ILP execution time (in seconds) for
OCR and W-OCR for three datasets from Sec. 10. ILP execution times for each dataset’s two largest q
values are plotted, with each of dataset plots sharing the y-axis scales. The ILP was implemented in Gurobi
with a fixed time limit of 1200 seconds.
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I.6 Effect of Median as the Model Decision Function

This section evaluates how the choice of decision function affects the accuracy of standard (i.e., non-robust) regression.

All experiments above exclusively used median as the decision function. Below, we compare median’s performance to

the more traditional decision function, mean. To be clear, this section’s experiments exclusively consider non-robust

model predictions. This mini ablation study simply examines the decision function’s effect on baseline (uncertified)

prediction accuracy.

Table 15 compares the performance of mean and median on Sec. 10’s five regression datasets. These experiments

used the same threshold (ξ) values as Sec. 10 (see Tab. 1). Tab. 15 includes results for two different model architectures:

kNN-based regression and a regression ensemble that follows PCR’s base architecture. For each dataset, the ensemble

regressor is evaluated on the same three q values used in Sec. 10.

In summary, median and mean decision functions have comparable performance. Median had better average

accuracy than mean on 11 of 20 evaluation setups. Median and mean had equivalent average performance on four

setups. Mean outperformed median on the remaining five setups.

kNN regression was the method most affected by the choice of decision function. In particular for the Weather and

Life datasets, mean outperformed median by 8.6 and 2.3 percentage points, respectively. Only one other evaluation

setup (Austin with q = 701) saw a similarly large performance difference (3.8pp).
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Table 15: Effect of Median vs. Mean as the Decision Function: Comparison of the model accuracy
mean and standard deviation for two different decision functions. For each of Sec. 10’s five regression
datasets, we evaluate the decision function’s effect on both kNN and ensemble (PCR) learners. Each
dataset’s PCR non-robust accuracy is reported for three different q values in line with Sec. 10’s evaluation.
For each experimental setup, the best performing method (in terms of average accuracy) is shown in bold. In
summary, median and mean decision functions have comparable baseline (uncertified) prediction accuracy.
However, median is critical to achieve certified robustness guarantees.

Dataset Model q
Decision Function

Median Mean

Ames

kNN 1 53.4 ± 5.4 53.4 ± 5.4

PCR

25 83.8± 2.7 84.6 ± 2.6

125 71.2 ± 4.0 71.0± 3.9

251 63.4 ± 3.5 62.7± 2.2

Austin

kNN 1 32.9 ± 3.8 32.9 ± 3.8

PCR

51 61.4± 4.9 61.8 ± 4.5

301 51.6± 4.0 51.8 ± 3.9

701 44.6 ± 4.8 40.8± 5.5

Diamonds

kNN 1 16.4 ± 2.1 16.4 ± 2.1

PCR

151 74.9 ± 3.8 73.6± 4.4

501 77.7 ± 4.4 76.6± 5.4

1001 75.2 ± 4.1 73.2± 4.4

Weather

kNN 1 24.6± 4.5 33.2 ± 5.4

PCR

51 86.3 ± 3.2 86.0± 3.2

1501 85.2 ± 3.9 85.0± 3.8

3001 86.7 ± 2.7 86.7 ± 2.7

Life

kNN 1 35.7± 3.2 38.0 ± 3.5

PCR

25 80.1 ± 4.0 79.9± 3.7

101 72.0 ± 3.2 71.5± 3.7

201 63.3 ± 4.1 61.8± 3.3
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