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ABSTRACT
This paper presents a simple framework, called WalkAbout,
to infer a coarse view of connectivity in very large graphs;
that is, identify well-connected “regions” with di↵erent edge
densities and determine the corresponding inter- and intra-
region connectivity. We leverage the transient behavior of
many short random walks (RW) on a large graph that is
assumed to have regions of varying edge density but whose
structure is otherwise unknown. The key idea is that as
RWs approach the mixing time of a region, the ratio of the
number of visits by all RWs to the degree for nodes in that
region converges to a value proportional to the average node
degree in that region. Leveraging this indirect sign of con-
nectivity enables our proposed framework to e↵ectively scale
with graph size.

After describing the design of WalkAbout, we demonstrate
the capabilities of WalkAbout by applying it to three major
OSNs (i.e., Flickr, Twitter, and Google+) and obtaining a
coarse view of their connectivity structure. In addition, we
illustrate how the communities that are obtained by run-
ning a popular community detection method on these OSNs
stack up against the WalkAbout-discovered regions. Finally,
we examine the “meaning” of the regions obtained by Walk-

About, and demonstrate that users in the identified regions
exhibit common social attributes.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks

General Terms
Algorithms, Design

Keywords
Graph Coarsening; Community Detection; Clustering; Graph
Partitioning; Scalability
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1. INTRODUCTION
Large-scale, networked systems such as the World Wide

Web or Online Social Networks (OSNs) can be represented
as graphs where nodes represent individual entities, such
as web pages or users, and directed or undirected edges
represent relations between these entities, such as interac-
tion or friendship between users [14, 18, 24]. Characterizing
the connectivity structure of such a graph, in particular at
scale, often provides deeper insight into the corresponding
networked system and has motivated many researchers to
analyze graph representations of large networked systems
(e.g., [1]).

It is often very useful to obtain a coarse view of the con-
nectivity structure of a huge graph that shows a few major
tightly connected components or regions of the graph along
with the inter- and intra-region connectivity. Such a re-
gional view also enables a natural top-down approach to the
analysis of large graphs, where one first examines the re-
gional connectivity of a huge graph and then zooms in to
individual regions to explore their structure in further de-
tail. However, capturing a regional view of a huge graph
is a non-trivial task that existing tools and techniques are
not able to achieve. While many techniques exist for graph
clustering [26, 6], graph partitioning [12], and community
detection [4, 22, 9], these approaches do not work well for
discovering coarse regional views in very large graphs. These
methods usually scale poorly, force regions to have similar
size, or find communities that are too small. For example,
existing techniques (e.g., Louvain [4]) are likely to identify
tens of thousands of communities in the structure of a large
OSN that is still too complex for high-level analysis to de-
termine the full picture of inter-community connectivity.

This paper presents a simple top-down framework, called
WalkAbout, to identify tightly connected regions in a large
unknown graph and subsequently characterize the regional
view of its connectivity structure. The main idea is to lever-
age the behavior of an army of short random walks (RW) on
a graph to identify nodes that are located in the same region.
When the random walks are longer than the mixing time of
an individual region and shorter than the mixing time of the
overall graph, the ratio of node degree to expected number of
visits is proportional to the edge density of that region. We
refer to this quantity as the degree/visit ratio (dvr). If indi-
vidual regions in a graph have di↵erent edge densities and
shorter mixing times than the entire graph, we can leverage
the dvr “signal” to identify the regions, their corresponding



nodes and their intra- and inter-region connectivity. The
main novelty of WalkAbout is to leverage this indirect sign
of connectivity to identify tightly connected nodes in a re-
gion. This leads to a very scalable method: in a graph with
|V | nodes, |E| edges, and a regional mixing time of wl, Walk-

About requires only O(wl ⇥ |E|) time and O(|V |) space. A
few parameters in WalkAbout enable one to explore di↵erent
aspects of the regional connectivity in order to produce the
outcome with the desired resolution.

In our empirical evaluation, we apply WalkAbout to three
major OSNs: Flickr, Twitter and Google+. Compared to
Louvain [4], the gold standard for scalable community detec-
tion, WalkAbout runs faster and finds larger, coarser regions.
Most communities discovered by Louvain can be mapped to
a single one of WalkAbout’s regions, suggesting that Walk-

About is providing a higher-level view of the network than
Louvain. Finally, we analyze the regions in Flickr and show
that di↵erent regions discovered by WalkAbout correspond
to di↵erent interest groups, providing a meaningful coarse
view of this OSN.

The remainder of our paper is organized as follows. Sec-
tion 2 provides the background for the paper and an overview
of related work. Section 3 explores the behavior of short
random walks and dvr on graphs with a single region. Sec-
tion 4 extends this analysis to multiple region graphs and
motivates using dvr for region identification. In Section 5,
we present the full details of WalkAbout, our step-by-step
framework for identifying regions in large graphs. To demon-
strate and evaluate WalkAbout, we apply it to three major
OSNs in Section 6. In Section 7, we compare the character-
istics of Louvain communities with WalkAbout regions. We
show that the regions discovered by WalkAbout are indeed
meaningful in Section 8. We conclude the paper in Section 9
and summarize our future plans.

2. BACKGROUND & RELATED WORK
We begin with a brief overview of related work in commu-

nity detection and graph partitioning. Most methods work
by optimizing an objective function. Since this is typically
NP-hard, greedy or heuristic methods are usually necessary.
One of the most popular metrics for community detection
is modularity, which relates the number of edges within a
cluster to the expected number for a random graph. For op-
timizing modularity, one of the most scalable and e↵ective
algorithms is the Louvain method [4]. The Louvain method
greedily assigns nodes to communities based on their local
connectivity, then coarsens the graph by replacing each com-
munity with a single node. This procedure repeats until it
reaches a local optimum of modularity. However, in most
real-world graphs, modularity tends to favor smaller com-
munities of around 100 nodes [16]. Other measures such as
conductance also tend to favor small clusters in real-world
graphs, limiting their e↵ectiveness at describing high-level
structure.

Community detection methods based on RWs and “flows”
have been proposed as well [25, 22, 23]. These methods use
RWs or the associated transition matrix to compute some
kind of distance or similarity relationship between each pair
of nodes. However, even computing and storing sparse pair-
wise information is usually too expensive on large graphs
with millions of nodes.

Graph partitioning or global clustering techniques [12, 13]
adopt a top-down approach, dividing a graph into strongly

connected partitions and optionally recursing within each
partition to obtain the desired granularity [8, 12, 13]. While
this does discover larger regions than the bottom-up ap-
proaches, these regions may or may not faithfully represent
the overall graph structure. For example, methods that op-
timize the popular normalized cut criterion tend to produce
regions of approximately equal size, even when this leads
to poorly separated regions. Furthermore, some approaches
require specifying seed instances for each partition [2] or the
total number of partitions, both of which can be di�cult to
determine a priori. Finally, many of these techniques, in-
cluding spectral clustering [11], do not scale with graph size
and often require a complete snapshot of the target graph
or its adjacency matrix.

WalkAbout is di↵erent from the prior approaches as it is
not optimizing a single metric or objective function. Rather,
it is a heuristic approach that relies on an interesting tran-
sient phenomenon to explore the coarse view of structure
in very large graphs. More specifically, WalkAbout does not
only produce a single coarse view of connectivity, but also its
parameters allow a user to explore the connectivity structure
to identify proper view at the desired resolution.

3. THE BEHAVIOR OF MANY SHORT RWS
Random Walks (RW) are a well-known technique for sam-

pling graphs. A RW on a graph starts from an arbitrary
node and at each step moves to a randomly chosen neighbor
of the current node. Consider a graph G = [V,E] where
V and E denote the set of graph vertices and edges, re-
spectively. In an undirected, connected, and non-bipartite
graph, the probability that a su�ciently long RW would be
at a particular node x converges to deg(x)

2⇥|E| [17]. The mix-

ing time T
G

(✏) of a graph G is the walk length at which the
probability of being at each node is within ✏ of the stationary
distribution. In this paper, we will use this term somewhat
informally, without specifying a particular value of ✏.

Suppose we run |V | RWs in parallel, one starting at each
node. Let V (x,wl) denote the expected number of RWs
that are at a particular node x after wl number of steps
(e.g., walk length of wl). Since one RW is started at each
node, V (x, 0) = 1. For other values of wl, we can define
V (x, k) inductively:

V (x, 0) = 1

V (x,wl) =
X

n2Neighbors(x)

V (n,wl � 1)
deg(n)

for wl > 0 (1)

This function can be computed iteratively with complex-
ity O(|E|wl). As wl reaches the mixing time, V (x,wl) con-

verges to |V | deg(x)
2⇥|E| . Hence, when wl is su�ciently long, the

following holds for all nodes:

deg(x)
V (x,wl)

⇡ 2⇥ |E|
|V | (2)

We refer to the fraction deg(x)

V (x,wl)

as the degree/visit ratio

or dvr. Equation (2) indicates that the dvr converges to the
average degree of the graph.

In practice, estimating the mixing time for an arbitrary
graph is a known hard problem. In this section, we will
explore the dependency of dvr on wl through simulations
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Figure 1: The e↵ect of main parameters on the shape of the dvr histogram

on di↵erent synthetically-generated graphs. The graphs are
generated by selecting the range of node degrees, the distri-
bution of node degrees across this range, and then randomly
connecting the nodes until all half-edges are connected. For
each simulation, we show a normalized histogram of dvr
values across all nodes, which represents the empirical dis-
tribution of dvr values for that simulation.
E↵ect of Walk Length: Figure 1(a) shows the evolution of
the dvr histogram as we increase walk length over a generic
random graph. As the walk length increases, the variation in
dvr across di↵erent nodes decreases, leading to the formation
of a narrower peak in the histogram. As wl reaches the
mixing time, the probability of visiting each node becomes
approximately proportional to its degree.
E↵ect of Mixing Time: To explore the e↵ect of mixing
time on the dvr histogram, we show in Figure 1(b) the evo-
lution of the dvr histogram for a small-world graph as we
increase the level of clustering (and thus the mixing time)
for a particular walk length (wl = 20). As the mixing time
becomes longer, the variation in dvr values increases because
the RWs are farther from convergence.
E↵ect of Average Node Degree (E): Figure 1(c) presents
the e↵ect of average node degree (i.e., changing |E| when |V |
is fixed) on the shape of the dvr histogram at a given walk
length (wl = 20). Increasing the average node degree shifts
the corresponding peak to higher dvr values. It is worth not-
ing that the placement of each peak is in perfect agreement
with the average degree of each graph.
E↵ect of Minimum Node Degree: Figure 1(d) shows
the contribution of low degree nodes to the shape of the dvr
histogram by plotting the histogram only for nodes whose
degree is larger than a threshold D

min

. We find that higher
degree nodes show less variation in dvr than low degree
nodes, i.e., filtering low degree nodes leads to a sharper peak
in the histogram. Figure 1(e) depicts the evolution of sum-

mary distribution of dvr across two groups of nodes with
di↵erent degrees which shows that the range of dvr is in-
versely proportional with node degree and rapidly decreases
with the walk length. This property is due to the fact that
higher degree nodes are averaging over more neighbors in
each update of V (x,wl), thus reducing the variation.

4. DETECTING REGIONS IN A GRAPH
To infer a coarse view of graph connectivity, we assume

that each graph consists of a number of weakly inter-connected
regions, where individual regions have varying edge density.
We use the term “region” instead of “community” to empha-
size the fact that regions are often much larger in size than
typical communities, and are identified based on a heuristic
rather than optimizing an objective function or a metric.

We have no a priori knowledge of either the number of
regions or their relative size and make no assumptions about
the precise nature of the inter-region connectivity or intra-
region connections.

4.1 The Key Idea
Our approach is to leverage the behavior of RWs that

are shorter than the mixing time of the graph to identify
nodes in each region of the graph. To this end, consider
RWs that start from randomly selected nodes of a graph
G = [V,E] that has multiple regions. Based on our discus-
sion in Section 3, the fraction of RWs that start in region
i (G

i

= [V
i

, E
i

]) of the graph is equal to the fraction of

nodes in that region (i.e., |Vi|
|V | ). If the length of those RWs

is approximately equal to the mixing time of regions G
i

, a
majority of RWs will remain within that starting region, and
for all practical purposes, we can view the di↵erent regions
of the graph as disconnected partitions. Thus, we can use
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Figure 2: The e↵ect of connectivity features of a two-region graph on the dvr histogram (wl = 20)

Equation (2) to determine the value of the dvr ratio to which
node x in region i converges to as follows:

dvr
i

(x) =
deg(x)

E[V (x,wl)]
=

(2⇥ |E
i

|)
|V

i

| , (3)

Equation (3) shows that the degree-to-visit ratio for nodes

x in region i equals 2⇥|Ei|
|Vi|

which is the average node degree
for region i. Therefore, if regions of the graph have dif-
ferent average node degrees, the dvr

i

(x) values for nodes
in each region converge to a di↵erent dvr value, i.e., form
a peak at a di↵erent location in the dvr histogram across
all nodes. We can represent each region with its associated
non-overlapping range of dvr values and then map visited
nodes to a region based on their dvr values. Furthermore,
as discussed earlier, other key connectivity features of a re-
gion i (e.g., mixing time and size) a↵ect the shape of the
corresponding peak.

As the length of the RWs increases beyond the mixing
time of individual regions, the RWs are likely to leave their
starting regions and contribute to the number of visits for
nodes in other regions of the graph. This in turn decreases
the gap in the dvr

i

(x) values for di↵erent regions and the
dvrs values for all nodes converge to a single value (deter-
mined by Equation (2) as soon as the walk length of the
RWs agrees approximately with the mixing time of the en-
tire graph. Therefore, the separation between peaks in the
dvr histogram that are associated with di↵erent regions of a
graph is a transient phenomenon that occurs for RWs whose
walk lengths are between region-specific mixing times and
the mixing time for the entire graph. The more pronounced
the regions, the larger the gaps between the mixing times of
individual regions and the entire graph, which in turn trans-
lates to a longer transient phase and simplifies the detection
of di↵erent regions. In a nutshell, the similarity in dvr value

serves as a promising indirect signal that reveals a tight con-

nectivity among a group of nodes in a graph. The indirect

nature of the dvr signal coupled with the ability to e�ciently

obtain dvr values using short random walks enables our ap-

proach to scale with graph size.

4.2 Validation with Synthetic Graphs
Next we use synthetic graphs to demonstrate how our ba-

sic idea can reveal (or decode) the regional connectivity fea-
tures within a graph. To this end, we consider a graph
G with two regions, R

0

and R
1

, both with 4K nodes and

random connectivity and an average degree of 70 and 60,
respectively. We connect these two regions with b bridge
connections, where each bridge connection is between a pair
of random nodes from these regions, and its default value is
b=10k. In essence, the value of b controls the inter-region
connectivity and thus the mixing time of the entire graph.
To illustrate the e↵ect of regional connectivity features on
the shape of the dvr histogram, we keep region R

0

fixed and
systematically change features of R

1

and the value of b.
Figure 2(a) shows the evolution of the dvr histogram as

we vary the average node degree in R
1

between 50 and 66.
We observe that as the average degree of R1 increases, the
corresponding peak gradually moves to higher dvr values
and blends into the peak for R

0

until individual peaks are
no longer distinguishable. Figure 2(b) shows how varying
the size of R

1

from 1K to 8K nodes a↵ects the shape of the
dvr histogram when all other parameters remain constant.
Increasing the size of a region proportionally increases the
number of RWs that start from that region which in turn
leads to a proportionally larger peak. Since we normalize dvr
and plot the PDF, the peak corresponding to R

0

decreases
in size. Finally, Figure 2(c) illustrates the e↵ect of increasing
the number of bridge edges (or bridge width) between the
two regions from 5K to 50k. We note that as the bridge
width increases, the two peaks gradually merge and become
less and less distinguishable. This is due to the fact that
increasing bridge width decreases the mixing time of the
entire graph and thus shrinks the transition phase where
the peaks for two regions can be clearly identified.

In summary, these examples illustrate that the behavior of
many short RWs on a single graph can be extended to multi-
region graphs as long as the mixing time of the entire graph
is su�ciently larger than the the mixing time of individual
regions.

5. WALKABOUT
In this section, we presentWalkAbout , our proposed method

for inferring and exploring a regional (i.e., coarse) view of
connectivity for large graphs. We first discuss some of the
basic challenges in designing such a methodology and then
describe our approach and how it addresses these challenges.

5.1 Basic Challenges
The behavior of many short RWs on a large graph moti-

vates the idea of using the similarity of dvr values to iden-



tify individual regions of a graph where regions are repre-
sented as a collection of nodes with non-overlapping ranges
of dvr values. To implement this idea in practice, a num-
ber of challenges arise. First, we recall that the variation
of dvr values across nodes with degree d in a given region
decreases monotonically while the median value converges
towards the average node degree of the region. More impor-
tantly, the degree of variation and its rate of convergence is
inversely proportional to the node degree d, i.e., dvr values
of higher degree nodes exhibit smaller variations and con-
vergence faster than lower degree nodes. The typically large
fraction of low degree nodes in big graphs coupled with the
wider variation and slower convergence rate of their dvr val-
ues make it di�cult to accurately associate a set of nodes
with their corresponding region. This problem is further
exacerbated by the fact that di↵erent regions may have a
di↵erent mixing time and overlapping ranges of dvr values.

5.2 Main Steps of WalkAbout
Given a large graph G[V,E], the goal of WalkAbout is to

identify the number of regions, map all nodes to their corre-
sponding region, and determine the inter- and intra-region
connectivity (i.e., fraction of edges that are connecting nodes
in di↵erent regions or the same region). We call such a rep-
resentation of a large graph a regional (or coarse) view of
the graph. To overcome the above-mentioned challenges,
WalkAbout identifies individual regions in two steps. First,
it identifies a “core” component for each region. Such a com-
ponent consists of a collection of high degree nodes in that
region based on the similarity of their dvr values. Second,
it considers each of these core components, views their ele-
ments as“anchors”and maps the remaining low degree nodes
to the various regions based on the nodes’ relative reacha-
bility to each core. This approach can e↵ectively cope with
the variations of the dvr values for low degree nodes and is
less sensitive to the walk length. The WalkAbout technique
comes with a set of parameters/options that enable the ex-
ploration of the regional connectivity of a graph and support
experimentation with di↵erent coarse views of a graph. In
the following, we describe the five main steps of the Walk-

About technique.
1) Determining dvr Values for Individual Nodes: We
emulate the behavior of |V | short RWs starting from in-
dividual nodes in the graph and derive the probability of
visits and use that probability to determine the degree-to-
visit ratio for individual nodes at walk length wl, similar to
Equation (1).
2) Creating the dvr Histogram: Given the dvr values
of di↵erent nodes, our goal is to group nodes with similar
dvr values and use them as the core elements for the cor-
responding region. To this end, we bin the nodes based on
their dvr values and generate a histogram to identify the
most common values (i.e., “peaks”) which in turn suggest
the existence of di↵erent regions. To reduce the noise that
the wide variation of dvr values for low degree nodes intro-
duces, we first filter out all nodes whose degree is smaller
than a threshold D

min

. In fact D
min

is a parameter that
can be used to control the visibility of nodes that are under
possible consideration for being selected as core elements. It
provides a knob for examining the trade-o↵s that result from
increasing the level of noise caused by a larger number of low
degree nodes (i.e., small D

min

values) – allowing for more
noise typically results in the identification of a larger number

of less reliable core elements and hence regions. Next, while
the dvr values for higher degree nodes are significantly more
reliable, these nodes may not have a profound impact on the
shape of the histogram due to the often small fraction of high
degree nodes. We deal with this issue by introducing a bias
towards the dvr values of high degree nodes. In particular,
for each high degree node, we multiply its dvr value by its
node degree. In e↵ect, we simply increase the frequency of
the dvr values of the high degree nodes proportional to their
node degree. The resulting conditioned histogram is in gen-
eral more amenable to reveal the presence of reliable regions
since it has more pronounced peaks that are less sensitive to
the value of D

min

parameter.
3) Identifying Core of a Region From the Histogram:
Identifying regions from a dvr histogram requires (i) deter-
mining a proper walk length that generates the best his-
togram, and (ii) detecting the regions from the resulting
histogram. To deal with item (i), we progressively increase
the walk length and repeat steps (1) and (2) to generate
the resulting histogram. We carefully examine the evolu-
tion of the histogram as a function of walk length and select
the histogram where the peaks are most pronounced and
most separated. By definition, such a histogram should be
formed when the walk length is close to the mixing time of
individual regions. In such a histogram, each peak (i.e., a
local maximum that is surrounded by two local minimum
values) represents a region’s core whose range of dvr val-
ues is specified by the dvr values corresponding to the two
minimum values. This heuristic can be viewed as a naive
one-dimensional clustering technique. We examine the con-
nectivity among nodes that are part of each core to ensure
that they form a connected component1 This check also re-
veals whether the cores of two separate regions with over-
lapping dvr ranges appear as a single peak which makes it
di�cult to distinguish them from the histogram in the first
place. At the end of this step, we have the number of regions
and the list of high degree nodes that form the core of each
region.
4) Mapping Low-Degree Nodes to Cores: We use the
relative reachability of low degree nodes to identified cores
in order to map them. To this end, we start N RWs from
each node where each RW walk continues until it hits a
node in one of the cores. Each walk provides a sample of
reachability for this node. The node is mapped to the core
with the highest reachability. The fraction of RWs that hit
the most reachable core indicates our confidence in mapping
a node to that region.
5) Producing the Regional View: Once nodes in each
region of the graph are identified, we determine the edges
that are within each region or connecting two di↵erent re-
gions. Then we produce a diagram that incorporates all the
information about regional connectivity of a graph including
(i) a circle represents a region with the area logarithmically
proportional to the size of the region, (ii) arrows between
two regions indicate the inter-region connectivity and their
width as well as color is proportional with the relative frac-
tion of directed half-edges between two regions. Intra region
half-edges are represented with the modularity of a region
and thus are not shown in the regional view to keep this less
crowded.

1It is not a required condition that core nodes form a con-
nected component. However, forming a connected compo-
nent does indicate that the core is coherent.



Table 1: Characteristics of LCC snapshots of target

OSNs
FL TW G+

Nodes 1.6M 41.6M 51.7M
Edges 31.1M 1, 468M 869.4M

Louvain Communities 264.4K 9, 9M 43.6K

5.3 Inferring vs. Exploring Regions
The design of WalkAbout provides several parameters or

knobs that can be tuned to explore di↵erent coarse views of
a given graph. These parameters include the walk length,
the D

min

threshold, and the precise nature of determining
how low degree nodes get mapped to regions (core anchors).
In essence, examining the e↵ect of these parameters on the
resulting regional views facilitates studying the quality of a
given regional view in terms of its robustness to the choices
WalkAbout o↵ers to its users. In this sense, WalkAbout can
be viewed as a framework for exploring regional connectivity
in an interactive manner rather than a technique for produc-
ing a single regional view.

It is also important to emphasize that since WalkAbout is
not trying to optimize an explicit objective function (e.g.,
modularity [21], the regional view that results from running
WalkAbout for a given graph is not unique. Instead, by har-
vesting a transient phenomenon, we face a new challenge in
the form of deciding on a proper walk length. Our approach
to deal with this challenge is to gain an understanding of
the sensitivity of a resulting regional view to the choice of
the walk length to minimize potential mistakes at each step.

By varying theD
min

parameter, we are able to explore the
trade-o↵ between level of coarsening and the accuracy of the
regional view. Large values of this parameter typically re-
sult in few but reliable regions (i.e., coarse and stable view),
while smaller values of D

min

produce in general many more
but less reliable regions (i.e., fine but unstable views). Al-
ternatively, D

min

can be set based on domain knowledge to
only include nodes that are considered central for a given
context. For example, in an OSN graph, nodes with de-
gree larger than 500 or even 1000 may be viewed as core
nodes. In this paper, we primarily focus on the application
of WalkAbout to OSN and set D

min

to 500.2

We have developed WalkAbout as an interactive tool with
GUI that allows users to arbitrarily slice the histogram and
generate the resulting regional view in an interactive man-
ner. This publicly available tool can be downloaded from
the project web site [20].

6. WALKABOUT IN ACTION
In this section, we use our proposed technique to char-

acterize coarse views of large popular OSNs such as Flickr,
Twitter, and Google+. In the process, we not only demon-
strate the key features and capabilities of our technique, but
also show what sort of coarse views WalkAbout produces for
the well-known OSNs.

6.1 Datasets and Methodology
In the following, we rely on anonymized snapshots of the

largest connected component (LCC) of the connectivity struc-
ture for Flickr (FL) that was captured by Mislove et al. [18],
2We have examined the e↵ect of D

min

on the dvr histogram
and our findings are reported in the related technical report
[19].

Table 2: FL – Basic features of identified regions
cores region

#Region Size Avg.Deg %Nodes %Edges Avg.Deg. Mod.

R0 4.04E+03 1.10E+03 92.8 58.2 11.9 0.4

R1 5.69E+02 1.01E+03 1.2 3.2 50.1 0.5

R2 3.01E+03 1.12E+03 4.0 17.6 83.7 0.7

R3 2.12E+03 1.35E+03 1.8 16.6 174.2 0.6

R4 1.14E+03 1.10E+03 0.2 4.4 431.0 0.3

a snapshot of the Twitter (TW) social graph that was col-
lected by Kwak et al. [15], and a snapshot of Google+ (G+)
from a recent study by Gonzalez et al. [10]. Table 1 sum-
marizes the main characteristics of these snapshots.

When applying the WalkAbout technique to each OSN, we
consider these snapshots as as undirected graphs, i.e., con-
verting any directed edge between two nodes (for TW and
G+) into an undirected edge. For each OSN, we applyWalk-

About and show the following results: (i) the evolution of the
conditioned dvr histogram (see Section 5) as a function of
walk length to illustrate the selection of target walk length.
(ii) the shape of the modified histogram at the target walk
length that shows the peaks used for identifying individual
regions, (iii) a table that summarizes the main features of
the identified cores (number of nodes and the average degree
in each core) and the corresponding regions (the percentage
of total nodes and edges, average degree and modularity),
and (iv) a sketch the regional view of the OSN.

We refer to the collection of specified values for the Walk-

About parameters, namely D
min

and wl, as the target set-

ting. In particular, we used D
min

= 500 throughout this
analysis. To examine the robustness of our results to di↵er-
ent choices of D

min

values, we repeated our analysis with
D

min

values that are 10% larger or smaller and observed no
significant di↵erences. For a more detailed account of this
robustness analysis, refer to our related technical report [19].

6.2 OSNs and Their Regional Views
Regional View of Flicker (FL): Figure 3(a) shows the
evolution of dvr histogram for a FL snapshot as a function
of walk length around the selected target setting (wl = 30,
D

min

= 500). We observe that wl = 30 reveals the largest
number of pronounced peaks; i.e., a total of five peaks. Fig-
ure 3(b) shows the shape of dvr histogram at our selected
target setting for FL (wl = 30, D

min

= 500) where the five
major peaks are marked and their associated ranges of dvr-
values are colored. Note that regions R

3

and R
4

could have
been considered as a single region. However, because of the
observed dip around dvr = 35, we split that peak into two
regions. We later discuss the e↵ect of this decision. Due to
their small sizes and to keep the number of regions within
limits, we did not consider several very small peaks in the
middle of the histogram whose dvr was 21.96 < dvr < 33.4
and contained between 1 to 100 nodes (with the median of
8 nodes). This is indeed one way to explore the tradeo↵
between the accuracy or resolution (by keeping many core
components) and complexity of the resulting view. Note
that WalkAbout reveals these peaks and allows us to explore
them if a higher resolution is desired.

Table 2 summarizes the key features of the five identified
cores and their corresponding regions. We observe that the
cores include between 500-4000 nodes and collectively con-
tain less than 1% of nodes of the graph. Except for R

1

,
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Figure 3: Applying WalkAbout to Flickr snapshot

Table 3: TW – Basic features of identified regions
cores region

#Region Size Avg.Deg %Nodes %Edges Avg.Deg. Mod.

R0 8.05E+04 1.02E+03 2.6 4.5 124.2 0.4

R1 2.75E+05 1.47E+03 54.1 31.0 40.4 0.3

R2 2.72E+05 2.16E+03 40.8 42.6 73.5 0.2

R3 1.20E+05 4.70E+03 2.5 20.7 596.2 0.4

R4 4.57E+03 5.21E+03 0.01 0.8 3,167.7 0.4

R5 1.90E+03 5.83E+03 0.002 0.4 4,066.3 0.4

they are all of similar size. The resulting regions are very
imbalanced, with R

0

containing more than 92% of all nodes
and 58% of all edges and having average degree of 11.9 and
modularity of 0.4. The other regions are very small and con-
tain only some 0.2%-4% of all nodes. However, regions R

2

and R
3

have a high average degree and thus include a much
larger fraction of edges. At the same time, regions R

2

andR
3

have a much higher modularity than R
0

. All the identified
cores and regions form connected components. Figure 3(c)
sketches the regional view of the FL structure. This figure
shows that for all practical purposes, regions R

3

and R
4

are
weakly connected to the other three regions. We recall that
these two regions are created as a result of splitting the right
most peak of the dvr histogram into two parts. Given their
strong inter-connectivity, an option would be to merge these
two regions together and consider them as a single region,
thus producing a yet coarser view of the FL connectivity
structure.

Regional View of Twitter (TW): Figure 5(a) depicts
the evolution of the dvr histogram for the TW structure
as a function of wl where D

min

= 500. We observe that
the transition phase for the formation of peaks for di↵erent
regions is rather short, between wl values of 14 and 22. We
select wl = 18 for our target setting as it reveals the most
clear set of peaks in the histogram. Figure 4(b) depicts six
peaks in the dvr histogram at our target setting.
Table 3 summarizes the main characteristics of the identi-

fied cores and their corresponding regions. We observe that
the cores have between 1.9K and 275K nodes. There are two
large (R

1

and R
2

), two small (R
0

and R
3

), and two tiny (R
4

and R
5

) regions. The regions generally exhibit low mod-
ularity (0.4). The low level of modularity for regions in
TW indicates that regions do not exhibit tight internal con-

Table 4: G+ – Basic features of identified regions
cores region

#Region Size Avg.Deg %Nodes %Edges Avg.Deg. Mod.

R0 2.18E+05 1.73E+03 82.0 62.8 25.8 0.3

R1 4.00E+04 7.13E+03 16.3 33.5 69.2 0.6

R2 6.51E+03 1.70E+03 0.6 1.0 54.2 0.7

R3 9.94E+03 2.28E+03 0.9 1.9 73.8 0.8

R4 7.40E+01 3.71E+04 0.2 0.5 74.5 0.7

R5 1.45E+02 1.78E+04 0.1 0.3 175.4 0.6

nectivity. An interesting fact about the two tiny regions is
that they have an order of magnitude larger average degree
than the other regions but still exhibit the same modularity.
Figure 4(c) depicts the resulting regional view for the TW
structure and reveals that regions R

1

and R
2

have strong
mutual connectivity and play a central role in the graph.
R

0

is connected to R
1

and R
2

from one side while R
5

, R
4

and R
3

form a triangle structure that connect to the rest of
the regions primarily through R

2

.

Regional View of Google+ (G+): Figure 5(a) depicts
the evolution of the dvr histogram for the G+ graph as we
change wl. The histogram which most clearly reveals di↵er-
ent regions is formed around wl = 20. Therefore, we select
this wl as our target setting. The corresponding histogram
is shown in Figure 5(b) and reveals the existence of six dis-
tinguishable peaks. While the regions R

4

and R
5

result from
rather small peaks, we still use them as cores because they
are clearly separated from other peaks and also have a large
average degree.

Table 4 summarizes the main features of the identified
cores and regions. We observe that the core sizes vary be-
tween 74 and 218k which is much more skewed compared
to the other OSNs. These cores lead to a dominant region
R

0

, a moderate-sized region R
1

, and four tiny regions. All
regions except for R

0

exhibit a rather high modularity (0.6-
0.8). Figure 5(c) plots the regional view of the connectivity
structure for G+. We observe that R

4

and R
5

are tightly
inter-connected but have a weak connectivity to the other
regions. The other four regions have a moderate chain-like
inter-connectivity structure of the form R

2

-R
3

-R
1

-R
0

.

6.3 Lessons Learned
The obtained regional views of the connectivity structures

of some of the most popular OSNs provide a novel and useful



60

70

80

10

15

20
0

0.02

0.04

0.06

dvrwl

P
D

F

(a) dvr histogram vs wl

60 65 70 75 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

dvr

P
D

F

R0

R1

R2

R3

R4 R5

(b) dvr histogram at the target setting, wl =
18, D

min

= 500

R0R0 R1R1

R2R2R3R3

R4R4

R5R5

(c) Regional View

Figure 4: Applying WalkAbout to Twitter snapshot
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Figure 5: Applying WalkAbout to Google+ snapshot

abstraction of the large-scale real-world systems. They of-
fer a manageable high-order view of how nodes are mapped
into various regions of di↵erent sizes, along with a quantita-
tive assessment of the corresponding inter- and intra-region
connectivity.

A common observation from applying WalkAbout to the
three OSNs is that separate regions (peaks) with close-by
dvr values tend to have stronger inter-region connectivity
than regions that result from clearly separated peaks in the
dvr histogram. Such behavior is to be expected for real-
world graphs. For one, our approach for mapping high de-
gree nodes to cores based on slicing peaks in the histogram
is ambiguous for high degree nodes whose dvr values are
close to the border value of a region. Moreover, the size of a
region and its mixing time can vary widely across di↵erent
regions of a large graph. This in turn makes the selection
of a proper walk length challenging. For example, a par-
ticular walk length that is close to a region’s mixing time
and thus clearly reveals the associated peak in the dvr his-
togram could be too long for other regions. This behavior
can cause some of the RWs of other regions to leave their
starting points and move to other close-by regions. The
fraction of such “misbehaving” RWS depends on the walk
length and the relative connectivity between starting and

neighboring regions. Both of the above factors tend to de-
crease the gap between the dvr ranges of close-by regions
proportional to their pairwise connectivity. However, given
the coarse resolution of the considered regional views of a
graph, the resulting ambiguities do not significantly impact
the value that can be derived from examining such coarse
views of large-scale graphs.

Also note that the number of peaks that appear in a dvr
histogram changes with the walk length which, in turn, can
change the perspective of what peak size should be consid-
ered to be significant. Our focus here has been on consider-
ing only a handful of regions so that the resulting regional
views are manageable. WalkAbout is clearly an interactive
framework and can be used to identify a di↵erent number of
regions and examine how such selections a↵ect the charac-
teristics of the resulting regional views.

As our results show, the identified regions by WalkAbout

could be very imbalanced in size. In particular, a large re-
gion may consist of two or more smaller regions that are not
properly recognizable during the first round. One way to ex-
plore the structure of these larger regions is to apply WalkA-

bout to each identified regions. This hierarchical application
might be able to identify the internal structure (sub-regions)
of a large region if they have su�ciently distinct average de-



Table 5: FL
region comm.
R0 26,987
R1 173
R2 639
R3 251
R4 7

Table 6: TW
region comm.
R0 142
R1 13,171
R2 10,003
R3 724
R4 9
R5 5

Table 7: G+
region comm.
R0 29,577
R1 9,545
R2 93
R3 32
R4 18
R5 2

grees and shorter mixing time than the entire region. This
issue remains as a future work for us to explore in more
detail.

6.4 WalkAbout as an Interactive Tool
We have implementedWalkAbout as an interactive tool for

browsing coarse-view of connectivity for large graphs. Our
tool accepts the edge view of a large graph and produces
dvr histogram. A user can browse through the evolution of
the histogram as a function of the walk length and D

min

to select its desired parameters, and then focus on the de-
sired histogram to interactively determine the number and
location of individual peaks (regions). Our tool then gen-
erates the input for viewing the resulting regional view on
an existing visualization program (such as Gephi [3]). The
key feature of our tool is the ability for a user to interact
with the process to determine the proper parameters based
on those interactions. Our tool is publicly available at the
project web site [20].

7. REGIONS & COMMUNITIES
Community detection in graphs is a commonly used tech-

nique that can also be viewed as providing a coarse view of a
graph (i.e., community-level instead of regional-level view).
Community detection techniques typically group nodes into
tightly connected groups, called a community, based on an
objective function (e.g., modularity) and present character-
istics of the detected communities without emphasis on the
inter-community connectivity. In this section, we compare
and contrast the regional view that WalkAbout produces
with the community view of a large graph. Given the simi-
larity between the notion of a “community” and a “region”,
and the popularity of applying community detection tech-
niques for graph analysis, this comparison helps us relate
the regional view of the graph with a related concept (i.e.,
community) that is widely used. To this end, we have to
run a community detection technique on our large target
graphs. Unfortunately, most of the commonly-used commu-
nity detection techniques do not scale to graphs with more
than tens of millions of nodes [7], or require the number of
communities as an input (e.g., Metis [12, 13]), or recursively
partition the graph into balanced communities that may not
lead to the most tightly connected communities [12]. Due to
these limitations, we use the Louvain community detection

technique [4] that implements a greedy method to optimize
the “modularity” of identified partitions. The Louvain tech-
nique is often considered to be the gold standard for scalable
community detection and has a publicly available and robust
implementation.
We applied Louvain to our targeted OSN structures and

identified 28K, 39K, and 24K communities of various sizes
in FL, G+, and TW, respectively. Importantly, these re-
sults show that the number of communities in these graphs
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Figure 6: Comparison of Louvain communities and

WalkAbout regions.

are several orders of magnitude larger than the number of

regions. This large number of communities implies that the

graph connectivity at the community level is still too complex

for high-level analysis (e.g., determining the full picture of

inter-community connectivity.)

Figure 6 presents the summary distribution of the main
features (modularity, size and average degree) across all re-
gions and all communities associated with each each OSN.
To examine the e↵ect of community size, we have also in-
cluded the results where we only consider the large commu-
nities that consist of 1000 or more nodes. We observe that
communities are typically more than four orders of magni-
tude smaller than regions. However, size-wise, the largest
communities clearly have an overlap with the obtained re-
gions. While the modularity of communities is typically
higher than the modularity of regions, this gap is more pro-
nounced in less clustered graphs (e.g., TW) than in more
clustered graphs like FL and G+. Also, the large communi-
ties exhibit higher modularity than the WaltAbout-derived
regions, and the average degree of the communities is smaller
than its counterpart for regions (irrespective of community
size).

To gain more insight into connectivity-related features,
we examine the placement of the 1000 nodes with the high-
est degree in each region across the di↵erent communities.
Interestingly, we find that in all three OSNs, the top 1000
nodes are located in 5 or 6 communities, with some of those
communities attracting significantly more nodes than oth-
ers. Moreover, both the size (15K-359K for FL, 72K-22M
for TW, and 336K-16M for G+) and the modularity of these
few communities (0.48-0.75 for FL, 0.28-0.78 for TW, and
0.35-0.89 for G+) are comparable with typical values for
the WaltAbout-derived regions. These results suggest that

the large communities that are needed for accommodating

high-degree nodes exhibit characteristics very similar to the

WaltAbout-identified regions.

7.1 Mapping Communities to Regions
To further explore the relationship between the community-

and regional-level views of these graphs, we map individual
Louvain communities to the identified regions for the same
graph. In particular, for each community c, we determine
the region where each node of this community is located
and identify the region R that contains a majority of nodes
in that community. Then community c is mapped to that
region R that hosts a majority of its nodes, and the confi-
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Figure 7: Characteristics of Louvain communities mapped to di↵erent WalkAbout regions

dence for this mapping is equal to the fraction of c’s nodes
that are located in R. Tables 5 through 6 summarize the
number of communities that are mapped to the individual
regions of each OSN. In the extreme case, if the nodes in each
community are randomly located in di↵erent regions, then
all communities are mapped to the largest region(s) with a
confidence equal to the region’s relative size. We observe
that the mapping confidence for 75% of the communities in
every single region is 100%, and for 90% of communities, all
but one small region in FL (R

4

) has a mapping confidence
higher than 80%. Even for the large communities with more
than 1K nodes, the mapping confidence for 90% of them is
larger than 80% for all regions of all OSNs except for TW,
where it is 60% . These results clearly demonstrate that the

vast majority of nodes in most communities are mapped into

a single region. This in turn suggests that a region can be

viewed as a collection of connected communities and thus

o↵er a coarser view of the graph.

7.2 Per-region Analysis of Communities:
We now examine the group of communities that are mapped

to each region to determine whether they exhibit any dis-
tinguishing features. Figure 7 uses box-plots to summarize
the distribution of modularity, size and average node degree
across all communities that are mapped to each region of in-
dividual OSNs. These figures illustrate that there does not
appear to be a strong correlation between the modularity
of communities in a region and the modularity of the entire
region. This observation is explained by the fact that the
modularity of a region depends, among other factors, on the
inter-community connectivity. We also observe that in gen-
eral, there is no significant di↵erence in the modularity, size
and average degree of the communities that are mapped to
each region, i.e., regions are not generally distinguishable
based on the characteristics of their communities despite
the di↵erence in their average degree and size. The only
exceptions to this observation are regions R

3

, R
4

and R
5

in G+ that contain communities with a significantly higher
and more homogeneous modularity, larger size and higher
average degree. This is intriguing since larger size or higher
node degree could lead to lower modularity in a single com-
munity. These findings suggest that identifying individual

regions by merging communities in a bottom-up fashion (us-

ing modularity) is in general challenging. Alternatively, a

top-down approach to region detection such as WalkAbout
shows more promise.

7.3 Comparing Run-time:
Finally, we compare the run times of WalkAbout and the

Louvain community detection technique on an Intel X5650
2.66GHz computer with 72GB RAM which is su�cient to
hold the entire graph in memory. Figure 7.2 shows the com-
parison of the run time per individual technique over each
OSN using log scale for the x-axis. We further split the
run time of WalkAbout into two components: (i) the cal-
culation of the dvr values for high degree nodes to detect
cores and (ii) mapping of low-degree nodes to those cores.
These results show that the run times of both techniques are
similar over small graphs (e.g., 10 second di↵erence for FL).
However, as the graph size increases, Louvain requires a sig-
nificantly longer run time and the gap between WalkAbout

and Louvain seems to be widening. We also recall that for
graphs of the size of these OSNs, many popular community
detection or clustering techniques (including spectral clus-
tering [5]) quickly run into scalability issues and cannot be
used at all [9].

8. A NEW KIND OF VALIDATION
So far we have primarily focused on the connectivity fea-

tures of regions and how they are aligned with smaller enti-
ties in a large graph such as communities. Since regions are
not derived based on an objective function, there is no ob-
vious way to validate/examine their accuracy. To tackle the
challenging problem of “validation” of WalkAbout -derived
regions, we conduct a case study to investigate whether users
in each identified region exhibit similar social attributes that

act as the underlying factors for the formation of the region.

8.1 Are Regions Meaningful?
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Figure 9: Distribution of confidence in mapping groups

to identified regions. Large groups have more than 10

members.

Our ability to answer the posed question depends on the
availability of semantically-rich metadata that contains so-
cial context. However, given adequate metadata, answering
the above question will shed light on whether an identified
region represents a meaningful portion of an OSN. In our
case study, we focus on FL because of the availability of rich
metadata with social context for this OSN.

More precisely, for our FL snapshot, we have a list of 99K
social groups (with their names) where each group consists
of a collection of users with common interest. A user can
be a member of multiple groups. The name of most groups
provides a great deal of information about the groups’ inter-
ests or context (e.g., big and hot, bigblkmuscles, bigbulls,
boys, everydaymen, fatboys). Similarly to the mapping of
communities to regions (Section 7), we map each group to
a region where most of their users are located. Figure 9(a)
and 9(b) shows the summary distribution of mapping confi-
dence for all groups and for the 44K groups with more than
10 users to the five regions in FL, respectively. We observe
that groups that are mapped to regions R

1

-R
4

exhibit a very
high confidence despite the small size of these regions. The
mapping confidence drops for larger groups but it is still a
couple of orders of magnitude larger than the relative size
of the group. More specifically, regions R

1

, R
2

, R
3

and R
4

make up 1.2%, 4% 1.8%, and 0.2% of nodes in the graph
but the typical confidence for their mapped groups is 0.8,
0.9, 0.92, and 0.58, respectively. These results suggest that
the social context of each group is likely a driving force for
its mapping to these four regions. In contrast, the typical
confidence for mapped groups to region R

0

is comparable
to its relative size. This indicates that social forces dis-
cernible from our data may not be primarily responsible for
the mapping of groups to region R

0

. To learn the context
of individual regions, we manually examined the names of
groups that are mapped to that region. Our examination
reveals a very pronounced pattern among group names as-
sociated with the following regions3: Group names in R

1

are mostly related to male nudity and adult content, group
names in R

2

are hinting at female nudity and adult content,
and group names in both R

3

and R
4

have a common ethnic
attribute, i.e., either have Arabic name or post in Arabic.
As expected, group names in R

0

do not show a coherent
theme.

3The spreadsheet of FL group names that are mapped to
each FL regions (or community) are available online at http:
//onrg.cs.uoregon.edu/WalkAbout/group_per_region/

8.2 Are Communities Meaningful?
We use the same methodology to examine the “validity”

of communities; i.e., checking whether the names of mapped
groups to individual communities indicate any common so-
cial theme. In the case of regions without any pronounced
social theme (e.g., R

0

), one of their large communities may
indeed have a social context whereas for regions with an ex-
isting social context (e.g., R

1

), a community may o↵er an
even more specific context. The large number and diverse
size of communities in each graph make it di�cult to exam-
ine all communities. Since small communities do not provide
su�cient information to identify their social theme, we only
focus on the three largest communities that are mapped to
each region of FL. Careful examination of group names for
groups that are mapped to each one of these large commu-
nities reveals that large communities in R

0

do not seem to
have any social theme and large communities in all other
regions often exhibit a theme that is very similar to the
identified theme for the whole region. The only exception is
a community in R

2

that contains groups with clearly more
specific group names. In summary, our preliminary investi-
gations suggest that some large communities that are em-
bedded within a region are not “meaningful” in the sense
that they exhibit rather diverse social themes that makes
them the opposite of a “community.”

9. CONCLUSION & OUTLOOK
In this paper, we present a new scalable framework called

WalkAbout for examining and inferring regional views of
connectivity for very large graph and demonstrate its ap-
plication to three well-known OSNs. Moreover, we conduct
a comparison between regional- and community-level views
of large OSN and present a case study where we “validate”
the individual regions and communities; i.e., examining in
detail the available meta-data for social themes that are as-
sociated with the obtained groupings of nodes in an OSN
and are prime candidates for the root cause(s) behind the
formation of these groupings.

The presented design of WalkAbout and the experience
we gained from applying it to real-world OSNs suggest a
number of extensions and improvements. For one, we plan
to explore the recursive application of WalkAbout to iden-
tify potential sub-regions within each identified region. In
the same vein, we intend to examine how the regional- and
community-level views of a large graph can inform each
other to yield a hybrid approach for a “multi-scale” explo-
ration of the graph’s connectivity (e.g., examining the con-
nectivity between large communities within a given region
to obtain a higher-resolution view of graph connectivity).
Extending WalkAbout to allow for overlapping regions and
collecting semantically rich meta-data that enables the illus-
trated validations of groupings such as regions, clusters, or
communities are other items on our research agenda in this
area.
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