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Abstract

Evaluating on adversarial examples has become a standard procedure to measure robustness of
deep learning models. Due to the difficulty of creating white-box adversarial examples for dis-
crete text input, most analyses of the robustness of NLP models have been done through black-
box adversarial examples. We investigate adversarial examples for character-level neural machine
translation (NMT), and contrast black-box adversaries with a novel white-box adversary, which
employs differentiable string-edit operations to rank adversarial changes. We propose two novel
types of attacks which aim to remove or change a word in a translation, rather than simply break
the NMT. We demonstrate that white-box adversarial examples are significantly stronger than
their black-box counterparts in different attack scenarios, which show more serious vulnerabili-
ties than previously known. In addition, after performing adversarial training, which takes only
3 times longer than regular training, we can improve the model’s robustness significantly.

1 Introduction

Last year, a mistranslation by Facebook’s machine translation (MT) system led to a wrongful ar-
rest (Berger, 2017). Instead of translating an Arabic phrase to “good morning,” Facebook’s MT translated
it as “attack them.” Arabic is a morphologically-rich language, and the MT mistook the input word for
another which differs from the input by only one character. As MT is used more and more, it is increas-
ingly important to understand its worst-case failures to prevent incidents like this.

Adversarial examples are inputs designed to make a machine learning model perform poorly, and
are often constructed by manipulating real-world examples (Goodfellow et al., 2015). Belinkov and
Bisk (2018) investigate the sensitivity of neural machine translation (NMT) to synthetic and natural noise
containing common misspellings. They show that state-of-the-art models are vulnerable to adversarial
attacks even after a spell-checker is deployed. By performing ensemble adversarial training (Tramèr et
al., 2018), they improve an NMT’s robustness to adversarial noise.

We explore the space of adversarial examples for NMT in two directions: first, we study untargeted
adversarial examples in a white-box setting, wherein the adversary has access to model parameters and
can use its gradients to inflict more damaging manipulations for a larger decrease in the BLEU score;
second, equipped with the developed machinery to do white-box attacks, we can perform more interesting
attacks. We propose controlled and targeted adversaries which create adversarial examples with other
goals, instead of merely decreasing the BLEU score. A controlled adversary aims to mute a word in the
original translation, while a targeted adversary aims to push a word into it. Table 1 shows one example
of each category. In both cases, the adversary, which has no word alignment model, has not drastically
changed the rest of the translation, and has been able to reach its goals.

There is growing interest in understanding vulnerabilities of NLP systems (Jia and Liang, 2017; Zhao
et al., 2018; Belinkov and Bisk, 2018). Previous work in NLP has focused on creating adversarial ex-
amples in a black-box setting, wherein the attacker can query a model but does not have access to its
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src 1901 wurde eine Frau namens Auguste in eine medizinische Anstalt in Frankfurt gebracht.
adv 1901 wurde eine Frau namens Afuiguste in eine medizinische Anstalt in Frankfurt gebracht.
src-output In 1931, a woman named Augustine was brought into a medical institution in France.
adv-output In 1931, a woman named Rutgers was brought into a medical institution in France.
src Das ist Dr. Bob Childs – er ist Geigenbauer und Psychotherapeut.
adv Das ist Dr. Bob Childs – er ist Geigenbauer und Psy6hothearpeiut.
src-output This is Dr. Bob Childs – he’s a wizard maker and a therapist’s therapist.
adv-output This is Dr. Bob Childs – he’s a brick maker and a psychopath.

Table 1: Controlled and Targeted Attack on DE→EN NMT. In the first example, the adversary wants to suppress a person’s
name, and in the second example, to replace occurrences of therapist with psychopath

parameters. Black-box attacks often rely on heuristic methods to create adversarial examples. In con-
trast, white-box attacks approximate the worst-case attack for a particular model and input, within some
allowed set of perturbations. Therefore, white-box attacks can demonstrate and defend against a model’s
most serious vulnerabilities, which may not be discovered by black-box heuristics.

After exploring the space of adversarial examples for NMT and proposing new types of attacks, we
focus on adversarial training to make our model more robust. We build on HotFlip (Ebrahimi et al., 2018),
a recently-introduced white-box method for generating adversarial examples and performing adversarial
training for text classification. At the core of HotFlip lies an atomic flip operation, which changes one
character to another by using the gradients of the model with respect to the one-hot vector input. In this
work, we extend it to include a broader set of attacks, and we also improve it with a better beam search
heuristic and faster adversarial training.

Our contributions are as follows:

1. We use a gradient-based estimate, which ranks adversarial manipulations, and we search for adver-
sarial examples using greedy search or beam search methods.

2. We propose two translation-specific types of attacks and provide a metric to evaluate adversaries in
these scenarios. Our experiments show that white-box adversaries can be significantly stronger than
black-box adversarial examples.

3. We investigate the robustness of models trained with white-box adversarial examples and compare
their robustness with black-box trained models.

2 Related Work

The need to understand vulnerabilities of NLP systems is only growing. Companies such as Google are
using text classifiers to detect abusive language1, and concerns are increasing over deception (Zubiaga et
al., 2016) and safety (Chancellor et al., 2016) in social media. In all of these cases, we need to to better
understand the dynamics of how NLP models make mistakes on unusual inputs, in order to improve
accuracy, increase robustness, and maintain security or privacy. While this line of research has recently
received a lot of attention in the deep learning community, it has a long history in machine learning,
going back to adversarial attacks on linear spam classifiers (Dalvi et al., 2004; Lowd and Meek, 2005).

Character-level NMT systems (Lee et al., 2017; Costa-Jussa and Fonollosa, 2016) and those based on
sub-word units (Sennrich et al., 2016) are able to extract morphological features which can generalize un-
seen words. Belinkov and Bisk (2018) show that character-level machine translation systems are overly
sensitive to random character manipulations, such as keyboard typos. They use black-box heuristics to
generate character-level adversarial examples, without using the model parameters or gradients to gener-
ate adversarial examples. The major challenge in creating white-box adversarial examples for text is that
optimizing over discrete input is difficult (Miyato et al., 2017), which is why previous work has focused
on black-box adversarial examples. Zhao et al. (2018) search for black-box adversarial examples in the
space of encoded sentences and generate adversarial examples by perturbing the latent representation
until the model is tricked. However, it is not clear how many queries are sent to the model or what the

1https://www.perspectiveapi.com



success rate of the adversary is. We contrast black-box and white-box attacks and show how white-box
attacks significantly outperform their black-box counterparts in controlled and targeted attack scenarios.

Adversarial training/regularization interleaves training with generation of adversarial examples (Good-
fellow et al., 2015). Concretely, after every iteration of training, adversarial examples are created and
added to the mini-batches. This technique has been used for text classification (Miyato et al., 2017) us-
ing adversarial noise on the word embeddings without creating real-world adversarial examples. Jia and
Liang (2017) point out the difficulty of adversarial training with real-world adversarial examples, as it
is not easy to create such examples efficiently. In this work, we improve the training time of HotFlip
(Ebrahimi et al., 2018) by using a one-shot attack in our inner adversary, which makes the running time
of adversarial training only 3 times slower than regular training.

3 White-Box Adversarial Examples

Editing text to trick an NLP model, constrained by the number of characters to change, r, is a com-
binatorial search problem. We develop a gradient-based optimization method to perform four text edit
operations: namely, flip (replacing one character with another), swap (replacing two adjacent characters
with each other), delete, and insert. We use derivatives with respect to one-hot representation of the input,
to rank candidate changes to text, in order to search for an adversarial example which satisfies the adver-
sary’s goal. Compared with a black-box adversary, our method has the overhead of sorting or searching
among derivatives, while being considerably more successful.

3.1 Definitions
We use J(x,y) to refer to the log-loss of the translation model on source sequence x and target sequence
y. Let V be the alphabet, x be a text of length L characters, and xij ∈ {0, 1}|V | denote a one-hot
vector representing the j-th character of the i-th word. The character sequence can be represented by

x = [(x11,.. x1n);(x21,.. x2n);...(xm1,.. xmn)]
wherein a semicolon denotes explicit segmentation between words. The number of words is denoted by
m, and n is the number of maximum characters allowed for a word2.

3.2 Derivatives of Operations
We represent text edit operations as vectors in the input space, and estimate the change in loss by direc-
tional derivatives with respect to these operations. Based on these derivatives, the adversary can choose
the best loss-increasing operation. Our algorithm requires just one function evaluation (forward pass)
and one gradient computation (backward pass) to estimate the best possible flip.

A flip of the j-th character of the i-th word (a→ b) can be represented by this vector:
~vijb = (~0 ,..;(~0 ,..(0,..-1,0,..,1,0)j ,..~0 )i; ~0 ,..)

where -1 and 1 are in the corresponding positions for the a-th and b-th characters of the alphabet, re-
spectively, and x(a)ij = 1. A first-order approximation of change in loss can be obtained from a directional
derivative along this vector:

∇~vijb
J(x,y) = ∇xJ(x,y)

T · ~vijb =
∂J

∂xij

(b)

− ∂J

∂xij

(a)

(1)

Using the derivatives as a surrogate loss, we simply need to find the best change by maximizing eq. 1,
to estimate the best character change (a → b). This requires searching in |V |mn values for a given text
of m words with n characters each, in a vocabulary of size |V |.

Similarly, character insertion, deletion, and swap of adjacent characters can be represented as vectors
which carry the information about the direction and number of flips. Since the magnitudes of operation
vectors are different, we normalized them by both L1 and L2 norm but found it had little impact.

A black-box adversary can perform similar manipulations which would be randomly picked. For ex-
ample, Belinkov and Bisk (2018) define Key operation, which flips one character with an adjacent one
on the keyboard, at random.

2Padding is applied if the number of characters is fewer than the maximum.



3.3 Controlled and Targeted Attacks

The previous adversary was untargeted, and its only goal was to increase the loss of the model. However,
some corruptions of the output may be much worse than others – translating “good morning” as “attack
them” is much worse than translating it as “fish bicycle.” By changing the loss function, we can force the
adversary to focus on more specific goals.

In a controlled attack, the adversary tries to remove a specific word from the translation. This could be
used to maintain privacy, by making more sensitive information harder to translate, or to corrupt meaning,
by removing key modifiers like “not,” “joked,”’ or “kidding.” Concretely, we maximize the loss function
J(x, yt), where t is the target word. This way, the adversary ignores the rest of the output and focuses on
parts of the input that would affect the target word most.

In a targeted attack, the adversary aims to not only mute a word but also replace it with another. For
example, changing the translation from “good morning”’ to “good attack” could lead to an investigation
or an arrest. Making specific changes like this is much more dangerous, but also harder for the adversary
to do. For this attack, we maximize the loss −J(x, yt′ ), where t

′
is the new word chosen to replace

t. Note that the negation makes this equivalent to minimizing the predictive loss J(x, yt′ ) on t
′
. We

represent this as maximization so that it fits in the same framework as the other attacks. Our derivative-
based approach from the previous subsection can be then used directly to generate these new attacks,
simply by substituting the alternate loss function.

3.4 Multiple Changes

We explained how to estimate the best single change in text to get the maximum increase/decrease in
loss. We now discuss approaches to perform multiple changes.

(a) one-shot: In this type of attack, the adversary manipulates all the words in the text with the best
operation in parallel. That is, the best operation for each word is picked locally and independently
of other words. This is efficient, as with only one forward and backward pass, we can collect the
gradients for all operations for all words. In addition, compared with the global one-shot method
of Ebrahimi et al. (2018), it does not require sorting the gradients globally, and can further reduce
the time to create adversarial examples. It is less optimal than the next approaches, which apply
changes one by one. Due to its efficiency, this is the approach we choose to do adversarial training.
Our experiments in section 6, which are untargeted, follow this approach. We also investigate black-
box and white-box variants of one-shot attacks in section 5.1. The budget for the adversary is the
number of words, and it is spent in the first shot.

(b) Greedy: In this type of attack, after picking the best operation in the whole text, we make another
forward and backward pass, and continue our search. Our controlled attack in section 5.2 follows
this approach, where we allow a maximum of 20% of the characters in text as the budget for the
adversary. As will be explained in 5.2, the adversary spends much less than this amount.

(c) Beam Search: And finally, we can strengthen our greedy search by beam search. Our beam search
requires only O(br) forward passes and an equal number of backward passes, with r being the
budget and b, the beam width. At every step, the beam will be sorted by the sum of the true loss up
to that point, which we have computed, plus the gradient-based estimate of candidate operations.
This showed better performance than using the sum of the gradients in the path for sorting the beam,
as was previously done (Ebrahimi et al., 2018). Since targeted attacks are the most difficult type of
attack, we use this strategy for targeted attacks, as described in section 5.3. We allow a maximum
of 20% of the characters in text as the budget for the adversary, and set the beam width to 5.

4 Experiments

We use the TED talks parallel corpus prepared by IWSLT 2016 (Mauro et al., 2016) for three pairs of
languages: German to English, Czech to English, and French to English. We use the development sets
and test sets of previous years except 2015 as our development set. The statistics of the dataset can be



Pair Train Test Target vocab.
FR-EN 235K 1.1k 69k
DE-EN 210K 1.1k 66k
CS-EN 122K 1.1k 49k

Table 2: Data Statistics

found in Table 2. Throughout our experiments, we only allow character changes if the new word does not
exist in the vocabulary, to avoid changes that an MT would respond to as expected. For example, it is not
surprising that changing the source German word “nacht” to “nackt” would cause an MT to introduce
the word “nude” in the translation.

The architecture we study was first proposed by Kim et al. (2016) for language modeling, and later
adapted by Costa-Jussa and Fonollosa (2016) for translation, and is also used by Belinkov and Bisk
(2018) for their adversarially-trained models. In this architecture, feature extraction is performed by con-
volutions over characters, which are passed to layers of highway networks, and finally given to stacks of
recurrent neural nets for modeling a sequence of words. Using this architecture, the BLEU scores on our
datasets are competitive with the submissions to the IWSLT (Mauro et al., 2016). Our implementation3

relies largely on Yoon Kim’s seq2seq implementation4, with similar hyper-parameters, which mostly
follows the guidelines of Luong et al. (2015) for attentional translation.

For experiments in section 6, where we report the BLEU score for a vanilla model and several
adversarially-trained models against different attackers, we use a decoder with a beam width of 4. How-
ever, our white-box attacker uses a model with greedy decoding to compute gradients. The reason is
that in order to calculate correct gradients, we either need to use greedy decoding, or use models which
incorporate beam search in the decoder architecture such that gradients could flow in the beam paths,
too (Wiseman and Rush, 2016), which incur more computational cost. Correct gradients are more of an
important issue for targeted attacks, where we want to achieve a goal beyond simply breaking the system.
For the sake of consistency, we use greedy decoding for both the vanilla model which is being attacked,
and the white-box attacker in all experiments of section 5, where we contrast white-box and black-box
adversaries in different scenarios.

5 Analysis of Adversaries

We first study whether first-order approximation gives us a good estimator to be employed by white-box
adversaries. Figure 1 compares the true increase in log-loss (i.e., J(x + v) − J(x)), with our gradient-
based estimate (i.e., ∇vJ(x)). We create adversarial examples using the best estimated character flip
for every word, over the German test set. Then, we compare the true increase in loss for the created
adversarial examples, with our gradient-based estimate. The log-loss is evaluated by summing the log-
loss of individual words, and similarly, the gradient-based estimate is the sum of all gradients given by
flips which are performed once on every word. Figure 1.a plots the histograms for both of these measures,
and Figure 1.b shows a scatter plot of them with the least squares fitting line. Due to linearization bias of
the first-order approximation, we have a distribution with smaller variance for the gradient-based estimate
measure. We can also observe a moderately positive correlation between the two measures (Spearman
coefficient ρ = 0.61), which shows we can use the gradient-based estimate for ranking adversarial
manipulations.

Next, we contrast black-box and white-box adversaries in untargeted, controlled, and targeted sce-
narios, and demonstrate that white-box adversaries significantly outperform black-box adversaries espe-
cially in controlled and targeted scenarios.

5.1 Untargeted Attack
Table 3 shows the BLEU score after one-shot white-box and black-box attacks are performed. Unlike
delete and swap, insert and flip have the advantage of making changes to one-letter words, so we expect

3https://github.com/jebivid/adversarial-nmt
4https://github.com/harvardnlp/seq2seq-attn



Figure 1: Comparing the distribution of the true increase in loss and its gradient-based estimate, and their correlation, using
best flips for each word in a sentence of the German test set.

them to perform better. We see this for the white-box attacks which can pick the best change to every word
using the gradients. On the contrary, a black-box adversary performs worst for flip, which is because the
black-box attacker is not enabled to pick the best change when more options (possible character flips) are
available, as opposed to swap and delete which are governed by the location of the change and contain
no additional flip. Nevertheless, a black-box adversary has competitive performance with the white-box
one, even though it is simply randomly manipulating words. We argue that evaluating adversaries, based
on their performance in an untargeted setting on a brittle system, such as NMT, is not appropriate, and
instead suggest using goal-based attacks for evaluation.

Attack
Flip Insert Delete Swap

white black white black white black white black
FR 4.27 6.98 4.74 4.85 4.99 5.86 4.87 5.20
DE 4.50 6.87 3.91 4.31 5.63 5.73 4.94 4.74
CS 4.31 6.09 4.66 5.86 6.30 6.62 6.05 5.82

Table 3: BLEU score after greedy decoding in the existence of different types of untargeted attacks.

5.2 Controlled Attack

We introduce more interesting attacks, in which the adversary targets the MT for more specific goals. A
perfect mute attack removes a word successfully and keeps the rest of the sentence intact. For example,
consider the translation T , containing words w1, w2,..., wt, ...wn, where wt is the target word. A perfect
mute attack will cause the NMT to create a translation Tp which contains words w1, w2,..., UNK, ...wn,
wherein wt is replaced with UNK. With this observation in mind, we define the success rate of an attack,
which generates Tadv, as follows:

success(Tadv) =

{
1, if BLEU(T, Tadv)

BLEU(T, Tp)
≥ α

0, otherwise

We can control the quality of an attack with α, for which a larger value punishes the adversary for ad-
hoc manipulations, which could cause the NMT to generate a radically different and possibly gibberish
translation. Success rate is defined by the number of successful attacks divided by the number of total
sentences in the test set. Figure 2 plots the success rate against α. As can be seen, the white-box adversary
is significantly more successful than a black-box adversary. By taking advantage of the knowledge of
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Figure 2: Success rate of white-box and black-box adversaries in a controlled setting as a function of α.

gradients of the model, a white-box adversary can perform better targeted attacks. For this experiment,
the black-box attacker uniformly picks from the four possible changes and randomly applies them.

For this attack, we follow the greedy approach, and use a budget of 20% of the characters in text.
Table 4 shows the average number of character changes and the number of queries made to the model.
The reported character changes are for attacks wherein the attacker only muted a target word successfully,
regardless of the quality of the translation. The reported number of queries takes the unsuccessful trials
into account too. The white-box adversary is more efficient due to fewer queries and fewer manipulated
characters, which can be crucial for a real-word adversary. Nevertheless, unlike a black-box adversary,
a white-box adversary requires additional backward passes, and has the overhead of operations on the
gradient values, mainly sorting. This makes the running times of the two comparable.

Compared with the results in the previous section, controlled attacks show a more convincing superi-
ority of the white-box attacks over black-box attacks.

Character Changes Queries
source white black white black

FR 1.9 7.7 2.3k 8.9k
DE 1.9 6.5 1.9k 7.8k
CS 1.5 5.3 1.2k 6.1k

Table 4: Efficiency of attacks.

5.3 Targeted Attack

A more challenging attack is to not only mute a word but also replace it with another one. The evaluation
metric for targeted attack is similar to controlled attack with one difference that a perfect push attack
produces a translation, Tp, which contains words w1, w2, wt′ ,..wn, wherein wt′ has replaced wt. In
classification domains with few classes, targeted attacks are relatively simple, since an adversary can
perturb the input to move it to the other side of a decision boundary. Whereas in MT, we deal with
vocabulary sizes in the order of at least tens of thousands, and it is less likely for an adversary to be
successful in targeted attacks for most possible target words. To address this, we evaluate our adversary
with nth-most likely class attacks. In the simplest case, we replace a target word with the second-most
likely word at decoding time.

As can be seen in Table 3, targeted attacks are much more difficult with a much lower success rate for
the adversary. Nevertheless, the white-box adversary still performs significantly better than the black-box
adversary. The success rate dramatically goes down for large values of n. For example, for the value of
100, the success rate will be more than ten times smaller than second-most likely attack.

5.4 Some Adversarial Examples

Table 5 shows three adversarial examples. The first example shows a controlled attack, where the ad-
versary has successfully removed a swear word from the sentence. The BLEU ratio, used in our success
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Figure 3: Success rate of white-box and black-box adversaries in the second-most likely targeted attack as a function of α.

src Wir erwarten Perfektion von Feministinnen, weil wir immer noch für so viel kämpfen, so viel wollen, so ver-
dammt viel brauchen.

adv Wir erwarten Perfektion von Feministinnen, weil wir immer noch für so viel kämpfen, so viel wollen, so
öberdammt viel brauchen.

src-output We expect perfection from feminist, because we’re still fighting so much, so damn, so damn, so damn.
adv-output We expect perfection from feminist, because we still fight for so much, so much of all, so much of all that needs

to be.
src In den letzten Jahren hat sie sich zu einer sichtbaren Feministin entwickelt.
adv In den letzten Jahren hat sie sich zu einer sichtbaren FbeminisMin entwickelt.
src-output In the last few years, they’ve evolved to a safe feminist.
adv-output In the last few years, they’ve evolved to a safe ruin.
src Ein Krieg ist nicht länger ein Wettbewerb zwischen Staaten, so wie es früher war.
adv Ein Krieg ist nicht länger ein erkBkaSzeKLlWmrt zwischen Staaten, so wie es früher war.
src-output A war is no longer a competition between states, like it used to be.
adv-output A war is no longer a throwaway planet between states, as it used to be.

Table 5: A controlled attack and two targeted attacks on our DE-EN NMT. First example shows a controlled attack, the second
and third examples show a second-most and a 100th-most likely targeted attack, respectively.

rate measure, for this example is 0.52. The second example shows a second-most likely targeted attack
where the new translation has managed to keep the rest of the translation intact and achieve its goal.
The BLEU ratio for this example is 1.00. The third example, which has a BLEU ratio of 0.70, shows a
100th-most likely attack, where the word competition is replaced with throwaway. Due to the difficulty
of this change, the adversary has committed a considerably larger number of manipulations.

6 Robustness to Adversarial Examples

6.1 Baselines

We use the black-box training method of Belinkov and Bisk (2018) as our baseline. They train several
models using inputs which include noise from different sources. We used their script5 to generate random
(Rand), keyboard (Key), and natural (Nat) noises. Their best model was one which incorporated noise
from all three sources (Rand+Key+Nat).

Similar to their approach, we train a model which incorporates noisy input scrambled by Flips, Inserts,
Deletes, and Swaps in training (FIDS-B). Since natural noise was shown to be the most elusive adver-
sarial manipulation (Belinkov and Bisk, 2018), we used this source of noise to determine the proportion
of each of the FIDS operations in training. Concretely we found that the majority of the natural noise can
be generated by FIDS operations, and we used the ratio of each noise in the corpora to sample from these
four operations. Figure 4 shows the distribution of manipulations for each language. A single swap is the
least likely operation in all three languages6. FIDS operations account for 64%, 80%, and 70% of natural
noise for Czech, German, and French, respectively. This can be regarded as a background knowledge
incorporated into the adversary.

5https://github.com/ybisk/charNMT-noise
6Excluding single swaps from manipulations with two flips.
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6.2 White-Box and Ensemble Methods

Our white-box adversary FIDS-W generates adversarial examples using our four text edit operations in
accordance with the distribution of operations on the natural noise. At every epoch, adversarial examples
are generated for every mini-batch using the one-shot approach. More precisely, all words in the sentence
are changed by a single FIDS operation in parallel. While training on both clean and adversarial exam-
ples has been the standard approach in adversarial training, some evidence in computer vision (Madry
et al., 2017; Shaham et al., 2015) suggests that training on white-box adversarial examples alone can
boost models’ robustness to adversarial examples, with a minor decrease in accuracy on clean examples.
However, we found that in order to get a good BLEU score on the clean dataset, we need to train on
both clean and white-box adversarial examples. We also train an ensemble model, Ensemble, which
incorporates white-box and black-box adversarial examples, with 50/50 share for each. The black-box
adversarial examples come from Nat and Rand sources.

When evaluating models against White adversarial examples at test-time, we use the test set which
corresponds to their method of training. For instance, the White adversarial examples for the Rand
model, come from the test set which has manipulated clean examples by Rand noise first. For Vanilla,
FIDS-W, and Ensemble models, the adversarial examples are generated from clean data. This makes
the comparison of models, which are trained on different types of data, fair. We use the one-shot attack
for our white-box attack evaluation, using the same distribution based on natural noise.

6.3 Discussion

Table 6 shows the results for all models on all types of test data. Overall, our ensemble approach performs
the best by a wide margin. As expected, adversarially-trained models usually perform best on the type
of noise they have seen during training. However, we can notice that our FIDS-W model performs best
on the Nat noise amongst models which have not been trained on this type of noise. Similarly, while
FIDS-W has not directly been trained on Key noise, it is trained on a more general type of noise,
particularly flip, and thus can perform significantly better on the Key than on other models which also
have not been trained on this type of noise. However, it cannot generalize to Rand, which is an extreme
case of attack, and we need to use an ensemble approach to perform well on it too. Nevertheless, FIDS-W
performs best on the Rand noise, compared with models which are not trained on Rand either. This
validates our earlier claim that training on white-box adversarial examples, which are harder adversarial
examples, can make the model more robust to weaker types of noise. We also observe that FIDS-B
performs better on the White examples compared with other baselines; although it has not been trained
on white-box adversarial examples, it is trained on black-box adversarial examples of the same family of
FIDS operations.

Figure 5 shows the training loss of white-box adversarially-trained model on adversarial examples.
The model is getting more resilient to adversarial examples, which are created at the start of each epoch.
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Figure 5: Training loss on adversarial examples for FIDS-W.

PPPPPPPPPTraining
Test

Clean Nat Key Rand FIDS-B FIDS-W Avg.

French

Vanilla 37.54 19.17 12.12 4.75 6.85 5.36 15.95
Nat 26.35 33.23 11.16 5.32 8.28 6.65 15.16
Key 33.02 17.30 35.97 4.63 7.00 5.17 17.17
Rand 36.06 18.54 8.31 36.10 8.76 7.14 19.14
FIDS-B 34.48 21.59 28.48 6.82 32.62 13.60 22.92
FIDS-W 37.15 23.65 31.18 7.78 32.72 31.94 27.40

Rand+Key+Nat 34.55 30.74 32.82 34.01 12.05 7.08 25.20
Ensemble 37.81 30.27 29.36 34.42 32.00 30.01 32.30

German

Vanilla 31.81 17.24 10.36 4.20 6.78 5.50 12.64
Nat 24.89 32.14 10.22 4.61 7.53 5.99 14.23
Key 27.20 15.98 30.62 4.64 7.68 4.74 15.13
Rand 31.01 17.90 6.59 30.70 9.19 5.83 16.86
FIDS-B 28.27 20.22 23.84 6.29 27.35 10.79 19.45
FIDS-W 31.81 21.72 26.23 7.75 27.38 26.51 23.56

Rand+Key+Nat 29.22 29.78 27.83 28.88 10.30 6.14 22.01
Ensemble 31.54 31.11 23.91 28.95 26.38 25.06 27.82

Czech

Vanilla 26.44 13.55 9.49 4.78 7.30 5.93 11.24
Nat 18.73 23.06 9.07 4.45 7.36 5.42 11.34
Key 22.76 13.09 23.79 4.83 7.93 5.82 13.03
Rand 24.23 12.00 7.26 24.53 7.24 5.47 13.45
FIDS-B 22.31 14.15 17.91 6.48 19.67 8.60 14.84
FIDS-W 25.53 15.57 19.74 7.18 20.02 19.42 17.90

Rand+Key+Nat 22.21 20.59 20.60 21.33 10.06 5.89 16.77
Ensemble 25.45 20.46 17.15 21.39 18.52 17.03 19.99

Table 6: BLEU score of models on clean and adversarial examples, using a decoder with beam size of 4.
The best result on each test set is shown in bold. FIDS-W performs best on all noisy test sets compared
with models which have not been trained on that particular noise (shown in red). FIDS-B performs best
on white-box adversarial examples compared with other black-box trained models (shown in blue).

7 Conclusion and Future Work

As MT methods become more effective, more people trust and rely on their translations. This makes
the remaining limitations of MT even more critical. Previous work showed that NMT performs poorly
in the presence of random noise, and that its performance can be improved through adversarial training.
We consider stronger adversaries which are attacking a specific model and may also have specific goals,
such as removing or changing words. Our white-box optimization, targeted attacks, and new evaluation
methods are a step towards understanding and fixing the vulnerabilities in NMT: we’re able to find more
effective attacks and train more robust models than previous black-box methods. Next steps include
exploring other types of targeted attacks, such as attacks that target more than one word, and other types
of constraints, such as better characterizing which character changes affect intelligibility the least.
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