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Abstract

Classifying the stance expressed in online microblogging social media is an emerging problem
in opinion mining. We propose a probabilistic approach to stance classification in tweets, which
models stance, target of stance, and sentiment of tweet, jointly. Instead of simply conjoining
the sentiment or target variables as extra variables to the feature space, we use a novel formula-
tion to incorporate three-way interactions among sentiment-stance-input variables and three-way
interactions among target-stance-input variables. The proposed specification intuitively aims to
discriminate sentiment features from target features for stance classification. In addition, regu-
larizing a single stance classifier, which handles all targets, acts as a soft weight-sharing among
them. We demonstrate that discriminative training of this model achieves the state-of-the-art re-
sults in supervised stance classification, and its generative training obtains competitive results in
the weakly supervised setting.

1 Introduction

Stance Classification (SC) is the task of inferring from text whether the author is in favor of a given target,
against it, or has a neutral position toward it. This task, which can be complex even for humans (Walker
et al., 2012a), is related to argument mining, subjectivity analysis, and sentiment classification. Generic
sentiment classification is formulated as determining whether a piece of text is positive, negative, or
neutral. However, in SC, systems must detect favorability toward a given (pre-chosen) target of interest.
In this sense, SC is more similar to target-dependent sentiment classification (Jiang et al., 2011), with a
major difference that the target of the stance might not be explicitly mentioned in text or might not be the
target of the opinion (Mohammad et al., 2016). For example, the tweet below implies a stance against
Donald Trump, through expressing support for Hillary Clinton.

Target: Donald Trump
My vote is definitely for Hillary. Can’t trust #gop candidates.

This is an interesting task to study on social networks because of the abundance of personalized and
opinionated language. Given the growing significance of the role social media is playing in our world,
studying stance classification can be beneficial among others, in identifying electoral issues and under-
standing how public stance is shaped (Mohammad et al., 2015).

SemEval 2016 Task 6 organizers (Mohammad et al., 2016) released a joint stance and sentiment an-
notated dataset. Studying the correlation between sentiment and stance and how the former can help
detect the latter is an important research question that we address in this paper. Our approach relies on
one observation for stance detection in tweets. Ignoring general words and stopwords, a lot of the time,
we can expect a rough dichotomy on the remaining n-grams of the tweets. Concretely, a stance-related
n-gram either refers to a topic related to the target or bears a sentiment. In Table 1 Christian, religion,
Feminism, and campaign are of the first type, while murder and enjoyed are of the second type. We
design the model such that the probability of a stance y given the text x, and its associated target t and
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(1) Target: legalization of abortion, Stance:Against, Sentiment:Negative
Hillary, Here’s one Christian whose religious views will never adapt to include abortion. Abortion
is murder.
(2) Target: Hillary Clinton, Stance:Favor, Sentiment:Positive
Enjoyed @jamiaw article on feminism + @hillaryclinton. We are building campaign that engages
ppl through an intersectional lens.

Table 1: Two examples from SemEval 2016 Task 6.A on two of the targets specified in the corpus.

sentiment s, is proportional to the product of two components. The first component measures the con-
sistency of x with sentiment s and stance y, while the second component measures the consistency of
x with target t and stance y. The model learns how to discriminate among the target-specific features
and sentiment-specific features, the latter of which might be generalized across different targets. This is
further improved by performing regularization on one single classifier, as opposed to a different classifier
for each target, which so far has been the standard way to do stance classification.

Our discriminative model works effectively for supervised stance classification tasks. However, man-
ual annotation requires painstaking work by researchers, which can be even more difficult for tasks such
as sentiment annotation (Mohammad, 2016). To this end, we propose a generative model, which works
properly for stance prediction especially in weakly supervised settings, in which labeled instances are
few and labels might be noisy.

Our contributions are as follows:

1. We address the modeling of interactions among target of stance, stance itself, and sentiment in text,
by an undirected graphical model.

2. We use one single classifier for stance classification across multiple targets, as opposed to previous
works, which use a separate classifier for each target. We demonstrate how our particular model
specification and shared regularization can improve stance classification across multiple targets.

3. We develop both discriminative and generative training algorithms, which achieve the state-of-the-
art results on supervised and competitive results for weakly supervised stance classification tasks,
respectively.

2 Related Work

Previous work has focused on congressional debates (Thomas et al., 2006; Yessenalina et al., 2010),
company-internal discussions (Agrawal et al., 2003), and debates in online forums (Anand et al., 2011;
Somasundaran and Wiebe, 2010). There is a growing interest in performing stance classification on other
media. For example, Faulkner (2014) detected document-level stance in student essays. Sobhani et al.
(2015) extracted arguments used in online news comments to detect stance. The data from the Emergent
Project1 was used to classify the stance of article headlines (Ferreira and Vlachos, 2016). SemEval-2016
Task 6 (Mohammad et al., 2016) involved two stance detection subtasks in tweets in supervised and
weakly supervised settings.

Somasundaran and Wiebe (2010) developed a baseline for stance classification using features based on
modal verbs and sentiments. Anand et al. (2011) augmented the n-gram features with lexicon-based and
dependency-based features. FrameNet semantic frames have also been incorporated in (Hasan and Ng,
2013; Hasan and Ng, 2014). SC has newly been posed as collective classification. For example, citation
structure (Burfoot et al., 2011) or rebuttal links (Walker et al., 2012b), are used as extra information to
model agreements or disagreements in debate posts and to infer their labels. In (Murakami and Raymond,
2010) a maximum cut method is used to aggregate stances in multiple posts to infer a user’s stance on
the target. Sridhar et al. (2015) use Probabilistic Soft Logic (PSL) to collectively classify the stance
of users and stance in posts. PSL has also been used to augment a weakly-labeled tweet collection by
incorporating Twitter’s network-based features (Ebrahimi et al., 2016). Similarly, Rajadesingan et al.

1http://towcenter.org/research/lies-damn-lies-and-viral-content/



(2014), use a retweet-based label propagation method, which starts from a set of opinionated users and
labeled tweets by the people who are in the retweet network. Since arguments and counter-arguments
occur in sequences, Hasan and Ng (2014) were able to pose stance classification in debate forums as a
sequence labeling task.

Tweets pose some challenges that preclude the use of standard off-the-shelf NLP feature extractors
(Dey and Haque, 2009). Tweets have restricted length, which sometime makes the author use unstruc-
tured or incoherent statements. This is aggravated by the highly informal language that is common
on Twitter, which includes grammatical errors. Not surprisingly, the results of SemEval 2016 Task 6
(Mohammad et al., 2016) showed the effectiveness of simple word n-grams and character n-grams, in
addition to deep neural network approaches that automatically extract features. We use n-gram features
in this work. But we will briefly discuss how our (discriminative) formulation can be incorporated into
neural nets too.

In the next sections, we present effective baselines for joint modeling of targets, sentiments, and
stances by a simple log-linear approach. We develop both generative and discriminative models and
perform experiments on SemEval 2016 Tasks 6.A and 6.B (Mohammad et al., 2016).

3 STS: Joint Sentiment-Target-Stance Modeling

3.1 Log-Linear STS Model

In this paper, x ∈ RV is a vector of input features and y ∈ Y is a discrete stance label, which we handle
by a one-hot vector ey ∈ RM . Similar vectors, es ∈ RP and et ∈ RQ, are defined for sentiment and
target variables respectively. The model is defined over tensors Λ1 ∈ RP×V×M and Λ2 ∈ RQ×V×M .
Λ1 and Λ2 govern the sentiment-stance-feature and target-stance-feature interactions respectively. We
define the following energy function,

E(y|x, s, t; Λ1,Λ2) = −
∑
k

xk(λ
1
s,k,y + λ2t,k,y)

The negative of the energy associated with the stance label y, given the text x, and its associated target t
and sentiment s, is equal to the summation of two components. The first one measures the consistency
of x with sentiment s and stance y, while the second one measures the consistency of x with target t and
stance y. This specification is a log-linear model with feature functions φ1(t, k, y) = 1(T = t,xk =
1, Y = y) and φ2(s, k, y) = 1(S = s,xk = 1, Y = y), where 1 is the indicator function.

s y t 

xi N 
Figure 1: Plate model for STS

We build pθ(y, s, t,x), a generatively trained model, and pθ(y|s, t,x), a discriminatively trained
model. For both models, the inference problem, the probability of output y conditioned on inputs, is
given by,

p(y|x, s, t) =
exp
(
xT (eTs Λ1ey + eTt Λ2ey)

)∑
y′ exp

(
xT (eTs Λ1ey′ + eTt Λ2ey′ )

) (1)

where aTΛb is a bilinear tensor product which results in a vector, h ∈ RV . We use this tensor-based
notation mainly to facilitate the description of the generative training algorithm.



3.2 Generative Training
Consider the training dataset Dtrain, containing instances of the binary feature vector x. To train a
generative model, we use minimization of the negative joint log-likelihood.

L(Dtrain) = −
|Dtrain|∑
i=1

log p(y(i), s(i), t(i),x(i))

In order to minimize the negative log-likelihood, we would compute its gradient with respect to the
model parameters. The exact gradient, for any parameter θ ∈

{
Λ1,Λ2

}
, can be written as,

∂log p(y(i), s(i), t(i),x(i))

∂θ
= −Edata

[
∂E(y(i), s(i), t(i),x(i))

∂θ

]
+ Emodel

[
∂E(y, s, t,x)

∂θ

]
(2)

While the first expectation can be computed in closed form, the second expectation is intractable due
to the partition function. However, we can approximate it by generating a sample from the underlying
distribution estimated by an MCMC algorithm such as Gibbs sampling. But instead of running the Gibbs
chain for the whole burn-in period, we can run the chain for only k steps. This approximation method is
called k-contrastive divergence (CD) (Hinton, 2002), which can be interpreted as optimizing a difference
of Kullback-Leibler divergences. The novelty of this approach is in setting the sampler’s initial state for
variables at a training sample (y(i), s(i), t(i),x(i)); this way the energy surface is modified only around
the data points. We used CD-1 in our work.

Given the conditional independence assertions and the binary features, it is straightforward to show2,

p(x|y, s, t) =
∏
k

p(xk = 1|y, s, t) =
∏
k

sigm
(
eTxk

(eTs Λ1ey + eTt Λ2ey)
)

where exk
is the one-hot representation of feature xk. We note that if sentiment and target variables

were treated as additional input variables and conditional independence was applied to them as well,
this generative specification would become identical to naive Bayes, and no approximation would be
necessary. It can also be shown that p(y|x, s, t) and other conditional distributions needed to perform
Gibbs sampling, p(s|x, y) and p(t|x, y), all follow a softmax distribution (Salakhutdinov and Hinton,
2009). See Equation 1.

The gradient with respect to the lth slice of the tensors Λ1 and Λ2 can be approximated by:

∂E(θ)

∂Λ1
[l]

= −
∑
i

(yl(i)es(i)x
T
(i) − ŷl(i)ŝ(i)x̂

T
(i)) (3)

∂E(θ)

∂Λ2
[l]

= −
∑
i

(yl(i)et(i)x
T
(i) − ŷl(i)t̂(i)x̂

T
(i)) (4)

where ŷi, x̂i, t̂i, and ŝi are samples from p(y|x, s, t), p(x|y, s, t), p(t|x, y), and p(s|x, y) after CD-1,
respectively. However, we use a version of CD (Mnih and Hinton, 2007) in which, instead of sampling
and obtaining a binary vector, we set ŷi, x̂i, t̂i, and ŝi to the vector of probabilities given by the respective
probability distributions.

3.3 Discriminative Training
To train a discriminative model, we minimize the cross-entropy error,

J(θ) = −
|Dtrain|∑

i

∑
l

1(y(i) = l) log p(l|s(i), t(i),x(i))

2For the sake of simplicity of presentation, we omit the bias units which are needed for generative training.



Overall Atheism Climate Feminism Hillary Abortion
Method Ffavor Fagainst MicFavg MacFavg Favg Favg Favg Favg Favg
CNN 61.98 72.67 67.33 58.57 63.34 52.69 51.33 64.41 61.09
RNN 59.32 76.33 67.82 56.02 61.47 41.63 62.09 57.67 57.28
SVM 62.98 74.98 68.98 58.01 65.19 42.35 57.46 58.63 66.42
MaxEnt 60.78 73.41 67.10 56.37 60.82 41.43 55.73 59.87 63.99
NB 58.05 71.11 64.58 55.51 63.69 40.46 49.58 64.77 58.64
Disc-TS 62.96 76.12 69.55 58.85 61.90 41.73 56.76 63.91 69.94
Disc-STS 64.43 77.62 71.03 61.40 65.52 41.18 57.90 74.48 67.94
Gen-STS 61.43 77.02 69.23 60.41 67.09 50.04 53.77 71.25 59.92

Table 2: Results for Task A, reporting the official competition metric, overall MicFavg , along with Favg for each individual
target, and the average of all individual Favg , MacFavg .

The gradients with respect to the lth slice of the tensor Λ1 and Λ2 can be computed exactly,

∂J(θ)

∂Λ1
[l]

= −
∑
i

es(i)x
T
(i)

(
1(y(i) = l)− p(l|s(i), t(i),x(i))

)
(5)

∂J(θ)

∂Λ2
[l]

= −
∑
i

et(i)x
T
(i)

(
1(y(i) = l)− p(l|s(i), t(i),x(i))

)
(6)

In both discriminative and generative cases, the gradients can be regarded as update rules for the
weights of the model, which are untied based on the sentiment (updates on Λ1) or the target (updates on
Λ2) in the tweet.

4 Experiments

SemEval 2016 Task 6 (Mohammad et al., 2016) defined two stance classification tasks/datasets. The first
one (Task 6.A) was a traditional supervised task, while the second one (Task 6.B) was a weakly super-
vised task wherein no tweet was stance-annotated. For both tasks, we used binary n-gram features: word
n-grams (1–3 gram) and character n-grams (2–5 gram). We used `2 regularization for our discrimina-
tive (Disc-STS) and generative (Gen-STS) models. For Task A, model hyper-parameters were estimated
by cross-validation on the training set. For Task B, we used the dataset of the supervised task as the
development set. Gen-STS was trained by stochastic gradient descent, and the learning rate was set to
0.0005. Disc-STS was trained in batch mode, and we used L-BFGS for optimization. Task B contains
noisy stance labels; because of this, we performed early stopping in training to avoid overfitting to the
wrong model. To this end, during parameter tuning on the development set, we used a larger range for
the progress threshold in our grid search.

4.1 Supervised Task

SemEval-2016 Task 6.A provided stance-annotated tweets toward five targets: “Atheism”, “Climate
Change is a Real Concern”, “Feminist Movement”, “Hillary Clinton”, and “Legalization of Abortion”.
The dataset contained 2,914 and 1,249 tweets for training and testing respectively.

4.1.1 Results
Table 2 shows the results for Task A. CNN (Wei et al., 2016) and RNN (Zarrella and Marsh, 2016)
are convolutional neural network and recurrent neural network models that were the second best and
the best system in the competition respectively. Both systems use pre-trained word embeddings before
training for the task, which improves generalization and allows them to achieve good results on the task.
The SVM classifier was the linear-kernel SVM used by task organizers, which was trained on the same
features as ours (i.e., word n-grams (1–3 gram) and character n-grams (2–5 gram)). Two other reasonable
baselines, which resemble our discriminative and generative models respectively, are maximum entropy
(MaxEnt), and naive Bayes (NB) classifiers.



Figure 2: Similarity matrix of the weight vectors for task A targets. Lighter color denotes higher similarity.

The MicFavg metric is the mean of Ffavor and Fagainst, which are the harmonic mean of Recall and
Precision for each class. The metric MicFavg can be regarded as a micro-average of F-scores across
targets. Alternatively, one could also determine the mean of the Favg scores for each of the targets, the
mean of which determines the (MacFavg) metric.

Both Disc-STS and Gen-STS gain substantial gains over their natural baselines, MaxEnt and NB. Disc-
STS improves the previous state-of-the-art results by 2.05% and 3.4% in Micro F1 and Macro F1 scores
respectively. CNN and Gen-STS perform better on the “Climate” target, which is highly imbalanced
(i.e., only 3.8% against). Unlike all the other baselines, which trained separate classifiers for each target,
our approach can benefit from generalized features across multiple targets. Figure 2 displays the cosine
similarity between the weight vectors for each of the targets. The weights used for this measure, were
taken from the slice for that target, namely Λ2

[target,:,:].
Comparing MaxEnt and Disc-TS, the biggest improvement is found on the “Abortion” target. The

performance on the targets, which are more similar to other targets in the corpus, is generally boosted
significantly, compared with those that are not. The only difference between the two models is shared
regularization across all the targets, which is causing the improvement.

Another way to investigate the inner workings of the model is to check if the model is able to discrim-
inate sentiment features from target features. To do this, we represent the words based on the weights
associated with them in the model. We concatenate the word-specific slices in the tensor parameter,
namely Λ1

[:,word,:] and Λ2
[:,word,:], and compute the cosine similarity between pairs of word vectors. Table

3 shows the most similar words to 4 query words: two target-based and two sentiment-bearing words. It
can be seen that among the top words similar to the sentiment-bearing words are some other sentiment-
bearing words (positive or negative). The words similar to “climate” are clearly related to the target of
“climate change”. The words similar to “anti-choice” are about the target of “abortion”, in addition to
another related target, “feminism”.

Given the significance of regularization and the dichotomy on the features, group lasso regularization
(Yogatama and Smith, 2014), based on sentiment and target groups, can potentially improve our results.

We also report results on two subsets of the test set; (1) a subset where opinion is expressed toward
the target; (2) a subset where opinion is expressed toward some other entity. Table 4 shows these results
along with the overall MicFavg, for the ease of reference.

4.2 Weakly Supervised Task

SemEval-2016 Task 6.B provided around 78,000 tweets associated with “Donald Trump”. The tweets
were gathered by polling Twitter for hashtags associated with Donald Trump. The protocol of the task
only allowed minimal manual labeling, i.e. “tweets or sentences that are manually labeled for stance”
were not allowed, but “manually labeling a handful of hashtags” and the use of other resources, e.g.
lexicons, sentiment analyzers, etc., was permitted. This test set contained 707 tweets.



anti-choice climate excellent crap
anti-abortion global together asks
#feminism co2 note hack
effort last despite hates
mentality june interesting slut
benefits warming hate shatter
unsafe agriculture retarded #vaw
#reprorights environmental hatred misogynistic
cunt summer warrior adultery
types mines 1st either
banned reducing scum societal

Table 3: Top similar words to 4 query words.

Opinion toward All
Method Target Other
CNN 71.07 46.66 67.33
RNN 72.49 44.48 67.82
SVM 74.54 43.20 68.98
Disc-TS 74.60 44.95 69.55
Disc-STS 76.36 46.44 71.03
Gen-STS 76.53 43.39 69.23

Table 4: Results for Task A (the official competition metric Favg) on different subsets of the test data.

4.2.1 Preprocessing
We only considered the tweets which contain no URL, are not retweets, are not shorter than 40 charac-
ters, and have at most three hashtags and three mentions. Following the protocol of the task, we start
from labeling some hashtags. Among the most frequent hashtags in the training data, we manually la-
beled a handful of hashtags that are favorable to Trump, e.g., #MakeAmericaGreatAgain, and a handful
of hashtags that are against him, e.g., #TrumpYoureFired. See Table 5 for a complete list of these hash-
tags. This weakly supervised approach gives us a dataset with noisy labels; for example, the tweet “his
#MakeAmericaGreatAgain #Tag is a bummer.” is against Trump, incorrectly labeled favorable. Tweets
that have at least one positive, or one negative hashtag/regex, and do not have both a positive and a
negative hashtag/regex, are considered as our initial favorable and against instances. The final weakly
labeled dataset consisted of a modest number of 1367 instances (544 against and 823 favorable).

We use a sentiment analyzer for tweets, VADER (Hutto and Gilbert, 2014), to classify the sentiments
of the tweets. Here, we are dealing with only one target, but we still classify the tweets based on their
topics. To do this, we use the standard topic modeling technique, LDA (Blei et al., 2003). This gives
us an approximate fine-grained view of the topics of discussion in the data (e.g., immigration, Mexico,
Obama, etc.). The number of topics (potential targets) was determined by the Elbow method (Thorndike,
1953), which was found to be 4. Finally, the topic distributions for the tweets were binarized (i.e., one
for the dimension with the maximum value and zero for others).

4.2.2 Results
In Table 6 we compare our results with the best system in Task 6.B, which is the same CNN (Wei et
al., 2016) system in Task 6.A, and state-of-the-art model, BiCond (Augenstein et al., 2016), which uses
a bidirectional conditional LSTM encoding model. To handle the “neither” class we do the following:
if the absolute value of the difference between the probability values of the two classes is less than a
random number (ε|ε ∈ (0, 0.1]), then we classify it as “neither”.

Figure 3 shows the impact of the amount of the training data on the performance of our models. Due
to the limited nature of our data collection scheme, which tends to exploit only parts of the space of the



Favor. #makeamericagreatagain, #illegalimmigration, #boycottmacys, #trumpisright, #trumpsright, #benghazi, #liberal-
logic, #illegalimmigrant, #patriot, #standwithtrump, #leftists, #trumpfortriumph, #gotrump, #nobama
Against. #gopclowncar, #racist, #hateisnotpresidential, #mexicanpride, #narcissist, #trumpsucks, #boycotttrump, #hishair,
#proudlatina, #proudmexican, #trumpyourefired, #donaldtrumpsucks, #dumptrump, #partyofhate

Table 5: Stance-indicative hashtags used to collect favorable and opposing tweets.

Method Ffavor Fagainst Favg
CNN 57.39 55.17 56.28
BiCond 61.38 54.68 58.03
Gen-STS 57.08 56.38 56.73
Disc-STS 39.59 55.43 47.51

Table 6: Evaluation on SemEval-2016 Task 6.B.

data, it is reasonable to expect that after a certain amount of data is seen, the performance of the system
improves marginally as more training data is added. The discriminative model converges more quickly
and performs poorly. Its performance improves marginally after seeing only 10% of the training data
(i.e., 137 instances) and deteriorates soon. On the other hand, the generative model converges later with
a much better F1 score. We also added 5% misclassification noise to the stance labels in the task A
dataset but did not observe a similar pattern; instead, the discriminative classifier performed consistently
better than the generative one and was less sensitive to the noise.

What we see in Figure 3 can be ascribed to the fragmentary view of the data created because of the
hashtag-based process of bootstrapping a training set. In other words, the small number of tweets, which
we harvest, covers only part of the test-data distribution. This is worsened by the lack of neutral tweets
in the bootstrapped training set. Previous works have shown that variants of generative models alone,
or their combination with discriminative models (Larochelle and Bengio, 2008; Nigam et al., 2000), are
useful for classification especially when the amount of training data is limited (NG and Jordan, 2002). A
detailed analysis of this phenomenon will be undertaken in the future.

Figure 3: Comparison of GenSTS and DiscSTS on Task b. F1 is plotted against the amount of training data, i.e., percentage
of the noisy-labeled data actually used for training. DiscSTS performs better initially and converges more quickly. GenSTS
performs significantly better as more data is added.

5 Conclusion and Future Work

In this paper, we presented a log-linear approach for stance classification on tweets. The model employed
sentiment and target variables in a novel way, wherein three-way interactions among input-sentiment-



stance variables and three-way interactions among input-target-stance variables were measured. Our
findings show that the best way to use sentiments to improve stance classification is through these multi-
way interactions. In addition, we demonstrated that by simply sharing regularization parameters among
multiple targets, we are able to generalize features across multiple targets. While discriminative models
are known to work better in classification tasks, generative models can also be useful when the data
sample is small. Our results on a weakly labeled stance dataset proved that our generative model can in
fact be much more effective than its discriminative counterpart.

For future work, our model can be easily incorporated in deep discriminative neural nets by replacing
the standard softmax layer, effectively creating a multi-dimensional softmax layer. This has applications
in tasks, wherein metadata exists; for example, a sentiment classification task for product reviews, in
which metadata about the user and the products are also available. Moreover, the generative learning
can be improved by replacing contrastive divergence with a more recent sampling method, SampleRank
(Rohanimanesh et al., 2011), and using F1 score as the cost function.
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