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Abstract
Responding to user data deletion requests, remov-
ing noisy examples, or deleting corrupted training
data are just a few reasons for wanting to delete
instances from a machine learning (ML) model.
However, efficiently removing this data from an
ML model is generally difficult. In this paper, we
introduce data removal-enabled (DaRE) forests, a
variant of random forests that enables the removal
of training data with minimal retraining. Model
updates for each DaRE tree in the forest are exact,
meaning that removing instances from a DaRE
model yields exactly the same model as retraining
from scratch on updated data.

DaRE trees use randomness and caching to make
data deletion efficient. The upper levels of
DaRE trees use random nodes, which choose
split attributes and thresholds uniformly at ran-
dom. These nodes rarely require updates because
they only minimally depend on the data. At the
lower levels, splits are chosen to greedily opti-
mize a split criterion such as Gini index or mutual
information. DaRE trees cache statistics at each
node and training data at each leaf, so that only the
necessary subtrees are updated as data is removed.
For numerical attributes, greedy nodes optimize
over a random subset of thresholds, so that they
can maintain statistics while approximating the
optimal threshold. By adjusting the number of
thresholds considered for greedy nodes, and the
number of random nodes, DaRE trees can trade
off between more accurate predictions and more
efficient updates.

In experiments on 13 real-world datasets and one
synthetic dataset, we find DaRE forests delete
data orders of magnitude faster than retraining
from scratch while sacrificing little to no predic-
tive power.
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1. Introduction
Recent legislation (EU, 2016; California, 2018; Canada,
2018) requiring companies to remove private user data upon
request has prompted new discussions on data privacy and
ownership (Shintre et al., 2019), and fulfilling this “right
to be forgotten” (Kwak et al., 2017; Garg et al., 2020) may
require updating any models trained on this data (Villaronga
et al., 2018). However, retraining a model from scratch on a
revised dataset becomes prohibitively expensive as dataset
sizes and model complexities increase (Shoeybi et al., 2019);
the result is wasted time and computational resources, exac-
erbated as the frequency of data removal requests increases.

Decision trees and random forests (Breiman et al., 1984;
Friedman, 2001) are popular and widely used machine learn-
ing models (Lundberg et al., 2018), mainly due to their
predictive prowess on many classification and regression
tasks (Kocev et al., 2013; Genuer et al., 2017; Wager &
Athey, 2018; Linero & Yang, 2018; Biau et al., 2019). Cur-
rent work on deleting data from machine learning mod-
els has focused mainly on recommender systems (Cao &
Yang, 2015; Schelter, 2020), K-means (Ginart et al., 2019),
SVMs (Cauwenberghs & Poggio, 2001), logistic regres-
sion (Guo et al., 2020; Schelter, 2020), and deep neural
networks (Baumhauer et al., 2020; Golatkar et al., 2020b;
Wu et al., 2020); however, there is very limited work ad-
dressing the problem of efficient data deletion for tree-based
models (Schelter et al., 2021). Thus, we outline our contri-
butions as follows:

1. We introduce DaRE (Data Removal-Enabled) Forests
(a.k.a DaRE RF), a variant of random forests that sup-
ports the efficient removal of training instances. DaRE
RF works with discrete tree structures, in contrast to
many related works on efficient data deletion that as-
sume continuous parameters. The key components
of DaRE RF are to retrain subtrees only as needed,
consider only a subset of valid thresholds per attribute
at each decision node, and to strategically place com-
pletely random nodes near the top of each tree to avoid
costly retraining.

2. We provide algorithms for training and subsequently
removing data from a DaRE forest.

3. We evaluate DaRE RF’s ability to efficiently perform
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sequences of deletions on 13 real-world binary clas-
sification datasets and one synthetic dataset, and find
that DaRE RF can typically delete data 2-4 orders of
magnitude faster than retraining from scratch while
sacrificing less than 1% in terms of predictive perfor-
mance.

2. Problem Formulation
We assume an instance space X ⊆ Rp and possible labels
Y = {+1,−1}1. Let D = {(xi, yi)}ni=1 be a training
dataset in which each instance xi ∈ X is a p-dimensional
vector (xi,j)

p
j=1 and yi ∈ Y . We refer to P = {j}pj=1 as

the set of possible attributes.

2.1. Unlearning

Our goal is to “unlearn” specific training examples by up-
dating a trained model to completely remove their influ-
ence. We base our definition on prior work by Ginart et al.
(2019, Def. 3.1). We define a (possibly randomized) learn-
ing algorithm, A : D → H, as a function from a dataset
D to a model in hypothesis space H. A removal method,
R : A(D)×D× (X ×Y)→ H, is a function from a model
A(D), dataset D, and an instance to remove from the train-
ing data (x, y) to a model inH. For exact unlearning (a.k.a.
perfect unlearning), the removal method must be equiva-
lent to applying the training algorithm to the dataset with
instance (x, y) removed. In the case of randomized train-
ing algorithms, we define equivalence as having identical
probabilities for each model inH:

P (A(D \ (x, y))) = P (R(A(D),D, (x, y))) (1)

See §5 for more related work on unlearning.

The simplest approach to exact unlearning is to ignore the
existing model and simply rerun A on the updated dataset,
D \ (x, y). We refer to this as the naive retraining approach.
Naive retraining is agnostic to virtually all machine learn-
ing models, easy to understand, and easy to implement.
However, this approach becomes prohibitively expensive as
the dataset size, model complexity, and number of deletion
requests increase.

2.2. Random Forests

A decision tree is a tree-structured model in which each
leaf is associated with a binary-valued prediction and each
internal node is a decision node associated with an attribute
a ∈ P and threshold value v ∈ R. The outgoing branches
of the decision node partition the data based on the chosen
attribute and threshold. Given x ∈ X , the prediction of a

1Our methods can easily be generalized to the multi-class set-
ting, |Y| = C, by storing statistics for C − 1 classes instead of
just one.

decision tree can be found by traversing the tree, starting
at the root and following the branches consistent with the
attribute values in x. Traversal ends at one of the leaf nodes,
where the prediction is equal to the value of the leaf node.

Decision trees are typically learned in a recursive manner,
beginning by picking an attribute a and threshold v at the
root that optimizes an empirical split criterion such as the
Gini index (Breiman et al., 1984):

GD,Y(a, v) =
∑

b∈{`,r}

|Db|
|D|

(
1−

∑
y∈Y

(
|Db,y|
|Db|

)2
)

(2)

or entropy (Quinlan, 2014):

HD,Y(a, v) =
∑

b∈{`,r}

|Db|
|D|

(∑
y∈Y
−|Db,y|
|Db|

log2
|Db,y|
|Db|

)
(3)

in which D ⊆ D is the input dataset to a decision node,
D` = {(xi, yi) ∈ D | xi,a ≤ v}, Dr = D \ D`, D`,y =
{(xi, yi) ∈ D` | yi = y}, and Dr,y = {(xi, yi) ∈ Dr |
yi = y}. Once a and v have been chosen for the root node,
the data is partitioned into mutually exclusive subsets based
on the value of v, and a child node is learned for each data
subset. The process terminates when the entire subset has
the same label or the tree reaches a specified maximum
depth dmax.

A random forest (RF) is an ensemble of decision trees which
predicts the mean value of its component trees. Two sources
of randomness are used to increase diversity among the trees.
First, each tree in the ensemble is trained from a bootstrap
sample of the original training data, with some instances
excluded and some included multiple times. Second, each
decision node is restricted to a random subset of attributes,
and the split criterion is optimized over this subset rather
than over all attributes.

We base our methods on a minor variation of a standard
RF, one that does not use bootstrapping. Bootstrapping
complicates the removal of training instances, since one
instance may appear multiple times in the training data for
one tree. There is also empirical evidence that bootstrapping
does not improve predictive performance (Zaman & Hirose,
2009; Denil et al., 2014; Mentch & Hooker, 2016), which
was consistent with our own experiments (Appendix: §B.2,
Table 5). Since predictive performance was already similar,
we saw no need to add the extra bookkeeping to handle this
complexity.

3. DaRE Forests
We now describe DaRE (Data Removal-Enabled)
forests (a.k.a. DaRE RF), an RF variant that enables the
efficient removal of training instances.
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Theorem 3.1. Data deletion for DaRE forests is exact (see
Eq. 1), meaning that removing instances from a DaRE model
yields exactly the same model as retraining from scratch on
updated data.

This is also equivalent to certified removal (Guo et al., 2020)
with ε = 0. Proofs to all theorems are in §A of the Ap-
pendix.

A DaRE forest is a tree ensemble in which each tree is
trained independently on a copy of the training data, con-
sidering a random subset of p̃ attributes at each split to
encourage diversity among the trees. In our experiments we
use p̃ = b√pc. Since each tree is trained independently, we
describe our methods in terms of training and updating a
single tree; the extension to the ensemble is trivial.

DaRE forests leverage several techniques to make dele-
tions efficient: (1) only retrain portions of the model where
the structure must change to match the updated database;
(2) consider at most k randomly-selected thresholds per at-
tribute; (3) introduce random nodes at the top of each tree
that minimally depend on the data and thus rarely need to
be retrained. We present abridged versions for training and
updating a DaRE tree in Algorithms 1 and 2, respectively,
with full explanations below. Detailed pseudocode for both
operations is in the Appendix, §A.8.

3.1. Retraining Minimal Subtrees

We avoid unnecessary retraining by storing statistics at each
node in the tree. For decision nodes, we store and update
counts for the number of instances |D| and positives in-
stances |D·,1|, as well as |D`| and |D`,1| for a set of k
thresholds per attribute. This information is sufficient to
recompute the split criterion of each threshold without iter-
ating through the data. For leaf nodes, we store and update
|D| and |D·,1|, along with a list of training instances that
end at that leaf. These statistics are initialized when training
the tree for the first time (Alg. 1). We find this additional
overhead has a negligible effect on training time.

When deleting a training instance (x, y) ∈ D, these statis-
tics are updated and used to check if a particular subtree
needs retraining. Specifically, decision nodes affected by
the deletion of (x, y) update the statistics and recompute the
split criterion for each attribute-threshold pair. If a different
threshold obtains an improved split criterion over the cur-
rently chosen threshold, then we retrain the subtree rooted
at this node. The training data for this subtree can be found
by concatenating the instance lists from all leaf-node de-
scendants. If no retraining occurs at any decision node and
a leaf node is reached instead, its label counts and instance
list are updated and the deletion operation is complete. See
Alg. 2 for pseudocode.

Algorithm 1 Building a DaRE tree / subtree.
1: Input: data D, depth d
2: if stopping criteria reached then
3: node← LEAFNODE()
4: save instance counts(node, D) B |D|, |D·,1|
5: save leaf-instance pointers(node, D)
6: compute leaf value(node)
7: else
8: if d < drmax then
9: node← RANDOMNODE()

10: save instance counts(node, D) B |D|, |D·,1|
11: a← randomly sample attribute(D)
12: v ← randomly sample threshold ∈ [amin, amax)
13: save threshold statistics(node, D, a, v)
14: else
15: node← GREEDYNODE()
16: save instance counts(node, D) B |D|, |D·,1|
17: A← randomly sample p̃ attributes(D)
18: for a ∈ A do
19: C ← get valid thresholds(D, a)
20: V ← randomly sample k valid thresholds(C)
21: for v ∈ V do
22: save threshold statistics(node, D, a, v)
23: scores← compute split scores(node)
24: select optimal split(node, scores)
25: D.`,D.r ← split on selected threshold(node, D)
26: node.` = TRAIN(D`, d + 1) B Alg. 1
27: node.r← TRAIN(Dr , d + 1) B Alg. 1
28: Return node

3.2. Sampling Valid Thresholds

The optimal threshold for a continuous attribute will always
lie between two training instances with adjacent feature val-
ues containing opposite labels; if the two training instances
have the same label, the split criterion improves by increas-
ing or decreasing v. We refer to these as valid thresholds,
and any other threshold as invalid. More precisely, a thresh-
old v between two adjacent values v1 and v2 for a given
attribute a is valid if and only if there exist instances (x1, y1)
and (x2, y2) such that x1,a = v1, x2,a = v2, and y1 6= y2.

Only considering valid thresholds substantially reduces the
statistics we need to store and compute at each node. We
gain further efficiency by randomly sampling k valid thresh-
olds and only considering these thresholds when deciding
which attribute-threshold pair to split on. We treat k as a
hyperparameter and tune its value when building a DaRE
model. One might suspect that only considering a subset
of thresholds for each attribute may lead to decreased pre-
dictive performance; however, our experiments show that
relatively modest values of k (e.g. 5 ≤ k ≤ 25) are suffi-
cient to providing accurate predictions, and in some cases
lead to improved performance (Appendix: §B.2, Table 5).

When deleting an instance at a given node, we must deter-
mine if any threshold has become invalid. To accomplish
this efficiently, at each node we also save and update the
number of instances in which attribute a equals v1, the
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Algorithm 2 Deleting a training instance from a DaRE tree.
Require: Start at the root node.
1: Input: node, depth d, instance to remove (x, y).
2: update instance counts(node, (x, y)) B |D| and |D·,1|
3: if node is a LEAFNODE then
4: remove (x, y) from leaf-instance pointers(node, (x, y))
5: recompute leaf value(node)
6: remove (x, y) from database and return
7: else
8: update decision node statistics(node, (x, y))
9: if node is a RANDOMNODE then

10: if node.selected threshold is invalid then
11: D ← get data from leaf instances(node) \ (x, y)
12: if node.selected attribute (a) is not constant then
13: v ← resample threshold ∈ [amin, amax)
14: D.`,D.r ← split on new threshold(node, D, a, v)
15: node.`, r← TRAIN(D.`, d+1), TRAIN(D.r, d+1)
16: else
17: node← TRAIN(D, d) B Alg. 1
18: remove (x, y) from database and return
19: else
20: if ∃ invalid attributes or thresholds then
21: D ← get data from leaf instances(node) \ (x, y)
22: resample invalid attributes and thesholds(node, D)
23: scores← recompute split scores(node)
24: a, v← select optimal split(node, scores)
25: if optimal split has changed then
26: D.`,D.r ← split on new threshold(node, D, a, v)
27: node.`, r← TRAIN(D.`, d + 1), TRAIN(D.r, d + 1)
28: remove (x, y) from database and return
29: if x·,a ≤ v then
30: DELETE(node.`, d + 1, (x, y)) B Alg. 2
31: else
32: DELETE(node.r, d + 1, (x, y)) B Alg. 2

number in which a equals v2, and the number of positive
instances matching each of those criteria. When an attribute
threshold becomes invalid, we sort and iterate through the
node data D, resampling the invalid threshold to obtain a
new valid threshold.

3.3. Random Splits

The third technique for efficient model updating is to choose
the attribute and threshold for some of the decision nodes
at random, independent of the split criterion. Specifically,
given the data at a particular decision node D ⊆ D, we sam-
ple an attribute a ∈ P uniformly at random, and then sample
a threshold v in the range [amin, amax), the min. and max.
values for a in D. We henceforth refer to these decision
nodes as “random” nodes, in contrast to the “greedy” deci-
sion nodes that optimize the split criterion. Random nodes
store and update |D`| and |Dr|, statistics based on the sam-
pled threshold, and retrain only if |D`| = 0 or |Dr| = 0 (i.e.
v is no longer in the range [amin, amax)); however, since
random nodes minimally depend on the statistics of the data,
they rarely need to be retrained. Random nodes are placed
in the upper layers of the tree and greedy nodes are used for

all other layers (excluding leaf nodes). We introduce drmax

as another hyperparameter indicating how many layers from
the top the tree should use for random nodes (e.g. the top
two layers of the tree are all random nodes if drmax= 2).

Intuitively, nodes near the top of the tree contain more in-
stances than nodes near the bottom, making them more
expensive to retrain if necessary. Thus, we can significantly
increase deletion efficiency by replacing those nodes with
random ones. We can also maintain comparable predic-
tive performance to a model with no random nodes by us-
ing greedy nodes in all subsequent layers, resulting in a
greedy model built on top of a random projection of the
input space (Haupt & Nowak, 2006).

In our experiments, we compare DaRE RF with random
splits to those without, to evaluate the benefits of adding
these random nodes. We refer to DaRE models with random
nodes as random DaRE (R-DaRE) and those without as
greedy DaRE (G-DaRE). G-DaRE RF can also be viewed
as a special case of R-DaRE RF in which drmax= 0.

3.4. Complexity Analysis

The time for training a DaRE forest is identical to that of a
standard RF:

Theorem 3.2. Given n = |D|, T , dmax, and p̃, the time
complexity to train a DaRE forest is O(T p̃ n dmax).

The overhead of storing statistics and instance pointers is
negligible compared to the cost of iterating through the
entire dataset to score all attributes at each node. The key
difference is in the deletion time, which can be much better
depending on how much of each tree needs to be retrained:

Theorem 3.3. Given dmax, p̃, and k, the time complexity
to delete a single instance (x, y) ∈ D from a DaRE tree
is O(p̃ k dmax), if the tree structure is unchanged and the
attribute thresholds remain valid. If a node with |D| in-
stances has invalid attribute thresholds, then the additional
time to choose new thresholds is O(|D| log |D|). If a node
with |D| instances at level d needs to be retrained, then the
additional retraining time is O(p̃ |D| (dmax − d))).

When the structure is unchanged, this is much more efficient
than naive retraining, especially if the number of thresholds
considered (k) is much smaller than n. In the worst case,
if the split changes at the root of every tree, then deletion
in a DaRE forest is no better than naive retraining. In prac-
tice, this is very unlikely, since different trees in the forest
consider different sets of p̃ attributes at the root, and the dif-
ference between the best and second-best attribute-threshold
pairs is usually bigger than a single instance.

Choosing new thresholds also requires iterating through the
training instances at a node. Thresholds only become invalid
when an instance adjacent to the threshold is removed, so
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this is an infrequent event when k is much smaller than n. To
analyze this empirically, we evaluate our methods with both
random and adversarially chosen deletions, approximating
the average- and worst-case, respectively.

The main storage costs for a DaRE forest come from storing
sets of attribute-threshold statistics at each greedy node, and
the instance lists for the leaf nodes.
Theorem 3.4. Given n = |D|, dmax, k, T , and p̃, the space
complexity of a DaRE forest is O(k p̃ 2dmax T + nT ).

In our experiments, we analyze the space overhead of a
DARE forest by measuring its memory consumption as
compared to a standard RF, quantifying the time/space trade-
off introduced by DARE RF to enable efficient data deletion.

4. Experimental Evaluation
Research Questions Can we use G-DaRE RF to effi-
ciently delete a significant number of instances as compared
to naive retraining (RQ1)? Can we use R-DaRE RF to
further increase deletion efficiency while maintaining com-
parable predictive performance (RQ2)?

Datasets We conduct our experiments on 13 publicly-
available datasets that represent problems well-suited for
tree-based models, and one synthetic dataset we call Syn-
thetic. For each dataset, we generate one-hot encodings
for any categorical variable and leave all numeric and bi-
nary variables as is. For any dataset without a designated
train and test split, we randomly sample 80% of the data
for training and use the rest for testing. A summary of the
datasets is in Table 1, and additional dataset details are in
the Appendix: §B.1.

Hyperparameter Tuning Due to the range of label imbal-
ances in our datasets (Table 1 and Appendix: §B.1, Table 4)
we measure the predictive peformance of our models using
average precision (AP) (Zhu, 2004) for datasets with a posi-
tive label percentage < 1%, AUC (Hanley & McNeil, 1982)
for datasets between [1%, 20%], and accuracy (acc.) for the
remaining datasets. Using these metrics and Gini index as
the split criterion, we tune the following hyperparameters:
the maximum depth of each tree dmax, the number of trees
in the forest T , and the number of thresholds considered per
attribute for greedy nodes k. Our protocol for tuning drmax

is as follows: first, we tune a greedy model (i.e. by keeping
drmax = 0 fixed) using 5-fold cross-validation. Once the
optimal values for dmax, T , and k are found, we tune drmax

by incrementing its value from zero to dmax, stopping when
the model’s cross-validation score exceeds a specified er-
ror tolerance as compared to the greedy model; for these
experiments, we tune drmax using absolute error tolerances
of 0.1%, 0.25%, 0.5%, and 1.0%. Selected hyperparameter
values are in the Appendix: §B.2, Table 6.

Table 1. Dataset Summary. n = no. instances, p = no. attributes,
Pos. % = positive label percentage, Met. = predictive performance
metric.

Dataset n p Pos. % Met.

Surgical 14,635 90 25.2% Acc.
Vaccine 26,707 185 46.4% Acc.
Adult 48,842 107 23.9% Acc.
Bank Mktg. 41,188 63 11.3% AUC
Flight Delays 100,000 648 19.0% AUC
Diabetes 101,766 253 46.1% Acc.
No Show 110,527 99 20.2% AUC
Olympics 206,165 1,004 14.6% AUC
Census 299,285 408 6.2% AUC
Credit Card 284,807 29 0.2% AP
CTR 1,000,000 13 2.9% AUC
Twitter 1,000,000 15 17.0% AUC
Synthetic 1,000,000 40 50.0% Acc.
Higgs 11,000,000 28 53.0% Acc.

4.1. Methodology

We measure relative efficiency or speedup as the number of
instances a DaRE model deletes in the time it takes the naive
retraining approach to delete one instance (i.e. retrain with-
out that instance); the number of instances deleted gives us
the speedup over the the naive approach.2 We also measure
the predictive performance of R-DaRE RF prior to deletion
and compare its predictive performance to that of G-DaRE
RF. Each experiment is repeated five times.

We determine the order of deletions using two different
adversaries: Random and Worst-of-1000. The random ad-
versary selects training instances to be deleted uniformly at
random, while the worst-of-1000 adversary selects each in-
stance by first selecting 1,000 candidate instances uniformly
at random, and then choosing the instance that results in
the most retraining, as measured by the total number of
instances assigned to all retrained nodes across all trees.

4.2. Deletion Efficiency Results

Random Adversary We present the results of the dele-
tion experiments using the random adversary in Fig-
ure 1 (top). We find that G-DaRE RF is usually at least
two orders of magnitude faster than naive retraining, while
R-DaRE RF is faster than G-DaRE RF to a varying degree
depending on the dataset and error tolerance. R-DaRE RF
is also able to maintain comparable predictive performance
to G-DaRE RF, typically staying within a test error differ-
ence of 1% depending on which tolerance is used to tune
drmax (Figure 1: bottom).

2System hardware specifications are in the Appendix: §B.
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Figure 1. Deletion efficiency of DaRE RF. Top & Middle: Number of instances deleted in the time it takes the naive retraining approach to
delete one instance using the random and worst-of-1000 adversaries, respectively (error bars represent standard deviation). Bottom: The
increase in test error when using R-DaRE RF relative to the predictive performance of G-DaRE RF (error bars represent standard error).

As an example of DaRE RF’s utility, naive retraining took
1.3 hours to delete a single instance for the Higgs dataset.
R-DaRE RF (tol = 0.25% resulting in drmax= 3) deleted
over 17,000 instances in that time, an average of 0.283s per
deletion, while the average test set error increased by only
0.5%. In this case, R-DaRE RF provides a speedup of over
four orders of magnitude, providing a tractable solution for
something previously intractable.

Worst-of-1000 Adversary Against the more challenging
worst-of-1000 adversary (Figure 1 (middle)), the speedup
over naive deletion remains large, but is often an order of
magnitude smaller. While R-DaRE models also decrease
in efficiency, they maintain a significant advantage over G-
DaRE RF, showing very similar trends of increased relative
efficiency as when using the random adversary.

Summary A summary of the deletion efficiency results is
in Table 2. When instances to delete are chosen randomly,
G-DaRE RF is more than 250x faster than naively retraining
after every deletion (taking the geometric mean over the 14
datasets). By adding randomness, R-DaRE models achieve
even larger speedups, from 360x to over 1,200x, depending
on the predictive performance tolerance (0.1% to 1.0%).
The more sophisticated worst-of-1000 adversary can force
more costly retraining. In this case, G-DaRE RF is more
than 50x faster than naive retraining, and R-DaRE RF ranges
from 80x to 260x depending on the tolerance.

Table 2. Summary of the deletion efficiency results. Specifically,
the minimum, maximum, and geometric mean (G. mean) of the
speedup vs. the naive retraining method across all datasets.

Model Min. Max. G. Mean

Random Adversary
G-DaRE 6x 12,232x 257x
R-DaRE (tol=0.1%) 10x 9,735x 366x
R-DaRE (tol=0.25%) 13x 17,044x 494x
R-DaRE (tol=0.5%) 68x 22,011x 681x
R-DaRE (tol=1.0%) 145x 35,856x 1,272x

Worst-of-1000 Adversary
G-DaRE 5x 626x 52x
R-DaRE (tol=0.1%) 8x 1,106x 79x
R-DaRE (tol=0.25%) 8x 961x 102x
R-DaRE (tol=0.5%) 33x 950x 139x
R-DaRE (tol=1.0%) 47x 1,476x 263x

4.3. Effect of drmaxand k on Deletion Efficiency

Figure 2 details the effect drmax has on deletion efficiency
under each adversary for the Bank Marketing dataset3.
As expected, we see that deletion efficiency increases
as drmax increases. Predictive performance degrades as
drmax increases, but initially degrades gracefully, maintain-

3Other datasets show similar trends; see the Appendix: §B.3.
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Figure 2. Effect of increasing drmaxon deletion efficiency (left), predictive performance (middle), and the cost of retraining (right) using
the random (top) and worst-of-1000 (bottom) adversaries for the Bank Marketing dataset. The predictive performance is independent of
the adversary, as performance is measured before any deletions occur. Error bars represent standard deviation and standard error for the
left and middle plots, respectively. In short, we see that increasing drmax increases deletion efficiency but initially gradually degrades
predictive performance. Similar analysis for other datasets are in the Appendix: §B.3.
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Figure 3. Effect of increasing k on predictive performance (left)
and deletion efficiency (right) for the Surgical dataset using the
random adversary; drmax is held fixed at 0. Error bars represent
standard error and standard deviation for the left and right plots,
respectively. Analysis for other datasets is in the Appendix: §B.4.

ing a low increase in test error even as the top ten layers
of each tree are replaced with random nodes (+0.346% test
error).

Figure 2 also shows the number of instances retrained at
each depth, across all trees in the model. We immediately no-
tice the increase in retraining cost when switching from the
random (top-right plot) to the worst-of-1000 (bottom-right
plot) adversary, especially at larger depths. This matches
our intuition since nodes deeper in the tree have fewer in-
stances; each instance thus has a larger influence on the
resulting split criterion over all attributes at a given node
and increases the likelihood that a chosen attribute may
change, resulting in more subtree retraining.

Figure 3 shows the effect increasing k has on predictive per-
formance and deletion efficiency for the Surgical dataset4.
In general, we find k introduces a trade-off between pre-
dictive performance and deletion efficiency. However, our

4Other datasets show similar trends; see the Appendix: §B.4.

experiments show that modest values of k can achieve com-
petitive predictive performance while maintaining a high
degree of deletion efficiency and incurring low storage costs.

4.4. Space Overhead

This section shows the space overhead of DARE forests
by breaking the memory usage of G-DARE RF into three
constituent parts: 1) the structure of the model that is needed
for making predictions, 2) the additional statistics stored
at each decision node, and 3) the additional statistics and
training-instance pointers stored at each leaf node. Parts 2)
and 3), plus the size of the data, constitute the space needed
by G-DARE RF to enable efficient data removal.

Table 3 shows the space overhead of G-DARE RF after
training. We also show the training set size for each dataset,
and the total memory usage of an SKLearn RF model using
the same values for T and dmax as G-DARE RF.

As expected, decision-node statistics often make up the bulk
of the space overhead for G-DARE RF; two exceptions are
the Credit Card and CTR datasets, in which the size of
the training-instance pointers outweigh the relatively low
number of decision nodes (an average of 238 and 726 per
tree, respectively) for those models. The total memory
usage of the G-DARE RF model is 10-113x larger than that
of the SKLearn RF model. However, since both approaches
require the training data to enable deletions (G-DARE RF
may need to retrain subtrees; SKLearn RF needs to retrain
using the naive approach), the relative overhead of G-DARE
RF is the ratio of (data + G-DARE RF) to (data + SKLearn
RF); this results in an overhead of 6–26x, quantifying the
time/space trade-off for efficient data deletion.
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Table 3. Memory usage (in megabytes) for the training data, G-DARE RF, and an SKLearn RF trained using the same values of T and
dmax as G-DARE RF. The total memory usage for the G-DARE RF model is broken down into: 1) the structure of the model needed for
making predictions (Structure); 2) the additional statistics stored at each decision node (Decision Stats.); and 3) the additional statistics
and training-instance pointers stored at each leaf node (Leaf Stats.). The space overhead for G-DARE RF to enable efficient data deletion
is measured as a ratio of the total memory usage of (data + G-DARE RF) to (data + SKLearn RF). Results are averaged over five runs and
the standard error is shown in parentheses.

G-DARE RF

Dataset Data Structure Decision Stats. Leaf Stats. Total SKLearn RF Overhead

Surgical 4 15 (0) 388 ( 1) 14 (0) 417 ( 1) 31 (0) 12.0x
Vaccine 16 18 (0) 426 ( 1) 14 (0) 458 ( 2) 37 (0) 8.9x
Adult 14 9 (0) 227 ( 1) 16 (0) 252 ( 1) 18 (0) 8.3x
Bank Marketing 8 23 (0) 455 ( 2) 33 (0) 511 ( 2) 51 (0) 8.8x
Flight Delays 207 37 (0) 3,030 ( 4) 171 (0) 3,238 ( 5) 66 (0) 12.6x
Diabetes 83 125 (0) 4,968 ( 12) 199 (0) 5,292 ( 12) 257 (1) 15.8x
No Show 35 91 (0) 2,511 ( 5) 203 (0) 2,805 ( 5) 187 (1) 12.8x
Olympics 663 27 (0) 3,196 ( 22) 338 (0) 3,561 ( 23) 57 (0) 5.9x
Census 326 33 (0) 1,737 ( 14) 169 (0) 1,939 ( 14) 63 (0) 5.8x
Credit Card 27 5 (0) 105 ( 1) 457 (0) 567 ( 0) 7 (0) 17.5x
CTR 45 6 (0) 485 ( 2) 642 (0) 1,133 ( 0) 10 (0) 21.4x
Twitter 48 186 (1) 2,450 ( 11) 693 (0) 3,329 ( 12) 332 (0) 8.9x
Synthetic 131 128 (1) 5,661 ( 36) 357 (0) 6,146 ( 37) 114 (1) 25.6x
Higgs 1,021 935 (4) 39,416 (168) 3,787 (1) 44,138 (173) 1,325 (9) 19.3x

5. Related Work
Exact Unlearning There are a number of works that sup-
port exact unlearning of SVMs (Cauwenberghs & Pog-
gio, 2001; Tveit et al., 2003; Duan et al., 2007; Romero
et al., 2007; Karasuyama & Takeuchi, 2009; Chen et al.,
2019) in which the original goal was to accelerate leave-
one-out cross-validation (Shao, 1993). More recently, Cao
& Yang (2015) developed deletion mechanisms for several
models that fall under the umbrella of non-adaptive SQ-
learning (Kearns, 1998) in which data deletion is efficient
and exact (e.g. naive Bayes, item-item recommendation,
etc.); Schelter (2020) has also developed decremental up-
date procedures for similar classes of models. Ginart et al.
(2019) introduced a quantized variant of the k-means algo-
rithm (Lloyd, 1982) called Q-k-means that supports exact
data deletion. Bourtoule et al. (2021) and Aldaghri et al.
(2020) propose training an ensemble of deep learning mod-
els on disjoint “shards” of a dataset, saving a snapshot of
each model for every data point; the biggest drawbacks are
the large storage costs, applicability only to iterative learn-
ing algorithms, and the significant degradation of predictive
performance. Schelter et al. (2021) enable efficient data re-
moval for extremely randomized trees (ERTs) (Geurts et al.,
2006) without needing to save the training data by precom-
puting alternative subtrees for splits sensitive to deletions;
aside from only being applicable to ERTs, they assume a
very small percentage of instances can be deleted.

Approximate Unlearning In contrast to exact unlearning,
a promising definition of approximate unlearning (a.k.a sta-
tistical unlearning) guarantees ∀S ⊆ H,D, (x, y) ∈ D :
e−ε ≤ P (R(A(D),D, (x, y)) ∈ S) / P (A(D \ (x, y)) ∈
S) ≤ eε (ε-certified removal: Guo et al. (2020), Eq. 1). Go-
latkar et al. (2020c;b) propose a scrubbing mechanism for
deep neural networks that does not require any retraining;
however, the computational complexity of their approach is
currently quite high. Guo et al. (2020), Izzo et al. (2020),
and Wu et al. (2020) propose different removal mechanisms
for linear and logistic regression models that can be ap-
plied to the last fully connected layer of a deep neural net-
work. Golatkar et al. (2020a) perform unlearning on a linear
approximation of large-scale vision networks in a mixed-
privacy setting. Fu et al. (2021) propose an unlearning
procedure for models in a Bayesian setting using variational
inference.

Mitigation Although not specifically designed as unlearn-
ing techniques, the following works propose different mech-
anisms for mitigating the impact of noisy, poisoned, or
non-private training data. Baumhauer et al. (2020) pro-
pose an output filtering technique that prevents private data
from being leaked; however, their approach does not up-
date the model itself, potentially leaking information if the
model were still accessible. Wang et al. (2019) and Du et al.
(2019) fine-tune their models on corrected versions of poi-
soned or corrupted training instances to mitigate backdoor
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attacks (Gu et al., 2017) on image classifiers and anomaly
detectors, respectively. Although both approaches show
promising empirical performance, they provide no guaran-
tees about the extent to which these problematic training in-
stances are removed from the model (Sommer et al., 2020).
Tople et al. (2019) analyze privacy leakage in language
model snapshots before and after they are updated.

Differential Privacy Differential privacy (DP) (Dwork,
2006; Chaudhuri et al., 2011; Abadi et al., 2016) is a suf-
ficient condition for approximate unlearning (in the case
of a single deletion, sequential deletions may require using
group DP (Dwork et al., 2014)), but it is an unnecessary
and overly strict one since machine unlearning does not re-
quire instances to be private (Guo et al., 2020). Furthermore,
differentially-private random forest models often suffer from
poor predictive performance (Fletcher & Islam, 2015; 2019);
this is because the privacy budget (typically denoted ε or β)
must be split among all the trees in the forest, and among
the different layers in each tree. This typically results in
a meaningless privacy budget (e.g. ε > 10) (Fletcher &
Islam, 2019), a relaxed definition of DP (Rana et al., 2015),
extremely randomized trees (Geurts et al., 2006; Fletcher &
Islam, 2017), or very small forests (e.g. T = 10) (Consul &
Williamson, 2020).

6. Discussion
Since data deletions in DaRE models are exact, membership
inference attacks (Yeom et al., 2018; Carlini et al., 2018)
are guaranteed to be unsuccessful for instances deleted from
the model. DaRE models also reduce the need for deletion
verification methods (Shintre & Dhaliwal, 2019; Sommer
et al., 2020). However, one must be aware that DaRE models
(as well as any unlearning method) can leak which instances
are deleted if an adversary has access to the model before
and after the deletion (Chen et al., 2020). Although privacy
is a strong motivator for this work, there are a number of
other useful applications for DaRE forests.

Instance-Based Interpretability A popular form of in-
terpretability looks at how much each training instance con-
tributes to a given prediction (Koh & Liang, 2017; Yeh et al.,
2018; Sharchilev et al., 2018; Pruthi et al., 2020; Chen et al.,
2021). The naive approach to this task involves leave-one-
out retraining for every training instance in order to analyze
the effect each instance has on a target prediction, but this is
typically intractable for most machine learning models and
datasets. DaRE models can more efficiently compute the
same training-instance attributions as the naive approach,
making leave-one-out retraining a potentially viable option
for generating instance-attribution explanations for random
forest models.

Dataset Cleaning Aside from removing user data for pri-
vacy reasons, one may also wish to efficiently remove out-
liers (Rahmani & Li, 2019; Dong et al., 2019) or training
instances that are noisy, corrupted, or poisoned (Mozaffari-
Kermani et al., 2014; Steinhardt et al., 2017).

Continual Learning Our methods can also be used to
add data to a random forest model, allowing for continuous
updating as data is added and removed. This makes them
well-suited to continual learning settings with streaming
data (Chrysakis & Moens, 2020; Knoblauch et al., 2020).
However, the hyperparameters may need to be periodicially
retuned as the size or distribution of the data shifts from
adding and/or deleting more and more instances.

Eco-Friendly Machine Learning Finally, this line of re-
search promotes a more economically and environmentally
sustainable approach to building learning systems; if a
model can be continuously updated only as necessary and
avoid frequent retraining, significant time and computational
resources can be spared (Gupta et al., 2020).

7. Conclusion
In this work, we introduced DaRE RF, a random forest
variant that supports efficient model updates in response to
repeated deletions of training instances. We find that, on
average, DaRE models are 2-3 orders of magnitude faster
than the naive retraining approach with no loss in accuracy,
and additional efficiency can be achieved if slightly worse
predictive performance is tolerated.

For future work, there are many exciting opportunities and
applications of DaRE forests, from maintaining user privacy
to building interpretable models to cleaning data, all without
retraining from scratch. One could even investigate the
possibility of extending DaRE forests to boosted trees (Chen
& Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al.,
2018). At its best, DaRE RF was more than four orders of
magnitude faster than naive retraining, so it has the potential
to enable new applications of model updating that were
previously intractable.
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