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ABSTRACT

Methods of compression-based text classification have proven
their usefulness for various applications. However, in some
classification problems, such as spam filtering, a classifier
confronts one or many adversaries willing to induce errors in
the classifier’s judgment on certain kinds of input. In this
paper, we consider the problem of finding thrifty strategies for
character-based text modification that allow an adversary to
revert classifier’s verdict on a given family of input texts. We
propose three statistical statements of the problem that can
be used by an attacker to obtain transformation models which
are optimal in some sense. Evaluating these three techniques
on a realistic spam corpus, we find that an adversary can
transform a spam message (detectable as such by an entropy-
based text classifier) into a legitimate one by generating and
appending, in some cases, as few additional characters as
11% of the original length of the message.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION

Machine learning is now being used to detect many kinds
of malicious activity, including online auction fraud [11], fake
reviews [1,21], social network spam [4,33], email spam [7, 16,
31], comment spam [23], and malware [3,24,29]. In response,
adversaries continually modify their behavior to avoid being
detected. As a result, machine learning models that work
well on historical data may work very poorly in practice as
adversaries find and exploit their weaknesses [17,38]. For
example, spammers regularly modify their spam messages to
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make them appear less spammy to a classifier while remaining
as persuasive as possible.

In adversarial domains such as these, we would prefer to
use classifiers that are harder to evade. Previous analysis has
shown that linear classifiers with independent features are
relatively easy to defeat [20,25,26]. When the parameters
of the classifier are known, the adversary can identify the
most influential features. For classifying spam messages,
many of the features are individual words. By removing
the “spammiest” words and adding the “hammiest” words, a
spammer can disguise an email with a relatively small number
of modifications. When the parameters of the classifier are
unknown, good features to modify can be guessed using
background knowledge [26], the classifier’s training data or
similar data from the same distribution [5,36], or through
direct interaction with the classifier [25]. These attacks are
surprisingly effective against realistic spam filters. Nelson
et al. [28] demonstrate that convex-inducing classifiers with
continuous features are also vulnerable, at least in theory.

Given the vulnerability of linear classifiers to these attacks,
researchers have proposed using other classifiers instead. Jor-
gensen et al. [22] introduce a multiple instance learning
strategy designed to be more robust to “good word” attacks,
in which only “hammy” words are added. However, it is not
clear how well this idea generalizes to other problems, other
sets of features, or other evasion techniques, including remov-
ing “spammy” words. A more general alternative is to use a
classifier that exploits sequence information to produce pre-
dictions that are more accurate and harder to defeat. Bratko
et al. [7] propose compression-based classifiers in general and
prediction by partial mapping (PPM) in particular as a more
effective and robust approach to spam classification.

Compression-based classifiers represent the data as a se-
quence of overlapping features rather than as a set of inde-
pendent features. This means that the effect of adding a
word to a message could depend on where in the message it is
added — the same word could be more or less effective at the
beginning, end, or somewhere in the middle of the message.
Thus, evading a compression-based classifier is more compli-
cated than evading a linear classifier. However, there has
not yet been a systematic study of how compression-based
classifiers could be evaded.

In this paper, we formally define the problem of evading
a compression-based classifier, present three methods for
solving the problem, and evaluate them on a standard email
spam dataset. All three methods are based on a single key
assumption that an adversary has an access to a sample of
legitimate and spam messages that has the same statistical



properties as the sample that was used to train the classifier.
Our methods find a distribution of sequences that can be
appended to help disguise any instance. This is more efficient
than trying to disguise each instance separately. It is also
much less brittle than appending a single, fixed sequence,
which could be quickly learned by the classifier.

Empirically, we find that the median spam can be disguised
by increasing its length by just 11%. This suggests that, like
linear classifiers, compression-based classifiers are indeed
vulnerable to evasion techniques.

2. RELATED WORK

Research in adversarial machine learning has shown that
linear spam filters are succeptible to “good word attacks” in
which an attacker evades a spam filter by appending non-
spammy words to a spam email [26]. This attack can be
generalized into the problem of finding a minimal or near-
minimal set of changes to transform a malicious instance into
one that is labeled as innocent [25]. In follow-up work, other
researchers have developed efficient evasion attacks against
convex-inducing classifiers [28] and certain combinations of
linear classifiers [32].

Robust learning algorithms can reduce the vulnerability
of linear classifiers, so that attackers need to make larger
modifications in order to evade detection [9,10,15,35]. Other
researchers have proposed non-linear spam filters that are
specifically robust to good word attacks, such as multiple
instance learning [22] and compression-based classifiers [8].
The authors demonstrate that these methods are robust
to good word attacks, but do not fully explore what other
attacks might be possible against them.

Compression-based text classification rests on the assump-
tion that two documents are likely to be of the same kind
if they compress well together. This approach has been
widely studied and applied for categorizing different types of
text [6-8,14,18,19,23,39]. We focus on entropy-based classi-
fiers that use cross entropy as a similarity measure. However,
our work is mostly agnostic to how the classifier’s parame-
ters are estimated. For evaluation, we use the prediction by
partial matching (PPM) algorithm [12,13,27,34], which has
proven effective for a special case of text classification—spam
filtering [7,8]. While a significant amount of effort has been
applied to studying the effectiveness of compression models
on selected applications of text classification, there is still no
complete understanding of how robust such algorithms are
to different kinds of adversarial noise.

3. COMPRESSION-BASED CLASSIFIERS

3.1 Preliminaries

Let X C A" be a space of arbitrary text strings over some
finite alphabet A. On this space, we consider sources or
classes of strings that are defined by probability distributions
over the set X. In particular, from now on, whenever we
discuss a classification problem, we assume that there exists
a single input source of strings from X that come on the
input of the classifier.

The input source is described by the probability g(z) =
P(¢ = z) assigned to values € X of the discrete random
variable £ standing for the input strings. The classifier recon-
structs the probability distributions f*)(z) corresponding
to one or more classes k. Formally, we define the proba-

bility f*)(z) = P(€ = x| C™) for C™) being the event
{& belongs to class k}. In this work we concentrate on the
case of two classes of strings: legitimate Ham messages and
unsolicited Spam messages that are designated with k = H
and kK = S, respectively.

3.2 Finite-Memory Markov Model

The probability of a string € X originating from a class
K is equal to

x|

F) =] Pla | 2 5), (1)

=1

where x; is the I-th character of the string x, and !, is the
substring of = from the k-th up to the I-th character (if & > [,
z}, is empty). For the sake of brevity, P(x; | 47!, &) stands
for the probability P(& = z; | €571 = 7, C™)) of character
x; following the context a:lfl. Naturally, we can parametrize

distributions f(¥)(x) using these probabilities:

|z|

W) () = f(z. 0 = TTo™ 9

() = f(z, ) llrll il 1), ()’ (2)

where i(mﬁfl) and j(z;) denote the ordinal numbers of the

context xl_l =¢; € A" and the character x; = a; € A for

some orderings on the sets A and A*, and parameters 95;")
are the probabilities P(¢& = a; | €171 = ¢;, C*)).

From this point on, we will also assume that each class x
can be modeled as a stationary and ergodic Markov chain
which memory is bounded by certain order K > 1. Under the
assumption that limited memory K is sufficient for evaluating
probability (2), we can rewrite it for our convenience as

||
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aj€A
for n;;(x) being the number of times character a; follows
context ¢; in string = (i.e., substring ¢;a; occurs in z), where

Zn”(:ﬂ) = |z|, and Zeij =1forallc; € A, (4)

¢ caAK aj€A

aj; €A
This way, any string x and any class k are viewed as sets
of overlapping (K + 1)-grams with frequencies n;;(z) and
conditional probabilities 0;;, respectively.

Reasoning completely analogously for the probability g(z),
we obtain the same parametrized form:

gle,7) =[] (5)
c;eAK
aj€A
To avoid confusion, we use the letter 7 to denote the vector of
parameters of the input source as distinguished from vectors
of class parameters 6.

3.3 Classification Problem

The above parametrization, following from the finite-me-
mory Markov model, allows us to view the mathematical
problem of inferring a class model as the optimization prob-
lem in the space of parameters:

R(9) = E¢[r(¢,0)] — mein, (6)



for some measure function r(§,0) evaluating the “loss” or
“penalty” of classifying message £ as belonging to the class
described by the probability distribution with parameters
6. In other words, the objective of the problem (6) for each
class « is to find parameters §) giving the least losses on
average according to r(£,0). The expectation is taken
over the probability distribution g(z) of strings £ from the
input source. Generally, probability g(z) is supposed to be
unknown for all classes. For this reason, a version of the
problem (6) for empirical averaging is considered:

R(9) = Zr(mk, 0) — mein, (7

xR €T

where T' stands for a training sample of messages correspond-
ing to the class in question. Hereinafter, for consistency,
training samples of Ham and Spam classes are labeled as
T® and T®) accordingly.

When the inference problem is solved and the vectors of
parameters 0 and 0 are estimated for each class, they
can be used to make classifying decision based on the same
principle of least loss:

q(l‘,@) = T(:C, 9<H)) - r(x, G(S))’ (8)

H, if g(z,0) < a™;
w(@) = {s, if g(z,0) > o®. ©)
In case of o™ < q(z,0) < o™, additional measures are
needed to decide the class (e.g., increasing the length of the
message in question). Most commonly, both parameters are
set the same value, a®™® = a® = q. The choice of parameter
« is guided by the number of type I and type II errors.

3.4 Entropy Classification

Let us consider the measure

6.0 =

Then, as it is obvious from the above definitions, the general
criterial function (6) specializes to the cross entropy

log f(&,0). (10)

R(6) = H(9) = —E¢ {% log f(ﬁ,é)]
== gﬂg(ﬁv) log f(,0) — min. (1)

zeX

We will refer to this specialization of the problem (6) as the
classifier problem. Similarly, empiric version (7) becomes

RO =HO)=-3 ﬁ log f(z1,0) - min,  (12)
€T

where T, of course, is assumed to be a sample of strings
distributed according to g(z).
Decision rule (9) can be rewritten as

)= Lo SV @)
_JH, ifg(z,0) < a;
r(@) = {S, if q(z,0) > «a. (14)

In practice, parameter « is often set to zero.

It is well known that if the function g(z) is given and
f(z,0) > 0 for all z such that g(z) > 0, then

Fla.0) o 92 (15)
|z

is an exact solution of the problem (11). Because both f(z)
and g(z) can be parametrized identically, at least in the case
when all texts x have the same length (or the variation in
lengths can be neglected), f(x,0) can be constructed from
g(z,7) by letting & = 7. The parameters 7, in turn, can
be directly found by estimating conditional probabilities
P(z; | }”}) on some training sample 7.

This observation forms the basis of prediction by partial
matching (PPM). Aside from differences in strategies of
approximating probabilities for character-context pairs that
do not occur in a given sample, PPM works as a simple
frequency estimator, setting

91-3- ~ ]]\\f;j, for Ni]' = Z nij(a:), N, = ZN” (16)

zeT a; €A

For versions of PPM estimators and the details of their
implementation, see [12,13,27,34].

4. ADVERSARIAL ATTACKS
4.1 Problem Definition

As we have seen above, in the classifier problem (11), the
goal was to find an optimal statistical model f(x,6) for
messages of some class, given a fixed input source induced
by probabilities g(z) observed through a sample T'. More
strictly, the function g(z) was fixed (although unknown),
while the probability distribution f(z,6) was known up to
the vector of parameters 6.

It is of interest to consider the inverse problem statement
where, given fixed statistical model f(z,0) of some class, it
is required to find the source distribution g(z) which is the
most favorable for certain classification outcome. In this
setting, g(z) becomes the function in question, while f(z,0)
is fixed through known parameters 6.

One example of such inverse objective is the problem of
determining g(x) generating messages that are as close to
Ham messages as possible in terms of probability of passing
the spam filter. Another version of the problem that also
falls into this category is the following adversary problem
(or, in case of spam filtering, the spammer problem). For
a given string z from some set of base messages Z, find
probability distribution for generating strings x:, such that
after a certain combining transformation ¢ (z, z:) they satisfy
some statistical requirement, e.g., being classified as Ham on
average. This setting is especially practical for a spammer
when z by itself has low chances of passing the filter.

To state the spammer problem more formally, we will
assume that there is a generator algorithm which plays the
role of a source of strings x:(7) for a specified vector of
parameters 7. Strings z:(7) are considered to be generated
randomly and independently, and have the same distribution
in the space of strings X. These strings are then used to
obtain new messages u: = ¥(z,x:(7)) from a given base
message z according to the predetermined transformation
1. In general, the function ¢(z,x) can associate a pair
of strings with any string. One such transformation that
is simple but still keeps the problem non-trivial is string



concatenation, 1(z,x) = zz. Even though our method does
not sufficiently depend on any particular transformation, for
illustration purposes, we will be using concatenation as the
transformation .

The objective of the inverse problem has the same form:

,,Z|

but with the optimization being done for the parameters 7
of the source distribution g(z, 7), not the class distribution
f(z,0) = f(z). The decision to search in the parametrized
space of distributions g(z, 7) is justified by the necessity to
obtain a generative (rather than discriminative) model of the
desired message source.

As in the case of the classifier problem (11), it is well known
that, in the non-parametrical form, the inverse problem (17)
also has an analytical solution. Any function g(z) such that

g(z,7)log f(x) — min, am)

Zg(x) =1, where Xy .. = argmax %, (18)
TEX frax ‘

glx)=0forall z € X\ Xy,_.., (19)

minimizes the cross entropy for a given f(z). These solutions
for the non-parametric problem, however, does not solve the
spammer problem. None of the functions g(x) satisfying the
above properties is guaranteed to be represented in the space
of parametrized functions g(x,7) which makes them useless
for generating x(7). Moreover, even if this difficulty did
not exist, the diversity of the generated messages would be
extremely low, because any of such g(z) leads to generating
the same few messages from Xy, . over and over again which
makes spammer easily detectable.
Empirical analog of the criterion (17) is

Grn=3 |1| (2, 7) — min, (20)

€T

where a sample T is obtained from the distribution P(§ =
z) x log ﬁ Therefore, in order to approach the inference
problem in the form (20), it is necessary to have an auxiliary
instrumental sample which, unlike training samples for the
classes or the combined sample for the input source, cannot
be observed in practice.

4.2 Instrumental Sampling Approach

Let us introduce new parameters w;; such that

oo exp(wi)
=
T Yaencxp(wij)’

where, as before, subscripts ¢ and j correspond to some con-
text ¢; € AX and character a; € A, respectively. For any
values of w;j, the required conditions on 7;; hold automati-
cally:

(21)

0<m; <1, and » 7=1 (22)
aj; €A

(0 <75 <1, if wy; = £oo are allowed).
For the new parameters, probability (5) changes to

n;(x)
gz, 7(w)) = [ (exp< > w2 ))> . (23)

c;€EAK aj€A 7’

where n;j(x) is, as usual, the number of occurrences of a
substring c;a; in z, and

z) =Y ni(x), (24)

aj€A
= exp(wij). (25)
aj€A
Since
exp(wij)
log g(x, 7( Zn” ) log W
c,/GAK ‘
aj€A
= Zwijn” Zn” )log Z;(w), (26)
c;eAK c;eAK
aj€A ajeA

it is clear that

9g(x, T(w)) _ ni(z)
LD — g(a. i) (mste) — "5 expluns))
= g, 7(w)) m(e) (Fu(e) — 7(w)),  (27)
for
Fir(z) = ’;llk((;?)) (28)
Now, consider the problem
E¢[F ~ Y F(zk,w) — min, (29)

€T

where both the random variable &(w) and strings zj from the
instrumental sample 7" are distributed according to the prob-
abilities g(x, 7(w)). The problem (20) that has motivated us
to consider this approach is a special case for

LI

lz| 7 f(z)

Taking derivatives of (29) and keeping in mind (27), we
obtain the following necessary condition of extremum:

B [2E ) 1 b ) m(e) (ul6) - mulw)] =0, (31

F(z,w) = F(z) = (30)

for all ¢; € AX, ai, € A. In the case when function F(z,w) =
F(z) is independent of parameters, it simplifies to

Ee [F(©) m(€) (Fw(§) — me(w))] =0.  (32)

Since £ ~ g(z, T(w)), as the size of instrumental sample T
grows, frequencies T, (z) converge to the current estimations
Ti(w) that were used to generate the sample in the first
place. Therefore, attempts to iteratively optimize (29) will
turn into random walks around initial values of w;;.

Moreover, for many practical generation procedures,

Ee¢ [Tk (€)] = mun(w). (33)

In a simplified case of both F(z) and n;(x) being indepen-
dent of parameters w, which takes place when, for example,
generation procedure stops after reaching some fixed length
of z, the equation (32) simply degenerates, and the problem
becomes meaningless.

If the function F' preserves some dependence on param-
eters— either in the general form F(z,w), or in a weaker



variant F'(z(w))— the problem (32) is not strictly meaning-
less. However, for sufficiently long samples, as the differ-
ence |71, (&) — i (w)| approaches zero, the influence of the
F(z, w)-multiplier becomes effectively eliminated making the
expectation (32) almost independent of F.

For these reasons, we do not regard approaching prob-
lem (17) in form (29) as promising.

4.3 Importance Sampling Approach

Formally, we consider a vector of parameters 7 to be a
solution to the inverse problem, if

Folq(u,8)] = Flq(u,0) | u=1(z,z), x € D] — max, (34)

where D is a set of text strings, and F(-) is an ensemble
operation defined on the domain D. For example, the domain
D might be the set of all strings of some bounded length,
or some subset of that set. An empirical sample of strings
produced by the adversarial generator can also be taken as
a domain D, = {z(7)}:.

The choice of ensemble operation depends on what criterion
of success aligns best with the goals of the spammer in a
particular problem setting. In this work, we consider the
following two cases.

(a) The average logarithmic ratio of probabilities ¢(u, 0)
estimated over a sample D, is minimal:

Fp.lg(u,0)] = — Zq(u, 0) — max. (35)

zeD,

(b) Empirical frequency of passing the spam filter success-
fully estimated over a sample D, is maximal:

Fp,[q(u,0)] =

|D1 | Z 1™ (4) - max, (36)
T €D, T

where 1M (u) = 1[g(u, 0) < o].

4.3.1 Entropy-Based Criterion
Empirical criterion (35) is equivalent to the problem
R(r]2) =) q(u,0)g(x|2,7) = E¢[q(u,0)] — min, (37)
reX

where the expected value is taken over the probability dis-
tribution g(x | z,7) of text = being generated for the base
string z and parameters 7.

Let us now rearrange the sum in (37) using the well-known
technique of importance sampling:

R =3 pWEW [ gy &l
(1] 2) Ke%:é e |7 a2 )p(~> S

=Ee o [W" (€] 2,0)9(€ | 2,7)] — min, (38)

for

7" gz | 2,0)
) [z

where for each class k € {H, S}, expected value Eém) [] denotes

W (2| z,6) = (39)

conditional expectation E¢[-|& ~ ) (z)], p*) stands for
the a priori probability of the class x, and 'y(H), 'y(s) are
arbitrary splitting weights such that 'y(H) + 7(S> =1 (for
example, 7 = 4) = 1 op A0 — () 4(S) — 5(8)y

In this problem setting, all statistical information that can
be available to the adversary — that is, both samples 7'V
and T of Ham and Spam messages— is used:

R(r|2)m R(r|2) =Y W (2|2, 0) g(ax | 2,7). (40)
(zp,kk)ET

Here ki are true labelings of messages xj from the sample
T, which is the union of samples T and 7> drawn from
the distributions f™ () and ) (x), respectively.

From the necessary condition of extremum,

£l27)

0 (%) dg(
R —Ee, |W 0 =0. (41
By (7] 2) = Eg, (€129 ors 0. (41)
Since it has the form E[-] = 0, we may apply the method

of stochastic optimization [30]. Switching to the parameters
w;; that were introduced in (21), we obtain the algorithm

1 K
wgﬁ )= wE? — W) (2, 2400) 9@y | 2 7(w ™))

i@ | 2) (R (e | 2) —mg(@™)), (42)

where v; > 0 is a sequence satisfying the properties

Z’Yt = 00, Z’Yf < 0o, (43)
t=0 t=0

and (), Kire) Tun through the sample 7' in some order
defined by k(t) (potentially repeatedly).

4.3.2 Probability-Based Criterion

Objective function (36) is nothing else but an empirical
version of the criterion

RU(r) =3 1wy | zm) =E[1P(w)], (44)
zeX
where £ ~ g(z | z,7) and, as previously, g(z | z,7) is gen-
erational probability distribution for a base string z and
parameters 7. This criterion, in turn, makes the problem be
equivalent to maximizing the probability of the transformed
message ¥(z, £) passing the spam filter:

R(r) = Pr[1"(4(2,) | z,7] — max, (45)

As we have only two classes, maximization of the crite-
rion (44), is equivalent to minimization of the dual criterion

R(r) =3 1% W (z2) gl | 2,7), (46)

zeX
for 1) (u) = 1 — 1™ (4). Combining (44) and (46), we have

R(r) = ’y(H)R(H)(T) — ’y(S)R(S)(T) — max, (47)

where v 44 =1 are some splitting weights. Let us now
consider this problem in the context of both supervised and
unsupervised learning.

Supervised Learning.

Formally rearranging the criterion function (47) into two
sums and applying the importance sampling for the distribu-
tion of the pair (£, k), we see that

R(r) = (11 (g(z,2)) = 101 (4(z,2)) g w | 2,7)

reEX



=3 P W 2) Y (@) gl | 27)

re{H,S} =z€X

= E[W"(2,6) (¢ | z,7)] - max, (48)

where the variable ¢ is distributed according to f*)(z), and

Y1 @z, 2)) - 115 (9(2, 7))
fe) (@)
_ 1@z, 2) o)
[ (z) '
Assuming that a sample of messages xr € T is available

together with the true labeling of classes ki = x(zk), the
criterion R(7) can be estimated as

R(r)m R(r) =Y WU (z,a1) g(ax | 2,7). (50)

(zk,kk)ET

W (2, 2) =

(49)

For the parameters w;; from (21), we obtain the following
necessary condition of extremum:

) _ B [ (2.€) 9(€ | 22r(w)) ma(s | 2

811}1"7'
(Fu(el2) )| =0, (1)

where i () is defined as in (28), and n;(z | 2), ni;j(z | 2)
stand for the number of occurrences of the context ¢; € A®
alone and followed by the character a; € A, respectively,
in the text x. The corresponding stochastic approximation
algorithm takes the form

wit = w® 4 WO (2, 240) gl@rgey | 2,7 (D))
i@y | 2) (7o (e | 2) — 7i5(w™)). (52)

Unsupervised Learning.

In the case when true labelings ki of sampled messages
z € T are unknown, we can alternatively apply importance
sampling for the distribution

f@) =™ f W (@) +p® 1O (). (53)
Then,

R(1) = Ee[W(z,
where ¢ is distributed in accordance with f(z), and

M1 (2, 2)) = 1S (92, 2))
f(x)
1z -1
Since the criteria (54) and (48) differ only in definitions
of the weights W(z,z) which are independent of w;;, the
resulting stochastic optimization algorithm is exactly the

same as in (52) (again, up to differences between W(z, x)
and W) (z,z)).

4.4 Likelihood-Based Criterion

Let us again consider a transformation u = ¢ (z, x) of a base
message z with an arbitrary string x. Entropy per character
of the resulting string u can be estimated empirically as

Jul
1 _
Hul ) —Mlog(ngm | ui_}m))
=1

&) g€ =, 7')] — max, (54)

W(z,x) =

(55)

E ni;(u) log 7. (56)
CIEAK
aj€A

Averaged over random transformed messages u, it is equal to

H(r)=Eu[H(u|71)] = sz i (57)

c;€EAK

where

= ijli lognj, (58)

a; €A

pi is the probability of the context ¢; occurring in a random
transformed message u, and p;; is the conditional probability
of the character a; occurring in u after the context ¢;. On a
single message u, H;(7) can be estimated as

Hi(r) ~ Hiu | 1) = 3 2@

log Tij- (59)
a; €A i (u)

Assuming a sample T of messages x € X is available, we
can split T into auxiliary samples depending on the class
% € {H, S} to which u = ¢(z, ) is assigned by the classifier:

T = {ap € T |1 (W(z,21) | 0) = 1}, (60)

for 1™ (z | ) =1[g(z,0) < o], and 1) (z | ) =1[q(x, ) > a.
That is, T™ and T®™ consist of messages z) € T that make
the base message z being recognized as Ham and Spam,
respectively.

Considering these samples, we can generalize the estimate
H(u | 7) to the estimates over samples 7™ and T):

|T(n>| > Dopl

szT("‘) c;EAK

R (r|z) = (z,21) | 7). (61)

Then, we can state our goal in a new way: Find parameters
7 such that the entropy estimate R™ (7 | z) becomes low,
while the estimate R (7 | z) remains high. One way to
achieve both of these goals is to formalize them as a problem
of minimizing the difference of the above objective functions:

R(r) = R (7 | 2) = R®¥(7 | z) - min, (62)

subject to usual normalization requirements on .
Substituting the entropy estimation (59) definition into
the criterion (62), we have:

R(r|2) = sz(lT(H)‘ ZH (u] )

c,€AK upeU (H)

T<S)\ ZH u|7’>

u €UB)

== " pi > W = v log i, (63)

c,EAK a; €A

for
U™ = {y(z,zx) |z € T}, (64)
w _ 1 nij (uk)
Vil T ) > ni(ue) (65)
ukEU(")

Since parameters 7;; occur only in summands for the context

ci, optimization of (63) naturally falls into |A|"™ smaller



problems:
Ri(r|2) = RV (r | 2) = RE(r | 2) > min,  (66)
where {7} stands for 7i1, T2, ..., 74|, and
R (7| 2) Z V) log 73;. (67)
aj €A

Unlike optimization problems (37) and (44) induced by
the two approaches presented in Section 4.3, it is possible to
solve problem (66) analytically:

THEOREM 1. The criterion function

H S
Ri(r]2)==> (" — v log i, (68)
aj €A
subject to constraints
7i; >0 and Y mij =1, (69)
aj €A

reaches its minimum value at

Tij = H; ; (70)

where
[hij = max {O, y(H) ng.s) , (71)
pe =y fhij- (72)

aj €A
Proof of Theorem 1 is provided in Appendix.
4.5 Multiple Base Messages

Throughout this section, we have considered the method
for a single arbitrary base message z that is chosen before-
hand. However, with minor modifications, the presented
reasoning holds for the same criteria, but averaged over mul-
tiple base messages z; € Z. Indeed, for both approaches
from Section 4.3 resulting in stochastic optimization, the
only change caused by averaging over Z is that the variable
z, like x, also runs over a sample on iterations:

w§;+1) (t) + 7 W(Hk(”)(zl(t% ka) (ﬂﬁk(t) |Zz(t)77'(w(t)))

-m(wk(t) | 210) (Fag (zney | 20ey) — 75 (w ™). (73)

The same is true for the likelihood-based approach dis-
cussed in Section 4.4. If criterion (62) is averaged over a set
of base messages Z, the order of summation can be seamlessly
changed so that the new outer sum over z; € Z, together
with the sum over uy € U, is taken before the sum over
ci € A¥ and a; € A. Consequently, the resulting objective
function takes the same form (63) but for

(®) _ n” Y (21, 2k))
. 4
o DY ey S

21 €Z up €T ()

5. EVALUATION
5.1 Methodology

In order to validate the method proposed in this work,
first we implemented the entropy classifier for the problem
of spam filtering. Following the definition of the problem
given in Section 3.4, our implementation uses PPM to learn

the models for each of the two classes, and then makes
classifying decisions depending on for which class entropy
per character is the minimal. We also implemented all three
of the algorithms proposed in Sections 4.3.1, 4.3.2, and 4.4.

Throughout all evaluations presented in this section, in
the spirit of the works [7,8,18], we worked with character-
based PPM models. Although it is possible to use a word-
based alphabet instead, switching to it vastly increases the
alphabet size (and, consequently, the number of parameters),
ignores differences in punctuation and spacing, and makes the
algorithm sensitive to tokenization. Furthermore, it does not
make the classifier stronger: In our experiments, word-based
PPM spam filters have comparable or worse accuracy than
character-based ones (for the latter having greater context
sizes than the former, of course).

Our numerical experiments were organized as follows. For
each evaluation run, first, a combined sample T of both
legitimate (7)) and spam (7'®)) messages was drawn out of
the SpamAssassin public corpus [2]. Each message in 2, € T
was accompanied with the true class labeling ki, € {H, S}.

The sample T was additionally temporarily split at random
in proportion seven to three into the training and testing
samples, correspondingly. The former was used to train the
classifier, the latter was used to ensure that performance of
the classifier is within the expected boundaries (as compared,
for example, to [7]). All of the spam messages in T' that were
recognized as such according to the obtained class parameters
6™ and 0<S), were remembered and declared to be the set
of base messages Z.

Then, our algorithms (42), (52), and (70) were run on
the combined sample T in order to obtain transformation
parameters T<E>, T(P), and 7. The first two algorithms
based on the stochastic optimization were repeatedly run over
all pairs (z;,xx) € Z x T, where the index k was incremented
first. To control the convergence, after each pass over T
(i.e., every |T'| iterations), the value of the criterion function
corresponding to the current algorithm was estimated using
a ten percent subsample of Z x T. This estimation together
with the total number of iterations performed by the moment
were used to make a stopping decision.

Once in a several passes over T (between |T'| and 10 |T|
iterations, depending on the size of the problem), the current
parameters 7O = T(w(t>) were supplied to the Markov chain
generator. For each base message z € Z, the generator
produced a continuation stream of characters distributed
according to the distributions g(z, 7'<t)). The generation was
stopped when the string Z of characters produced so far was
enough to get the transformed message u = ¥(z, %) = 2T past
the classifier’s spam filter. If the length of Z exceeded 20 |z|,
the generator was forcefully stopped. This way, for each z,
a thousand of continuations T were generated to estimate
a secondary evaluation measure— the average length of ¥
required to make z legitimate to the classifier.

The third algorithm (70) required less work since it pro-
vides the analytical solution as long as the values p;; are
calculated. To do so, a single pass of averaging n; (v (21, xk))
over the samples Z x T™ and Z x T®) was done. After
that, the same generation procedure described above was
run, so there was an auxiliary measure for comparing this
algorithm with the other two and the baseline strategy.

The role of the baseline strategy in our experiments was
played by the same generation procedure, but executed for
the vector of parameters 7(") = ") that were estimated
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Figure 1: Histograms of the length ratio |i)(zi,z)|/|z1| averaged over appendices z; generated for the order
K = 3 on 1% datasets using (a) the parameters 7'® optimized for the entropy-based criterion (38), (b) the
parameters 7F) optimized for the probability-based criterion (47), (c) the optimal parameters 7 (70) for the
likelihood-based criterion (63), and (d) the baseline parameters 7™ estimated from 6™,

Table 1: Accuracy of the classifier on the full dataset
Classified as

True class Ham Spam
Ham 68.0% (1645) 0.5% (13)
Spam 1.5% (36) 30.0% (725)

during the training of the classifier on the sample of legitimate
messages T . That same vector 8 also served as an initial
estimate for the stochastic optimization.

5.2 Results

Due to limited computational resources, during all evalua-
tion runs, Markov models’ memory was set to three characters
for both the classifier and the adversary. In practice, entropy-
based spam filters demonstrate the best performance for the
Markov models of orders between six and eight characters [7].
However, even for K = 3 our implementation of the classifier
based on the algorithm of prediction by partial matching has
error rate of approximately 2% on the SpamAssassin dataset.
Table 1 shows statistics for one run of the classifier, when all
6046 bodies of email messages were randomly split into 3627
training and 2419 testing messages.

For K = 3, the space of parameters 7, representing con-
ditional probabilities of one-byte characters given a context
of at most K another one-byte characters, is bounded by

Table 2: Summary statistics for the performance of
different generation parameters on 1% datasets

Index Optimization based on Ham
Entropy Prob. Likelih. baseline

Averaged length ratio
Minimum 1.21 1.15 1.16 1.32
5% quantile 1.29 1.26 1.26 1.52
Median 1.58 1.49 1.52 2.06
Mean 1.65 1.59 1.57 2.13
95% quantile 2.26 2.35 2.13 3.27
Maximum 2.89 3.14 2.61 4.27
Failure rate (%) 0 0 0 0

256 + 2562 + 256° + 256* ~ 232. The number of charac-
ter-context combinations that actually occur in the whole
SpamAssassin dataset for K = 3 is approximately 524 000.

To avoid memory pressure and achieve faster convergence,
algorithms (42) and (52) requiring stochastic optimization,
were run on a series of small subsets of the original dataset.
Each time, approximately one percent of messages were
sampled at random from the full dataset. Let us present
evaluations for a typical run on a 1% dataset done for all
three algorithms, as described in the previous section.

The failure rate of the chosen concatenation-based trans-
formation was zero for all spam messages and parameters 7



Table 3: Summary statistics for the performance of generation with parameters optimal for the likelihood-based

criterion on the full dataset for orders K from 3 to 10

Likelihood-based optimization

Ham baseline

Index 3 4 5 6 7 & 9 10 3 4 5 6 7 8 9 10
Awveraged length ratio

Minimum 1.00 1.01 1.01 1.02 1.02 1.02 1.01 101  1.00 1.01 1.04 1.04 1.02 1.03 1.02 1.05
5% quantile  1.04 1.04 1.04 1.05 1.05 1.04 1.04 1.04 1.25 1.34 1.40 1.45 1.48 1.51 1.52 1.54
Median 1.08 1.08 1.08 1.08 1.08 1.07 1.07 1.07 170 175 1.79 1.81 1.82 1.85 1.87 1.89
Mean 111 110 1.10 1.09 1.09 1.08 1.08 1.07 1.99 1.99 198 1.96 1.94 1.95 1.95 1.96
95% quantile 1.33 1.27 1.23 1.19 1.17 115 1.14 1.13  4.14 3.73 3.38 3.12 2.93 2.82 2.72 2.68
Maximum 2.63 1.56 1.51 1.39 127 146 1.66 1.84 850 7.53 7.81 7.94 544 6.19 7.72 6.19
Failure rate (%) o 0o o0 o0 0 0 0 0 016 0 00l 001l 001 001 0 0
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Figure 2: Histograms of the length ratio
|(z1, 21)|/|21| averaged over appendices z; generated
for the order K = 3 on the full dataset using (a) the
optimal parameters 7™ (70) for the likelihood-based
criterion (63), and (b) the baseline parameters 7™
estimated from ().

obtained from all three algorithms as well as the Ham base-
line 7). That is, it was possible to generate an appendix x
for each base spam message z; such that their concatenation
ur = (21, k) = zizk was classified as legitimate. For this
reason, to compare performance for different parameters, we
used a supplementary index of the ratio |ux|/|zi| for each
transformed message. Note that none of the methods pro-
posed in this work was constructed to directly optimize this
ratio of lengths.

Figures 1(a), 1(b), and 1(c) depict distributions of length
ratios averaged over transformation appendices z) gener-
ated according to the parameters T<E), 7P and 7@ that
were optimized for the entropy-based, probability-based,
and likelihood-based criteria, respectively. As it is evi-
dent from the shapes of the histograms, the algorithms us-
ing probability-based and likelihood-based criteria are more
preferable to the one using entropy-based criterion in terms
of the length ratio. However, comparing these graphs with
Figure 1(d), showing the histogram for the parameters T(H),
we see that all three techniques provide a noticeably better
performance than the baseline of generating Ham-like appen-
dices. A short summary of the statistics from these figures
is given in Table 2.

Figure 3 shows several examples of generated transforma-
tion texts for a few short spam messages from the dataset.
Each of the original spam messages (typeset on white back-

ground) is followed by a few continuations generated ac-
cording to optimal parameters (highlighted with gray back-
ground). Any of the presented appendices (by itself) is
sufficient to make the corresponding spam message legiti-
mate for the classifier trained on a 1% dataset, and cannot
be shortened without changing the class of the transformed
message back to spam.

Since the likelihood-based algorithm (70) does not have as
high computational requirements as the other two algorithms
resorting to stochastic optimization, it was possible for us to
run it on the full dataset, and also with higher values of the
Markov-chain order K. Resulting distributions of the length
ratio for the optimal parameters under the likelihood-based
criterion, and for the baseline Ham parameters are presented
in Figure 2. Table 3 lists the same five quantiles of the length
ratio as well as its mean values. Comparing these statistics
with the ones in Table 2, we conclude that the gap between
the Ham-like generation and the likelihood-based algorithm
is even greater on the full dataset.

6. CONCLUSIONS AND FUTURE WORK

We introduced three formalizations of possible adversarial
objectives for classifiers using cross-entropy as the decid-
ing criterion. Each of the three approaches has proved its
efficiency as compared to the baseline approach of using
the probability distributions estimated only on legitimate
messages to define the transformation source. The third
technique showed itself as the most efficient of three, both
in terms of transformation and computational requirements.
Although the first two techniques have some implementation
difficulties, after appropriate calibration, they showed compa-
rable performance. Together, all three methods have shown
the feasibility of attacking compression-based classifiers sta-
tistically using relatively limited extent of transformation.

Future work includes three directions of possible extension
of this research. To begin with, it is of interest to explore how
methods of parametrized optimization, examples of which
are considered in this work, compare with other algorithms
for optimizing the contents of transformation texts directly
on a per-character basis (e.g., genetic algorithms or Markov
chain Monte Carlo). This problem setting can potentially
increase the number of different criterion functions that can
be considered to formalize the adversary problem.

Another promising direction consists in analyzing the dy-
namics of classifier-adversary system for the particular case
of entropy-based classification considered in this paper. Al-
though it is hard to attack this problem in general, it might
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Figure 3: Examples of original spam messages z;

(white background) and several appendices zj cor-

responding to each z that are generated for the
order K = 3 using parameters 7E) optimized on a
1% dataset (gray background).

be feasible to derive some useful properties for the specific
algorithms that we have discussed in our work.

Finally, it is important to investigate ways of improving
robustness of compression-based classifiers, given the knowl-
edge of potential adversary attacks. For linear filters, it has
been shown that additional regularization [37] or frequent
retraining [26] can mitigate the severity of most attacks. The
research of whether such methods may also be adaptable to
compression-based classifiers is left for future work.

Acknowledgments

We thank the anonymous reviewers for helpful comments.
This research was funded by NSF grant 11S-1451453.

7. REFERENCES

[1] L. Akoglu, R. Chandy, and C. Faloutsos. Opinion fraud
detection in online reviews by network effects. In
Proceedings of the 7th International AAAI Conference
on Weblogs and Social Media. AAAI Press, 2013.

[2] Apache SpamAssassin Project. The SpamAssassin
public mail corpus. Available at
https://spamassassin.apache.org/publiccorpus/, 2005.

[3] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao,

F. Jahanian, and J. Nazario. Automated classification
and analysis of internet malware. In Recent Advances
in Intrusion Detection, pages 178—197. Springer, 2007.

[4] F. Benevenuto, G. Magno, T. Rodrigues, and
V. Almeida. Detecting spammers on Twitter. In
Proceedings of the Tth Annual Collaboration, Electronic
messaging, Anti-Abuse and Spam Conference, 2010.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In Machine
Learning and Knowledge Discovery in Databases, pages
387-402. Springer, 2013.

[6] V. Bobicev and M. Sokolova. An effective and robust
method for short text classification. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence,
pages 14441445, 2008.

[7] A. Bratko, G. V. Cormack, B. Filipi¢, T. R. Lynam,
and B. Zupan. Spam filtering using statistical data
compression models. The Journal of Machine Learning
Research, 7:2673-2698, 2006.

[8] A. Bratko, B. Filipi¢, and B. Zupan. Towards practical
PPM spam filtering: Experiments for the TREC 2006
Spam Track. In Proceedings of the 15th Text REtrieval
Conference (TREC 2006), 2006.

[9] M. Briickner and T. Scheffer. Nash equilibria of static
prediction games. In Advances in Neural Information
Processing Systems 22, 2009.

[10] M. Briickner and T. Scheffer. Stackelberg games for
adversarial prediction problems. In Proceedings of the
Seventeenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM Press,
2011.

[11] D. Chau, S. Pandit, and C. Faloutsos. Detecting
fraudulent personalities in networks of online
auctioneers. Knowledge Discovery in Databases: PKDD
2006, pages 103-114, 2006.

[12] J. G. Cleary and W. J. Teahan. Unbounded length
contexts for PPM. The Computer Journal,
40(2/3):67-75, 1997.



[13] J. G. Cleary and I. H. Witten. Data compression using
adaptive coding and partial string matching. I[EEFE
Transactions on Communications, 32(4):396-402, 1984.

[14] G. V. Cormack and R. N. S. Horspool. Data
compression using dynamic Markov modelling. The
Computer Journal, 30(6):541-550, 1987.

[15] O. Dekel, O. Shamir, and L. Xiao. Learning to classify
with missing and corrupted features. Machine Learning,
81(2):149-178, 2010.

[16] H. Drucker, D. Wu, and V. N. Vapnik. Support vector
machines for spam categorization. IEEE Transactions
on Neural Networks, 10(5):1048-1054, 1999.

[17] T. Fawcett. “In vivo” spam filtering: A challenge
problem for KDD. SIGKDD Ezplorations, 5(2):140-148,
2003.

[18] E. Frank, C. Chui, and I. H. Witten. Text
categorization using compression models. In
Proceedings of DCC-00, IEEE Data Compression
Conference, pages 200-209. IEEE Computer Society
Press, Los Alamitos, US, 2000.

[19] J. Goodman, D. Heckerman, and R. Rounthwaite.
Stopping spam. Scientific American, 292(4):42-49,
2005.

[20] J. Graham-Cumming. How to beat an adaptive spam
filter. In MIT Spam Conference, 2004.

[21] N. Jindal and B. Liu. Opinion spam and analysis. In
Proceedings of the International Conference on Web
Search and Data Mining, pages 219-230. ACM, 2008.

[22] Z. Jorgensen, Y. Zhou, and M. Inge. A multiple
instance learning strategy for combating good word
attacks on spam filters. Journal of Machine Learning
Research, 9:1115-1146, 2008.

[23] A. Kantchelian, J. Ma, L. Huang, S. Afroz, A. Joseph,
and J. D. Tygar. Robust detection of comment spam
using entropy rate. In Proceedings of 5th ACM
Workshop on Artificial Intelligence and Security, pages
59-70. ACM Press, 2012.

[24] J. Z. Kolter and M. A. Maloof. Learning to detect and
classify malicious executables in the wild. Journal of
Machine Learning Research, 7:2721-2744, 2006.

[25] D. Lowd and C. Meek. Adversarial learning. In
Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 641-647. ACM, 2005.

[26] D. Lowd and C. Meek. Good word attacks on
statistical spam filters. In Proceedings of the Second
Conference on Email and Anti-Spam, 2005.

[27] A. Moffat. Implementing the PPM data compression
scheme. IEEE Transactions on Communications,
38(11):1917-1921, 1990.

[28] B. Nelson, B. I. P. Rubinstein, L. Huang, A. D. Joseph,
S. J. Lee, S. Rao, and J. D. Tygar. Query strategies for
evading convex-inducing classifiers. Journal of Machine
Learning Research, 13:1293-1332, 2012.

[29] K. Rieck, P. Trinius, C. Willems, and T. Holz.
Automatic analysis of malware behavior using machine
learning. Journal of Computer Security, 19(4):639-668,
2011.

[30] H. Robbins and S. Monro. A stochastic approximation
method. The Annals of Mathematical Statistics,
22:400-407, 1951.

[31] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz.
A Bayesian approach to filtering junk e-mail. In
Proceedings of the AAAI-98 Workshop on Learning for
Text Categorization, Madison, WI, 1998. AAAT Press.

[32] D. Stevens and D. Lowd. On the hardness of evading
combinations of linear classifiers. In Proceedings on the
2018 ACM Workshop on Artificial Intelligence and
Security (AlSec), Berlin, Germany, 2013. ACM Press.

[33] G. Stringhini, C. Kruegel, and G. Vigna. Detecting
spammers on social networks. In Proceedings of the
26th Annual Computer Security Applications
Conference, pages 1-9. ACM, 2010.

[34] W. J. Teahan. Probability estimation for PPM. In New
Zealand Computer Science Research Students’
Conference, 1995.

[35] C. H. Teo, A. Globerson, S. Roweis, and A. Smola.
Convex learning with invariances. In Advances in
Neural Information Processing Systems 20, 2007.

[36] Y. Vorobeychik and B. Li. Optimal randomized
classification in adversarial settings. In Proceedings of
the 2014 International Conference on Autonomous
Agents and Multi-Agent Systems, pages 485—492.
International Foundation for Autonomous Agents and
Multiagent Systems, 2014.

[37] H. Xu, C. Caramanis, and S. Mannor. Robustness and
regularization of support vector machines. The Journal
of Machine Learning Research, 10:1485-1510, 2009.

[38] C. Yang, R. C. Harkreader, and G. Gu. Die free or live
hard? Empirical evaluation and new design for fighting
evolving Twitter spammers. In Recent Advances in
Intrusion Detection, pages 318-337. Springer, 2011.

[39] Y. Zhou and W. M. Inge. Malware detection using
adaptive data compression. In Proceedings of 1st ACM
Workshop on Artificial Intelligence and Security, pages
53-60. ACM, 2008.

APPENDIX
LEMMA 1. The objective function
RZ(T) = —Zl/ij logn-j, (75)
jeJ

where weights vi; > 0 for any j € J, and parameters 7;; are
subject to constraints

Tij > 0 and Zﬁj =s> O, (76)
jeJ
reaches its minimum value at

* Vij
Tij = 5757 (77)

where
V; = Z Vigj. (78)
jeJ
PRrROOF. Considering that loge < (e — 1) for any € > 0, we

see that for an arbitrary vector of parameters T,

RZ(T*) — RZ(T) = — Zl/ij log Sl/%j + Z Vij IOgTij
jeJ Vi N

Z TijVi Z TijVi
= Vij log J S Vij J -1
SVij SVij

jeJ jeJ




123 o
= ; Tij — Z Vij = 0, (79)

JeJ jeJ
by definition of v; and requirements (76). From the obtained
relation it follows that R;(7*) < R;(7) for any 7. [

LEMMA 2. The objective function

1
Ri(1) = — 35 log —, 80
()= = v log — (50)
JjeJ
where weights v;; > 0 for any j € J, and parameters 7;; are
subject to constraints

Tij > 0 and an =s5>0, (81)
jeJ
reaches its minimum value at
% min |’ Zf] € Jimm;
0, ifj € J\J™M

where J™™ = {j € J | v;; = minjey vi;}.
PROOF. Let us consider the following values of parameters

under the temporary assumption that 7;; > e for some
arbitrarily small e > 0 and all j € J:

L= (= e
() = b |
se, if j € J\ Jmn,

if 5 J_min,
1 J e 7 ) (83)

We can assume that 3 J\gmin ¥ij > 0, which is always true

unless JM® = J.
It is clear that for smaller values of e, criterion function
R;(7"(g)) also gets smaller values:

R
s(L= (1= 177 ]e)

Ri(m"(e)) == ) _wijlog
jeJmin
— Z Vij log i (84)
) se
jg.min
Therefore, passing to the limit, we can make the criterion

arbitrarily small while approaching the desired solution 7*:

i o _ lim +* (e) = +*.
lim R;(7%(g)) 00, lim (e)=r1 (85)
Solution (82) is not unique: any distribution of the proba-
bility mass across 7;; for j € J;™", minimizes the criterion.
However, one solution is sufficient for our purposes. []

Now we can proceed to the proof of Theorem 1.

PRrROOF. Let us divide the sum in the objective function

Ri(7 | 2) into the following three sums over disjoint subsets of

(H) (8).
ij Vg o+

Ri(T | Z) = —Z(Sij lognj — Z(Sz] lognj — 25” lognj

indices according to the sign of the difference d;; = v,

jeJg; = jeJ?
1
== dijlogTi; — Y (—0i)log — (86)
jegt jed; I

where J? = {j | a;j € AAsgn(d;;) = o}, and, similarly,

o pr—
Si = Tij,

J€Jg

st+s7+s0=1. (87)

Clearly, the problem of finding optimal 7;; can be solved
separately for each of the sums in (86).

e For the first sum

R?(T) = —Z(Sw lognj, (88)

gt
Jj€J;

conditions of Lemma 1 hold for J = J;', vij = 6i5, and

s = s}. Hence, the function R; (7) is minimized for
. 55 8ij

Tij = <~ 5
Zler dit

Notice that the greater the sum s; becomes, the lesser
is the minimal value R; (77).

jeJr. (89)

e For the second sum
- 1
Ry (1) == (=) log —, (90)
jer; I
conditions of Lemma 2 hold for J = J;, vi; = —diy,
and s = s; . As we have shown in Lemma 2, when

parameters are bounded below by some arbitrarily small
€ > 0, the function R; (7) is minimized for

S 1 (JA] - |7)e

if j € Jm (91)

* Si min ’
s €, if j e Ji \ ™
J;nin = {] S J; | —6ij = min (_6zl)} (92)
leJ;~

Notice that, since 7;; occurs in R (7) inverted, unlike
R (7), the lesser the sum s; becomes, the lesser is the
minimal value R; (77).

o For the indices j € J?, the choice of T;; is irrelevant and
does not change the value of R;(7 | z) regardless of 9.

In order to combine independent solutions (89) and (91)
optimizing separate sums, it is necessary to determine in
which proportion should the probability mass be distributed
between parameters belonging to J;’, J;, and J?. As we
have seen above, for the minimal value (as a function of
the bound €) to be the least, s;r has to be as large as pos-
sible, while both s; and s?, to the contrary, have to be as
small as possible. Therefore, the optimal proportion for the
parameters bounded below by ¢ is

si=|Je, s =|Jile, sT=1-—s7 —s.  (93)
The corresponding parameters are then
L— (A = T} ))e) i
(A
Tij(€) = Liesy S (94)
g, ifjeJ-uJp.

Passing to the limit for ¢ — 0, we finally obtain the parame-
ters that deliver minimum to the function R;(7 | 2):

0ij P
<% ifje
7y = lim 7i(e) = § 2est O
0, if j € J-uJ;
__ max{0d}  _py o (95)

>a,eamax{0,8i;}  pi



