
Collective Classification of Social Network Spam

Jonathan Brophy and Daniel Lowd
Department of Computer Science

University of Oregon
Eugene, OR 97403

{jbrophy,lowd}@cs.uoregon.edu

Abstract

Unsolicited or unwanted messages is a byproduct of virtually
every popular social media website. Spammers have become
increasingly proficient at bypassing conventional spam filters,
prompting a stronger effort to develop new methods that ac-
curately detect spam while simultaneously acting as a more
robust classifier against users that modify their behavior in
order to avoid detection. This paper shows the usefulness of a
relational model that works in conjunction with an indepen-
dent model. First, an independent model is built using fea-
tures that characterize individual comments and users, cap-
turing the cases where spam is obvious. Second, a relational
model is built, taking advantage of the interconnected nature
of users and their comments. By feeding our initial predic-
tions from the independent model into the relational model,
we can start to propagate information about spammers and
spam comments to jointly infer the labels of all spam com-
ments at the same time. This allows us to capture the obfus-
cated spam comments missed by the independent model that
are only found by looking at the relational structure of the so-
cial network. The results from our experiments demonstrates
the viability of our method, and shows that models utilizing
the underlying structure of the social network are more effec-
tive at detecting spam than ones that do not.

1 Introduction
The appearance of ‘spam’ in a social network can be any
instance of unsolicited or unwanted actions by a user in the
network. Traditional methods of classifying spam have re-
sulted in many content-based approaches that characterize
spam messages, such as email, social media comments, etc.
The increase in scale of many popular social media web-
sites has created greater incentives for spammers to find new
ways of bypassing traditional filters. Even if only a small
fraction of a spammer’s campaign gets through a spam filter,
there can be a large number of users that will see those mes-
sages, making it worthwhile for the spammer. These spam-
mers can avoid detection by randomizing the content of their
messages, or manipulating their content in a way that fools
the content-based classifier.

An alternative method could classify spammers based
on actions performed between users in a social network

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Fakhraei et al. 2015). This is a more robust method of de-
tecting spammers as changing user behavior to bypass spam
filters is more difficult than altering spam messages individ-
ually. For example, a graph structure could be built around
users following other users, where nodes represent users and
directed edges represent users following other users. Perhaps
legitimate behavior is characterized by having many follow-
ers (node with a large in-degree). Thus, a spammer might
have difficulty simulating legitimate behavior because they
cannot get other users to follow them, making them easier to
find among all the other users.

By using aspects of both content and graph-based sys-
tems, a spam detection model can capture certain signals
that a system focused on only one approach could miss.
Combining these methods also gives the added benefit of
finding spam messages and spammers. Detecting spam mes-
sages themselves may be sufficient for certain domains, but
generally it is more useful to characterize the users that are
generating the spam to more efficiently prevent similar spam
campaigns in the future.

The combination of content and graph-based systems is
an improvement, but both of these approaches still consider
the data to be independent and identically distributed (i.i.d.).
They look at incoming spam messages one at a time, and
based on characteristics about the spam message itself, as
well as the user’s previous behavior, make a decision about
whether it should be labeled as spam or not spam. Social
network spam is not i.i.d. This provides the opportunity to
exploit the interconnected nature of spammers, spam com-
ments, and any other domain-specific entities that tie spam-
mers to their spam.

Our approach is motivated by SoundCloud.com, a social
network for sharing music. This domain is an excellent place
to test out a statistical relational model because it can exploit
the underlying structure between users, messages, and the
uploaded tracks where messages are posted. Our approach
uses a type of probabilistic graphical model called hinge-
loss Markov random fields (HL-MRFs) (Bach et al. 2013) to
jointly infer labels of spam messages.

The following sections describe the data in more detail,
our independent model utilizing the combination of con-
tent and graph-based approaches to classifying spam com-
ments, our relational approach improving upon this indepen-
dent model, and an experimental validation on a real world

PRELIMINARY VERSION: DO NOT CITE



Entity Count
non-spam comments 42,099,424
spam comments 684,338
tracks 7,796,019
follower actions 335,197,112
non-spammers 5,377,679
spammers 128,016

Table 1: Dataset Statistics.

SoundCloud dataset.

2 Data
The dataset comes from SoundCloud.com and includes an
entire year’s worth of comments from October 10, 2012 to
September 30, 2013. The data came containing information
about comments, tracks, follower actions, spam warnings,
and spam reports.

For each comment, we have the anonymized user id of the
user that posted the comment, the anonymized track id the
comment was posted on, a timestamp of when the comment
was posted, the actual message of the comment, and a label
indicating whether the comment was marked as spam or not.

For each track, we have the anonymized track id, the
anonymized user id of who uploaded the track, the duration
of the track, and a timestamp of the track’s last update.

SoundCloud allows each user the ability to follow
other users. Thus, for each follower action, we have
the anonymized user id of user y being followed, the
anonymized user id of user x doing the following, and a
timestamp indicating when user x started following user y.

For each spam warning, we have the anonymized user id
of the user receiving the warning, the warning level, the rea-
son for the warning, a timestamp of when the warning was
issued, and a binary suspended label for each warning.

For each spam report, we have the anonymized user id of
the user that posted the comment, a timestamp of when the
comment was published, and a binary suspended label for
each report.

The basic statistics of this dataset reveal just how imbal-
anced the class labels are distributed throughout the com-
ments (Table 1).

2.1 Pre-Preprocessing
All pre-processing done to this dataset affects only the com-
ments. Commas were stripped from the body of each com-
ment in order to easily store the comments as a flat CSV file.
Also, all comments were sorted in increasing order based
on their respective timestamps. Finally each comment was
given a unique identifier. Tracks, follower actions, spam re-
ports, and spam warnings were also written to CSV files
to make them easier to load into various data manipulation
frameworks.

3 Methodology
The first task is to build an independent model that combines
the best of both worlds from content and graph-based sys-

tems in order to create a solid baseline and starting point for
our relational model. One list of engineered features focuses
on the content of the messages and constitutes our content-
based feature set. Another list of engineered features extracts
user behavior which makes up the graph-based feature set. A
third and final feature set includes engineered features based
on relational aspects within the data and serves as candidate
features to be explored further in the relational model.

The second task involves the creation of an HL-MRF
(Bach et al. 2013) instantiated using probabilistic soft logic1

(PSL) where efficient inference can be applied. Three rela-
tional models are explored in this domain, where each one
builds on the previous model and attempts to capture a dif-
ferent relational signal among the users, spam messages, and
tracks.

3.1 Independent Model
By looking at just the text of each comment, the following
content-based features can be extracted: the number of char-
acters, NumChars, and a boolean indicating whether or not
the comment contains a link, HasLink. Bag of words and
k-grams could also be explored, but this causes the feature
space to increase very quickly and necessitates constant up-
dating of these features. These two features make up the
Content feature set (Table 2).

The next set of features look at user behavior based on the
connectivity of users to other users using the list of follower
actions. We can represent this list of affiliations as a graph
by constructing a node for every user in the list, and then
add a directed edge from user x to user y whenever user x
starts to follow user y. The resulting directed graph contains
335,197,112 edges. We run the following following graph
algorithms on it:

• Pagerank (Page et al. 1999), which gives us a sense of
which nodes are more important than others by looking at
which nodes receive the most links.

• Triangle count (Schank and Wagner 2005), which looks
at how many triangles a node is a part of, indicating the
connectivity of that node.

• K-core (Alvarez-Hamelin et al. 2005), an iterative algo-
rithm that trims the least connected nodes on every iter-
ation, and assigns the trimmed node an id number corre-
sponding to the iteration when it was pruned.

• In-degree (Newman, Strogatz, and Watts 2001), the num-
ber of edges that enter a particular node.

• Out-degree (Newman, Strogatz, and Watts 2001), the
number of edges that leave a particular node.

Each one of these algorithms represent a different way of
finding essentially the same thing, how connected a user is
to other user users in the network. This information is useful
because it can give us insight into some of the behavior that
characterizes spammers and non-spammers. This is the same
approach as in (Fakhraei et al. 2015), except they explore a
number of different actions between users, whereas this data
set only gives one relation between users, the list of follower

1http://psl.umiacs.umd.edu/



actions. All features in this set are computed using Graphlab
Create2 and can be summed up in the Graph-based feature
set (Table 2).

Independent model features
Content
NumChars Number of chars in msg.
HasLink True if msg has a URL, else False.
Graph-based
Pagerank Pagerank of each node in the

follower graph G.
TriCnt Number of triangles of each node in G.
KCore Iteration each node in G was pruned.
InDegree Number of edges entering a node in G.
OutDegree Number of edges leaving a node in G.
Relational
UUps UserUploads, number of uploaded

tracks per user.
UComs UserComments, number of msgs

posted by each user.
ULComs UserLinkComments, number of

msgs with a URL by each user.
ULRatio UserLinkCommentsRatio, fraction

of user msgs containing a URL.
TrackSpam Number of spam msgs per track.
Trackham Number of non-spam msgs per track.
CMSRatio CommentMatchSpamRatio, fraction

of spammy matching msgs.

Table 2: Features used in the independent model grouped
into three different feature sets.

The final set of features in the independent model focuses
on the connections between users, comments, and tracks be-
ing posted. UserUploads is the number of tracks uploaded
by each user. UserComments is the number of comments
posted by each user. UserLinkComments is the number of
comments posted by each user that contain a link in their
message. UserLinkCommentsRatio is the fraction of com-
ments previously posted by each user that contain a link in
the message over the total number of posted messages by
that user.

TrackSpam and TrackHam are the number of spam and
non-spam comments on each track, respectively. Finally,
CommentMatchSpamRatio is, given a comment, the fraction
of other matching comments that are marked as spam over
the total number of other matching comments. For example,
if a comment with the message ‘hey’ matches 3 other com-
ments because they have the message ‘hey’, and 2 of them
were marked as spam, then the fraction of matching spam
messages would be 2

3 .
All features in this final set are computed in sequential

order of comments based on their timestamp. For example,
when computing UserUploads for comment #100 posted by
user x, we record the number of tracks uploaded by user x up
until comment #100. This creates a more realistic scenario

2Now known as Turi: https://turi.com/products/create/

as features are computed only based on previous comments.
The only features not computed in sequential fashion are the
graph-based features and UserTracks. This is due to the fact
that tracks and affiliations are large separate entities from
the comments, requiring computationally long queries for
every comment. This final feature set is summarized in the
Relational feature set (Table 2).

These relational features are important because they rep-
resent candidate features for our relational model. Each one
of these features in some way connects users to comments,
users to tracks, tracks to comments, and comments to com-
ments. This independent model uses random forest as its
classifier and information gain to rank relative feature im-
portance. If these features have high relative importance,
then there is a good chance their relative nature can be ex-
ploited further in a dedicated relational model.

By calculating features in the Relational set sequentially
based on the labels given, the independent model simulates
some of the behavior occurring in the relational model. This
improves performance, but does not allow the model to rea-
son about multiple relationships simultaneously. Jointly in-
ferring labels for all messages based on those connections
can capture complex signals missed by this independent
model.

The next section discusses which relational features are
worth exploring in more depth and how they can be ex-
ploited in the relational model.

3.2 Relational Model
The growing field of statistical relational learning (SRL) has
developed various methods for doing collective classifica-
tion (Getoor 2007). In this work, we utilize PSL, software
developed by researchers in the LINQS SRL group at the
University of Maryland (Bach et al. 2015). PSL allows us to
construct weighted logical rules (formulas) such as:

ω : Friends(x, y) ∧ Smokes(x)→ Smokes(y) (1)

Where ω is the weight or relative importance of the rule,
Friends() and Smokes() are the predicates (atoms), and x and
y are logical variables. This rule reads ‘if x is friends with y,
and x smokes, then y is more likely to smoke’. Everything
to the left of the implication is the body of the formula, and
everything to the right is the head. A ground atom is a pred-
icate whose variables have all been replaced by constants.
A formula has been grounded out when all predicates in a
formula are ground atoms.

Hinge-loss Markov random fields (HL-MRFs) are log lin-
ear models that use hinge loss functions of the variable states
as features and can be modeled as a conditional probability
distribution as follows (Fakhraei et al. 2015):

P (Y |X) =
1

Z(ω)
exp

(
−

n∑
i=1

ωiφi(X,Y )
)

(2)

where φi is the set of n continuous potential:

φi(X,Y ) = [max{0, `i(X,Y )}]pj



and ` is a linear function of X and Y, where pj ∈ {1, 2}.

HL-MRFs can be instantiated from PSL where each node
represents a ground atom, and each feature represents the
grounding of one of the formulas. It is apparent that most
real-world data is complex and contains uncertainty. PSL
provides us with a nice representation to model rules us-
ing logic, which handles complexity, and instantiate them as
a probabilistic graphical model (HL-MRF), which handles
uncertainty.

The semantics of PSL make it easy to create an HL-MRF
with rules of the form as in (1) above. We combine multiple
rules to create three relational models of increasing com-
plexity. The first model takes the predictions from the in-
dependent model and separates each prediction into varying
levels of confidence. For example, if the independent model
classifies a comment as spam with a probability of 0.98, then
our relational model can use this information to more confi-
dently label this comment as spam (Figure 1).

¬spam(c)

¬spammer(u)
superSpam(c)→ spam(c)

semiSpam(c)→ spam(c)

superHam(c)→¬spam(c)

semiHam(c)→¬spam(c)

posts(u, c) ∧ spam(c)→ spammer(u)

posts(u, c) ∧ ¬spam(c)→¬spammer(u)
posts(u, c) ∧ spammer(u)→ spam(c)

posts(u, c) ∧ ¬spammer(u)→¬spam(c)

(a)
(b)
(c)
(d)
(e)
(f)

(g)
(h)
(i)
(j)

Figure 1: Relational model using predictions from an inde-
pendent model as priors as well as user behavior to classify
spam; c is short for comment, and u is short for user.

Rules (a) and (b) denote initial priors that most comments
are not spam and that most users are not spammers, which is
a fair assumption due to the imbalanced nature of the data.
Rules (c)-(f) provide additional prior evidence for each com-
ment from the independent model.

Rules (g)-(j) display the first example of how these rules
can work together to propagate label information. Take rule
(g) for example, if a user posts a comment, and that com-
ment is spammy, then that user is more likely to be a spam-
mer. Thus, if we have any information about that comment,
whether it is more or less spammy, then we can start to get
a sense of whether or not the user is a spammer or non-
spammer. In this case, we do have some prior information
about these comments due to the first six rules of our model.

Now that we have some information about the user, we
can use that information to help label comments posted by
that user. Take rule (i) for example, which says that if a user
posts a comment, and that user is a spammer, then that com-

ment is more likely to be spam. After gaining initial evi-
dence that this user posted a spammy comment, it is now
more likely that other comments posted by this user will also
be spammy. PSL works to simultaneously satisfy all rules
in the model, and it is for this reason as well as the inter-
connected structure of the network that we can reason about
multiple users and comments at the same time.

After some preliminary experiments, the independent
model identified a relational feature with high relative
importance, CommentMatchSpamRatio. Thus, the second
model builds on the first one by exploring the relational na-
ture of this feature. This feature computes the fraction of
matching comments that are marked as spam over the total
number of matching comments. The intuition is that spam-
mers tend to post comments from one or multiple accounts
that are very similar or exactly the same. Using PSL, we can
write rules similar to the bottom four in Figure 1 to capture
this behavior (Figure 2).

model 1 rules

+

inHub(h, c) ∧ spam(c)→ spamHub(h)

inHub(h, c) ∧ ¬spam(c)→¬spamHub(h)
inHub(h, c) ∧ spamHub(h)→ spam(c)

inHub(h, c) ∧ ¬spamHub(h)→¬spam(c)

(k)
(l)

(m)
(n)

Figure 2: Second relational model that adds 4 more rules
about matching comments belonging to spam hubs or non-
spam hubs; c is short for comment, and h is short for hub.

Four rules are added in this second relational model, and
it follows the same structure as the last four rules in the first
model. Rules (k) and (m) are used to propagate informa-
tion in both directions, while rules (l) and (n) act as comple-
ments to these rules to gather information about non-spam
comments and non-spam hubs. These rules could have been
written in such a way that treats comments individually. For
example, rule (k) could have been written in the form:

matches(c1, c2) ∧ spam(c1)→ spam(c2) (3)

Rules (l)-(n) could be re-written in a similar fashion, and
this would accomplish essentially the thing as rules (k)-(n) in
Figure 2. We chose to group comments into hubs to increase
efficiency and reduce the number edges connecting ground
atoms. Suppose we were using (3) above and we had 100
comments, the resulting graphical model would need at least
10,000 edges to take care of every possible combination of
comments. By grouping comments into hubs, where a hub
represents all comments that match each other, we cut down
on the number of possible configurations that can arise.

Now we can propagate information similar to model 1, if
a comment is part of a hub, and that comment is spammy,
then the hub itself becomes more spammy. If we see more
evidence of spam comments belonging to this hub, then the
relational model becomes more confident of labeling that



hub as a spamHub. Now if a comment is encountered and
the model does not have strong evidence of whether it is
spam or non-spam, but it sees that it is part of a spamHub,
then it can be more confident that the comment should be
labeled as spam.

This model starts out with no prior knowledge of whether
hubs are spammy or non-spammy; they all start as neu-
tral. As information begins to propagate between comments,
users, and hubs, these hubs slowly start to turn more spammy
or non-spammy. Ultimately, this helps classify comments
that are hard to judge at first glance, but become more ob-
vious by studying their connections to other users and com-
ments.

The third model introduces four more rules added on to
the second model, and these new rules bridge the relational
gap between tracks and comments (Figure 3).

model 2 rules

+

inTrack(t, c) ∧ spam(c)→ sTrack(t)

inTrack(t, c) ∧ ¬spam(c)→¬sTrack(t)
inTrack(t, c) ∧ sTrack(t)→ spam(c)

inTrack(t, c) ∧ ¬sTrack(t)→¬spam(c)

(o)
(p)
(q)
(r)

Figure 3: Third relational model that adds 4 more rules
identifying comments belonging to spammy tracks or non-
spammy tracks; c is short for comment, t is short for track,
and sTrack is short for spamTrack.

The rules added in this model correspond to the relational
features TrackSpam and TrackHam present in the indepen-
dent model. Those features represent the number of spam
comments and non-spam comments for each track, respec-
tively. The notion of tracks in this model is the same idea
as hubs in the second model. Tracks start out as neutral, and
as they accumulate evidence, become places more likely for
spam or ham to be posted. PSL makes it easy to express
these complex relationships with simple rules and syntax.

This third model is now much more powerful as it cap-
tures signals from various relationships within the data. All
the rules work in conjunction as the HL-MRF attempts to
satisfy them simultaneously. It is important to note though,
that adding rules may improve the performance of the
model, but that comes at the cost of more complexity and
possible intractability, as too many rules makes inference
over the graphical model too difficult.

A fourth model was explored that added four more rules
creating hubs based on matching URLs. If a comment con-
tained any URLs, then the first URL was extracted and put
into its respective hub. The idea is that there are signifi-
cant differences between the URLs that spammers post as
opposed to the URLs that non-spammers post. After some
preliminary experiments though, the addition of these rules
did not improve the model very much, but this could be due
to a lack of URLs in the comments being tested and may
be worth exploring again on a data set with numerous URL
postings.

It is preferable to learn the weights of these rules than
to guess their relative importance. PSL allows the relational
model to learn the weights of the rules using data. After ini-
tializing all the weights, they can then be learned by com-
puting the gradient of the log-likelihood of (2) with respect
to an individual weight ωi, and applying expectation max-
imization to find the most probable explanation given the
current set of weights (Kimmig et al. 2012).

Learning the weights to the relational model takes up the
majority of the running time as it essentially performs infer-
ence many times as it computes the optimal weights given
the data. Once the weights are learned, they can then be used
to do joint inference on a different subset of the data, or on
a separate domain entirely, given that the rules of the rela-
tional model make sense in both domains.

4 Experiments
We performed two sets of experiments to evaluate the per-
formance of the relational model. Each experiment consists
of the following:

• A subset of 2 million consecutive comments is chosen
from the SoundCloud data set. Those 2 million comments
are split in half to create two smaller data sets, D1 and
D2. D1 is used for weight learning while D2 is used for
testing and evaluation.

• The independent model trains on the first 70% of the of
the data in D1, and then generates predictions on the re-
maining 30% of D1. The same is then done for D2.

• The relational model then learns weights for its rules us-
ing the generated predictions from D1, and finally does
joint inference on the remaining 30% of comments in D2.

The area under the precision-recall curve (AUPR) is the
main metric used in these experiments to evaluate how each
model is performing. Predictions on the test set from the
independent and relational models are recorded and run
through Sci Kit’s3 metrics framework.

Before the AUPR is computed, a small amount of noise
(a random number between 0 and 2.5×10−3) is added to
each prediction in both models. This maintains the under-
lying label the models have assigned to each comment, but
prevents ties in the predictions to avoid optimistic estimates
in the precision-recall curve. If the model contains numerous
ties in predictions, as the level of recall varies, the precision
does not necessarily change linearly, and thus linear inter-
polation between points is not an optimal strategy for com-
puting the area under the curve (Davis and Goadrich 2006).
Thus, adding a small random amount of noise can help com-
bat this problem while calculating the AUPR.

The area under the Receiver Operating Characteristic
(ROC), AUROC, is also recorded for each model, but due
to the heavy skew present in the data, should not be viewed
as the main factor when evaluating model performance. This
is due to the fact that the ROC curve takes the true negatives
into account when calculating the false positive rate (FPR),
and thus a large change in false positives will greatly affect

3http://scikit-learn.org/stable/



— Independent - - - Relational

Figure 4: Three relational models of increasing complexity tested on the same data set (comments #31-33 million). Model 1
with priors and spammer information (left). Model 2 with rules added to capture matching comments (middle). Model 3 that
adds rules about how spammy certain tracks are (right).

precision and the precision-recall curve, while inducing a
small change on the FPR and the resulting ROC curve (Davis
and Goadrich 2006), revealing overly optimistic model per-
formance.

4.1 Varying Relational Classifiers
This section presents the results of three different models
presented in Section 3.2. In each experiment, models are
trained and tested on a 2 million comment subset of the data
from comments 31 million to 33 million.

The addition of more rules increases the performance for
each relational model tested on this set of comments (Fig-
ure 4). We already see an improvement in the first relational
model by propagating information back and forth between
users and comments, using the predictions from the indepen-
dent model as priors to give us a starting point of informa-
tion to work with. The second model improves upon the first
by working to label the matching comments. If more com-
ments had matches to other comments in this data set, then
this model would most likely provide even bigger improve-
ments. Finally, adding rules about spammy tracks makes a
vast improvement over the second model (Table 3). This in-
dicates that certain tracks tend to act as hubs for spam com-
ments. Preliminary work found that the majority of spam
comments are concentrated in a small fraction of the total
number of tracks, and tended to be on tracks that contained
many other comments. This makes sense, as spam posted on
popular tracks is more likely to be seen by many users.

The third model, shown on the right in Figure 4, makes the
biggest improvement on the right side of the curve, helping
increase the recall while maintaining high precision. When
the threshold is high, recall tends to be lower and precision
tends to be higher since only the predictions that the model
is very confident about get labeled correctly. This is what we
see in the top left of the graph, where the independent model
captures the easy comments with high confidence, and this
is transferred over to the relational model so it can be con-
fident about these comments as well. The relational model
really shines in instances where comments are not labeled

Model AUPR AUROC
Independent 0.586 0.819
Relational 1 0.695 0.869
Relational 2 0.739 0.908
Relational 3 0.825 0.962

Table 3: Comparison of different relational models to the
baseline independent model on comments 31 million to 33
million.

confidently one way or the other, so taking advantage of the
comment’s connections allow these comments to be labeled
more accurately.

4.2 Varying Comment Subsets
In this section, we choose three different subsets of 2 mil-
lion consecutive comments each, spaced out among the full
data set. Some statistics about each subset of comments are
recorded (Table 4), such as the number of hubs containing
more than one matching comment. These counts help visu-
alize the characteristics of the test set and possibly provide
some idea of how useful certain rules will be. For example,
a data set with just as many tracks as comments means that
each comment is posted on a different track, reducing the
viability of the rules added in the third relational model.

Entity 6M-8M 31M-33M 38M-40M
Spam 1,882 1,688 2,427
Users 118,725 134,759 139,292
Hubs 9,927 11,012 11,884
Tracks 135,414 143,545 139,421

Table 4: Count of different entities contained in the test set
of each comment group (last 300k comments).

Relative improvements of the relational model over the
independent model can be seen in each data set (Figure



— Independent - - - Relational

Figure 5: Relational model 3 tested on three different subsets of comments in the data. Comments used: 6 million to 8 million,
tested on the last 300k comments (left). Comments used: 31 million to 33 million, tested on the last 300k comments (Middle).
Comments used: 38 million to 40 million, tested on the last 300k comments (right).

Data AUPR (Ind) AUPR (Rel)
6M-8M 0.792 0.873
31M-33M 0.588 0.825
38M-40M 0.792 0.915

Table 5: Comparison of relational model 3 on different com-
ment subsets in the data.

5). Some of the precision-recall curves for the independent
model are already pretty good, leaving less room for our re-
lational model to improve upon, but the difference is still
noticeable. The AUPR and AUROC scores for both models
in each comment subset is also recorded (Table 5).

The increase in performance of the relational model to
the independent model is evident for each comment subset,
but the improvements seem to get better for the comment
subsets that occur later in time. This could be due to the fact
that the independent model’s engineered features have not
seen as many examples for the earlier comments. This can
cause less accurate predictions that get fed into the relational
model which might propagate information less accurately.

One additional experiment used the previous 700K com-
ments before the test set as extra evidence for the relational
model. Thus, more hubs, users, and tracks were inferred as
spammy or non-spammy, and this could help identify spam
in the test set. For example, if a user shows up many times
posting spam in the evidence set, and only posts one com-
ment in the test set, it is easy to infer that the comment in
the test set is probably also spam. Without these extra obser-
vations, we have no previous evidence of what kind of user
they are, making it harder to classify their single comment
in the test set.

After running relational model 3 with extra evidence on
the 31 million to 33 million comment subset, the results did
not make a big improvement over the model without extra
observations. This could be due to a lack of overlap between
users, matching comments, and tracks between the evidence
and test sets, but this lack of improvement is also encour-

aging. Since we already know that large increases in per-
formance can be made from doing joint inference over the
test set, then we know that we can get good results from a
smaller graphical model that uses less computation. So it is
possible to reason that this evidence set can be replaced by
a larger test set where joint inference can label even more
comments at the same time with more accuracy than with a
smaller test set. This implies the ability to scale the relational
model to label more instances collectively.

5 Related Work
Spam is a long-standing problem for many domains, and
identifying user behavior is a reasonable step towards cap-
turing more sophisticated spammers. Liu et al. used topic
modeling to detect spammers on Weibo, a popular social
network in China (Liu et al. 2016). Wang and Pu extracted
behavioral characteristics from users to help identify URL
spam in Twitter data (Wang and Pu 2015).

Collective classification is a promising method of dealing
with complex spam campaigns. Laorden et al. studied the
prominence of email spam and created a text classification
model using collective filtering in a semi-supervised setting
(Laorden et al. 2011).

Online social networks offer up a network structure well
suited for collective classification. Lee et al. devised a model
to accurately detect emerging trending topics in Twitter to
focus a model’s attention in places where spam is most likely
to occur (Lee et al. 2012). Zhu et al. studied spam content in
one of China’s most popular social network services, ren-
ren.com, in which they looked at the social activities be-
tween users and came up with a compact matrix factoriza-
tion of the problem with social regularization to identify
spammers (Zhu et al. 2012). Fakhraei et al. utilize user re-
ports and PSL to collectively classify spammers in a social
dating network (Fakhraei et al. 2015).

Rayana and Akoglu built a unified framework where fea-
tures are extracted based on language and behavior models
in addition to relational data from the network. In this case,



they used these features to detect fake reviews on various
datasets on Yelp.com (Rayana and Akoglu 2015).

6 Discussion
We have shown the benefits of using a model that can lever-
age the underlying connections present between the data in
SoundCloud. With the aid of an independent model to mark
clear instances of spam and provide a starting point of in-
formation, our relational model can work to identify the per-
haps intentionally obfuscated comments missed by the inde-
pendent classifier.

We have seen that adding more rules to a relational clas-
sifier can increase its performance, but adding too many can
cause a bottleneck in computation time. It is not hard to see
the benefits of using a relational model, where implementa-
tions like PSL make it very easy to express simple rules that
can capture complex relationships throughout the data.

One final aspect to note about this approach is the re-
lationship between the independent and relational models.
Since the predictions from the independent model are fed
into the relational model, any performance improvement in
the independent model will most likely translate to improved
performance for the relational model as well. Thus, more in
depth natural language processing (NLP) features could be
engineered for the independent model, but these are not ex-
plicitly necessary to show the relative improvements of the
relational model.

The next step of this work would involve testing this
model on a different, but similar domain to see if these re-
sults can be replicated. YouTube.com would make an excel-
lent choice, as its popularity certainly attracts many spam-
mers, and its social network structure is similar to that of
SoundCloud’s. Tracks could be replaced by videos, since
users post comments to other user’s videos the same way
users post comments to other user’s tracks. All the other
rules can essentially stay the same.

There is also the opportunity to learn weights in one do-
main, and then test their effectiveness on another domain.
Also, more work needs to be done on characterizing the
practical size of data instances that can be jointly labeled
at one time, and how this characterization changes as the
number of rules increase or decrease.

One segment of the data that was not used involved spam
warnings and spam reports. The ability of one user to flag
other users is a common feature in most social networks, and
this information can lead to clues about who the spammers
are, as well as the credibility of users doing the flagging, as
in (Fakhraei et al. 2015).

The applications for this kind of model are not bound to
social networks. Any type of data that houses underlying re-
lations can benefit from this methodology, and it is exciting
to see what other domains relational machine learning will
impact.

References
Alvarez-Hamelin, J. I.; Dall’Asta, L.; Barrat, A.; and
Vespignani, A. 2005. Large scale networks fingerprinting

and visualization using the k-core decomposition. In Ad-
vances in neural information processing systems, 41–50.
Bach, S. H.; Huang, B.; London, B.; and Getoor, L. 2013.
Hinge-loss Markov random fields: Convex inference for
structured prediction. In Uncertainty in Artificial Intelli-
gence (UAI).
Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L.
2015. Hinge-loss markov random fields and probabilistic
soft logic. arXiv preprint arXiv:1505.04406.
Davis, J., and Goadrich, M. 2006. The relationship between
precision-recall and roc curves. In Proceedings of the 23rd
International Conference on Machine Learning, ICML ’06,
233–240. New York, NY, USA: ACM.
Fakhraei, S.; Foulds, J.; Shashanka, M.; and Getoor, L.
2015. Collective spammer detection in evolving multi-
relational social networks. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 1769–1778. ACM.
Getoor, L. 2007. Introduction to statistical relational learn-
ing. MIT press.
Kimmig, A.; Bach, S. H.; Broecheler, M.; Huang, B.; and
Getoor, L. 2012. A short introduction to probabilistic soft
logic. In NIPS Workshop on Probabilistic Programming:
Foundations and Applications.
Laorden, C.; Sanz, B.; Santos, I.; Galán-Garcı́a, P.; and
Bringas, P. G. 2011. Collective Classification for Spam
Filtering. Berlin, Heidelberg: Springer Berlin Heidelberg.
1–8.
Lee, K.; Caverlee, J.; Kamath, K. Y.; and Cheng, Z. 2012.
Detecting collective attention spam. In Proceedings of the
2nd Joint WICOW/AIRWeb Workshop on Web Quality, 48–
55. ACM.
Liu, L.; Lu, Y.; Luo, Y.; Zhang, R.; Itti, L.; and Lu, J. 2016.
Detecting” smart” spammers on social network: A topic
model approach. arXiv preprint arXiv:1604.08504.
Newman, M. E.; Strogatz, S. H.; and Watts, D. J. 2001.
Random graphs with arbitrary degree distributions and their
applications. Physical review E 64(2):026118.
Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999. The
pagerank citation ranking: bringing order to the web.
Rayana, S., and Akoglu, L. 2015. Collective opinion spam
detection: Bridging review networks and metadata. In Pro-
ceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 985–994.
ACM.
Schank, T., and Wagner, D. 2005. Finding, counting and
listing all triangles in large graphs, an experimental study. In
International Workshop on Experimental and Efficient Algo-
rithms, 606–609. Springer.
Wang, D., and Pu, C. 2015. Bean: A behavior analysis ap-
proach of url spam filtering in twitter. In 2015 IEEE Inter-
national Conference on Information Reuse and Integration,
403–410.
Zhu, Y.; Wang, X.; Zhong, E.; Liu, N. N.; Li, H.; and Yang,
Q. 2012. Discovering spammers in social networks. In
AAAI.




