
Mean Field Inference in Dependency Networks: An Empirical Study

Daniel Lowd and Arash Shamaei
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403

{lowd,arash}@cs.uoregon.edu

Abstract
Dependency networks are a compelling alternative to
Bayesian networks for learning joint probability distributions
from data and using them to compute probabilities. A de-
pendency network consists of a set of conditional probabil-
ity distributions, each representing the probability of a single
variable given its Markov blanket. Running Gibbs sampling
with these conditional distributions produces a joint distribu-
tion that can be used to answer queries, but suffers from the
traditional slowness of sampling-based inference. In this pa-
per, we observe that the mean field update equation can be
applied to dependency networks, even though the conditional
probability distributions may be inconsistent with each other.
In experiments with learning and inference on 12 datasets,
we demonstrate that mean field inference in dependency net-
works offers similar accuracy to Gibbs sampling but with
orders of magnitude improvements in speed. Compared to
Bayesian networks learned on the same data, dependency net-
works offer higher accuracy at greater amounts of evidence.
Furthermore, mean field inference is consistently more ac-
curate in dependency networks than in Bayesian networks
learned on the same data.

Introduction
In many domains, including recommender systems, fault di-
agnosis, and medicine, we wish to learn a joint probability
distribution from data and use it to compute the probabili-
ties of various events. The learning and inference tasks are
often treated separately, but it is their combination that de-
termines the overall accuracy of a system. A standard ap-
proach is to learn a probabilistic graphical model, such as a
Bayesian or Markov network, and answer queries using an
approximate inference algorithm, such as mean field infer-
ence or Gibbs sampling (Gilks, Richardson, and Spiegelhal-
ter 1996). These methods have been largely successful, but
have several limitations. For Bayesian networks, the need
to avoid cycles significantly restricts the set of probability
distributions that can be compactly represented. Undirected
models such as Markov networks are somewhat more flexi-
ble, but suffer from computationally expensive weight learn-
ing and structure learning.

Dependency networks are an often overlooked alterna-
tive that combine some of the best qualities of Bayesian

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Markov networks. Like Bayesian networks, dependency
networks can be learned efficiently from data. Like Markov
networks, they can represent many symmetric and cycli-
cal dependencies more compactly than a Bayesian network.
For these reasons, dependency networks have been success-
fully applied to tasks such as collaborative filtering (Heck-
erman et al. 2000) and part-of-speech tagging (Toutanova
et al. 2003). A relational extension of dependency net-
works has also been successfully applied to domains such
as fraud detection (Neville and Jensen 2007) and entity res-
olution (Natarajan et al. 2010).

However, dependency networks are traditionally limited
to a single inference algorithm – Gibbs sampling – which
may be slow to run and may produce different results de-
pending on the order in which variables are sampled. This
arises from the fact that the conditional probability distribu-
tions which comprise a dependency network are often incon-
sistent with each other, leading to a poorly-specified joint
probability distribution. This disadvantage has led depen-
dency networks to be largely ignored in favor of Bayesian
and Markov networks, which have clearer semantics.

In this paper, we show that an approximate version of the
mean field inference algorithm can be applied to dependency
networks, in spite of the fact that the conditional distribu-
tions in a dependency network may be inconsistent. We find
that mean field inference typically converges much faster
than Gibbs sampling and offers similar accuracy.

We then compare the speed and accuracy of learning and
inference in dependency networks to Bayesian networks, by
learning and evaluating both models on 12 publicly avail-
able datasets. We find that learning times are similar, but de-
pendency networks have consistently better test set pseudo-
likelihood. In our queries, mean field runs faster in depen-
dency networks than in Bayesian networks while producing
consistently more accurate results. When we run Gibbs sam-
pling in both models, their relative accuracy depends on the
amount of evidence. On queries with more evidence, de-
pendency networks are more accurate; with less evidence,
Bayesian networks are more accurate. However, the differ-
ences in probabilities are typically very small. This means
that dependency networks are a good choice for many appli-
cations, especially when queries will involve a large amount
of evidence.

Background
Bayesian Networks
Let X be a set of random variables {X1, X2, . . . , Xn}. A
Bayesian network (BN) (Pearl 1988) represents a probability
distribution over X , P (X), using a directed, acyclic graph
and a set of conditional probability distributions (CPDs).
The graph contains one node for each variable Xi. Each
CPD P (Xi|Πi) specifies the probability of a single variable
(Xi) given its parents in the graph (Πi). The product of these
CPDs gives the full joint probability distribution:

P (X = x) =
∏

i

P (Xi = xi|Πi = πi) (1)

Bayesian networks and other graphical models can be de-
fined over both discrete and continuous variables. For this
paper, we restrict our attention to discrete variables, al-
though many of the methods can be naturally applied to the
continuous and hybrid cases as well.

The Markov blanket of a variable Xi, denoted MB(Xi),
is the set of variables that render Xi independent from all
other variables in the domain. In a Bayesian network, this
set consists of Xi’s parents in the graph, Xi’s children, and
all variables that have a child in common with Xi. These
independencies, and others, are entailed by the CPD factor-
ization from Equation 1.

The simplest form for a CPD is a full table that specifies
the distribution of the child variable, Xi, given each config-
uration of its parent variables, Πi. However, this representa-
tion is exponential in the number of parent variables, effec-
tively limiting the maximum number of parents to a small
number.

A more efficient and flexible alternative is to repre-
sent conditional probabilities with probabilistic decision
trees (Chickering, Heckerman, and Meek 1997). A decision
tree is a directed, rooted tree, in which each leaf contains a
distribution over the target variable Xi. Each interior node
is labeled with one of Xi’s parents, Xj ∈ Πi, and each out-
going arc from this node is labeled with one or more values
of the parent variable, xj ∈ Val(Xj). The distribution at a
leaf gives the conditional probability of Xi given the con-
figurations of parent variables specified along the path from
the leaf to the root of the tree.

BN Inference
To answer queries, we use the BN to compute marginal and
conditional probabilities. Since exact inference in a BN
is #P-complete (Roth 1996), approximation algorithms are
typically necessary. Popular approximate inference algo-
rithms include Markov chain Monte Carlo methods, such as
Gibbs sampling; variational approximations such as mean
field (MF); and loopy belief propagation (BP).

Gibbs sampling proceeds by initializing the query vari-
ables randomly and then resampling each in turn, according
to its conditional probability given its Markov blanket. Ev-
idence variables remain fixed to their set values. The prob-
ability of a particular query is computed as the fraction of
the samples that match the query. For positive distributions
(i.e., all configurations have non-zero probability), Gibbs

sampling is guaranteed to eventually converge to the correct
distribution. However, this can take a very long time, and
convergence can be difficult to detect.

Sampling methods can often be improved by using
Rao-Blackwellization, in which some of the variables
are marginalized analytically. One way to apply Rao-
Blackwellization to Gibbs sampling is to add fractional
counts to the different states that could result from resam-
pling the current variable, based on their relative probabili-
ties. Then the variable is randomly assigned a single value,
as in regular Gibbs sampling. These fractional counts can
lead to a significant reduction in variance.

Belief propagation (BP) is an exact inference algorithm
for tree-structured Bayesian and Markov networks. Loopy
belief propagation is the application of the belief propaga-
tion algorithm to graphs with cycles (Murphy, Weiss, and
Jordan 1999). We use the flooding message propagation
scheme in our experiments, which sends messages from
variables to CPDs and then CPDs to variables in each it-
eration, as described by Kschischang et al. (2001).

We defer a full description of mean field inference to the
next section.

BN Learning
The objective of parameter learning is to select a set of
model parameters (CPD probabilities) that maximize a par-
ticular objective function on the training data. For Bayesian
networks, the most common objective function is log-
likelihood, penalized by a prior distribution on each con-
ditional distribution. We used the Beta(1,1) distribution as
the prior in all of our experiments, which is equivalent to
Laplace smoothing. In this case, parameter estimation can
be done in closed form from the sufficient statistics of the
training data.

In structure learning, the objective is to find the structure
that maximize an objective function such as the Bayesian
score (Heckerman, Geiger, and Chickering 1995). Finding
the optimal structure is NP-hard (Chickering, Heckerman,
and Meek 2004), but greedy search typically works well in
practice. A common approach is to do hill climbing with
random restarts, where the search operators include adding,
deleting, and reversing arcs. For decision tree CPDs, the
search operators consist of adding a split to a tree CPD,
which replaces a decision tree leaf node with a new interior
node that has leaves as its children (Chickering, Heckerman,
and Meek 1997). Operations that would lead to a cycle in
the BN are excluded from the search.

Dependency Networks
A dependency network (DN) (Heckerman et al. 2000)
consists of a set of conditional probability distributions
Pi(Xi|MB(Xi)), each defining the probability of a single
variable given its Markov blanket. These conditional distri-
butions may or may not be consistent with each other. The
graph of a DN is directed, with a node for each variable in
the domain. For each variable Xi, there are edges from the
nodes representing variables in Xi’s Markov blanket to the
node representing Xi.

Unlike a BN, the product of all CPDs gives the pseudo-
likelihood of an instance, P ∗, not its probability:

P ∗(X) =
∏

i

Pi(Xi|MB(Xi)) (2)

Pseudo-likelihood (Besag 1975) is a consistent estimator
commonly used for learning the parameters of Markov net-
works, since its local approach to normalization avoids
the intractability of partition function. However, pseudo-
likelihood learning tends to produce models that handle
long-range dependencies poorly.

The joint distribution of a DN is defined as the stationary
distribution of a Gibbs sampler run by using its CPDs for
the required Markov blanket distributions, Pi(Xi|MB(Xi)).
Heckerman et al. (2000) also describe a second method for
computing probabilities in which the probability of each
variable is computed in turn using the Gibbs sampler, condi-
tioned on the states of previous variables. This reduces the
variance when computing rare joint probabilities with sam-
pling, and is theoretically equivalent. Toutanova et al. (2003)
adapt the Viterbi algorithm to perform MAP inference in a
chain-structured DN. To our knowledge, no other inference
algorithms have ever been applied to DNs.

A dependency network can be constructed from any
Bayesian or Markov network by constructing a conditional
probability distribution for each variable given its Markov
blanket. A DN can also be learned from data by the same
methods used to learn a BN with tree-structured CPDs, ex-
cept without enforcing acyclicity. This makes DN learning
trivial to parallelize with a separate process for each vari-
able.

However, when learned from data, the resulting CPDs
may be inconsistent with each other. Heckerman et al. refer
to this as a “general dependency network.” Given a particu-
lar sampling order, a Gibbs sampler will still have a unique
stationary distribution when the distribution is positive (all
probabilities are non-zero). However, the stationary distri-
bution may depend on the ordering chosen. Furthermore,
the joint distribution determined by the Gibbs sampler may
be inconsistent with the conditional probabilities asserted by
the CPDs. When learned from data, DNs tend to roughly ap-
proximate consistency, since each CPD is approximating the
same empirical distribution of the training data.

Mean Field Inference in Dependency Networks
Mean field inference (MF) approximates an intractable dis-
tribution P with a fully factorized distribution Q:

Q(X) =
∏

i

Q(Xi) (3)

Q is selected to be as close as possible to the desired distribu-
tion P , where distance1 is measured as the Kullback-Leibler

1We use the term “distance” informally. KL divergence is not
symmetric, and therefore not a metric.

(KL) divergence between Q and P :

KL(Q ‖ P) =
∑
X

Q(X) log
Q(X)
P (X)

(4)

= EX∼Q

[
log

Q(X)
P (X)

]
(5)

By deriving the fixed point equations for MF, it can be shown
that every local optimum of the KL divergence satisfies the
following equation for every marginal in the Q distribution:

Q(Xi) =
1
Zi

exp
(
EX\{Xi}∼Q[log P (Xi|X \ {Xi})]

)
(6)

where Zi is a normalizing constant. This can be interpreted
as setting Q(Xi) to match the expectation of Xi in log space,
where the expectation is computed according to the distribu-
tion of the remaining variables in Q. By using this equation
to iteratively update each Q(Xi) marginal in turn, the KL
divergence can be shown to decrease in each iteration until
a local minimum is reached. A common ordering for the Q
updates is to use a queue, so that after Q(Xi) is updated,
the neighbors of Xi are added to the end of the queue if not
already in it. This continues until convergence.

These updates were derived by Haft et al. (1999). They
additionally observed that, since these equations only de-
pend on P through the conditional distributions P (Xi|X \
{Xi}) (or more specifically, P (Xi|MB(Xi)), since the
Markov blanket renders all other variables independent),
they could be used to define MF update equations for any
representation. However, Haft et al. did not apply these
equations to dependency networks where the conditional
distributions could be inconsistent.

Algorithm 1 contains pseudo-code for mean field infer-
ence in dependency networks. It is similar to Algorithm
11.7 from Koller and Friedman (2009), but with three mod-
ifications. The main change is line 8, which uses the con-
ditional distributions Pi(Xi|MB(Xi)) to perform the update
from Equation 6. This makes the algorithm applicable to
dependency networks, whether or not their conditional dis-
tributions are consistent. The algorithm also features a max-
imum number of iterations, MaxIters, so that the algorithm
will halt early if convergence is slow. In our experiments,
we set this to 50 times the number of non-evidence vari-
ables. Mean field almost always converged in fewer itera-
tions. When we increased the maximum number of itera-
tions, it always converged. The second modification is to
set a convergence threshold, ε, on the distance between the
old and new marginals. In our experiments, we used a Eu-
clidean distance of 0.0001 as the threshold. Algorithm 1 can
be made equivalent to the standard mean field inference al-
gorithm on a Bayesian or Markov network by setting ε to
zero, NumIters to infinity, and each Pi to the Markov blan-
ket distribution of Xi given its neighbors in the Bayesian or
Markov network.

In a consistent DN, MF will always converge to a local
minimum of the KL divergence, as in any other graphical
model. With inconsistent CPDs and determinism, it is easy
to produce oscillations. Given two binary variables A and

Algorithm 1 Mean field inference for dependency networks
1: Q← Q0

2: Iters← 0
3: Unprocessed← X
4: while Unprocessed 6= ∅ and Iters < MaxIters do
5: Choose Xi from Unprocessed
6: Qold(Xi)← Q(Xi)
7: for xi ∈ V al(Xi) do
8: Q(xi)← exp{EMB(Xi)∼Q[log Pi(Xi|MB(Xi)]}
9: end for

10: Normalize Q(Xi) to sum to one
11: if ‖Qold(Xi)−Q(Xi)‖ > ε then
12: Unprocessed← Unprocessed ∪MB(Xi)
13: end if
14: Unprocessed← Unprocessed - Xi

15: Iters← Iters +1
16: end while

B, let P (A|B) = 1 when A = B and P (B|A) = 1 when
B = A. MF run in this DN will oscillate forever unless ini-
tialized to the fixed point Q(A) = Q(B) = 0.5. With posi-
tive CPDs, where no probabilities are 1 or 0, it remains un-
known if convergence is always guaranteed. MF converged
in our experiments, but we do not know if this is always the
case.

Methods
In our experiments, we sought to evaluate the relative effec-
tiveness of different learning and inference schemes on real-
world data. We were particularly interested in how MF com-
pares to the standard approach of Gibbs sampling in DNs,
both in speed and accuracy. Furthermore, since BNs are an
alternative to DNs, we felt it was important to benchmark
our results against standard BN learning and inference meth-
ods. If BNs can produce more accurate answers than DNs in
less time, then the case for using DNs is relatively weak.

We ran our experiments on 12 publicly available datasets
collected and prepared by Davis and Domingos (2010) and
also used by Lowd and Davis (2010) for evaluating Markov
network structure learning algorithms. We excluded the
EachMovie dataset, since it is no longer publicly available.
All variables are binary-valued. The datasets vary widely in
size and number of variables. See Table 1 for a summary,
and Davis and Domingos (2010) for more details on their
origin. Datasets are listed in increasing order by number of
variables.

We learned DNs and BNs with tree CPDs using the Win-
Mine toolkit (Chickering 2002), which is based on the al-
gorithms of Chickering et al. (1997) and Heckerman et
al. (2000).2 WinMine uses a structure prior that penalizes
models based on the number of parameters:

P (S) ∝ κs (7)

2We also experimented with BNs with table CPDs, but found
their performance to be similar to BNs with tree CPDs. For brevity,
we only present the tree CPD results in this paper.

Table 1: Data Set Characteristics
Data Set Train Tune Test Num.

Set Set Set Vars.
Size Size Size

NLTCS 16,181 2,157 3,236 16
MSNBC 291,326 38,843 58,265 17
KDDCup 2000 180,092 19,907 34,955 64
Plants 17,412 2,321 3,482 69
Audio 15,000 2,000 3,000 100
Jester 9,000 1,000 4,116 100
Netflix 15,000 2,000 3,000 100
MSWeb 29,441 3,270 5,000 294
Book 8,700 1,159 1,739 500
WebKB 2,803 558 838 839
Reuters-52 6,532 1,028 1,540 889
20 Newsgroups 11,293 3,764 3,764 910

where s is the number of parameters in the model. To avoid
overfitting, we tuned the κ parameter on the tune set. We
evaluated on test data.

We ran inference using a Rao-Blackwellized Gibbs sam-
pler, with 100 burn-in iterations and 1000 sampling itera-
tions. We experimented with running the Gibbs sampler
for ten times as long, but found that additional iterations
produced little benefit on most of our datasets. We also
ran mean field and belief propagation. All inference algo-
rithms were implemented in the open-source Libra Toolkit.3
We use DN.Gibbs and DN.MF to refer to Gibbs sampling
and mean field in a learned dependency network, respec-
tively; and BN.Gibbs, BN.MF, and BN.BP to refer to Gibbs
sampling, mean field, and belief propagation in a learned
Bayesian network, respectively.

All inference algorithms are evaluated using test set con-
ditional marginal log-likelihood (CMLL), a common eval-
uation metric (Lee, Ganapathi, and Koller 2007; Davis and
Domingos 2010). The CMLL represents the expected log
loss of the query variable marginals, given the evidence vari-
ables:

CMLL(X = x) =
1
|XQ|

∑
Xi∈XQ

log P (Xi =xi|XE =xe)

(8)
where XQ is the set of query variables, XE is the set of
evidence variables, and xe denotes the configuration of the
evidence variables in the example. Unlike Davis and Domin-
gos (2010), we randomly select a separate set of query and
evidence variables for each instance in the test set. The frac-
tion of evidence variables ranges from 10% to 90% of the
total variables in the domain, by 10% increments. All other
variables are used as query variables. In order to reduce the
variance among results with different amounts of evidence,
the evidence variables in each query at 10% evidence are
a subset of those at 20% evidence, which are a subset of
those at 30% evidence, and so on. This makes our queries
at different levels of evidence more similar, while remaining
unbiased.

3The Libra Toolkit is available from http://libra.cs.uoregon.edu

Table 2: Learning time (in seconds), complexity (number of parameters), test set pseudo-log-likelihood (PLL), and test set
log-likelihood (LL) of learned models. Reported error range is one standard deviation of the mean. Standard errors of less than
0.0005 are reported as 0.000. When differences in PLL or LL are statistically significant, the better result is in bold.

Dependency Networks Bayesian Networks
Data set Time Cmplx. PLL LL Time Cmplx. PLL LL
NLTCS 1.3 875 -0.311 ± 0.004 -0.376 ± 0.005 1.2 130 -0.314 ± 0.004 -0.378 ± 0.005
MSNBC 38.8 6790 -0.254 ± 0.001 -0.355 ± 0.001 155.9 2016 -0.254 ± 0.001 -0.354 ± 0.001
KDDCup 2000 27.1 4018 -0.032 ± 0.000 -0.034 ± 0.001 12.3 577 -0.033 ± 0.000 -0.034 ± 0.001
Plants 8.3 3482 -0.131 ± 0.002 -0.192 ± 0.003 21.8 3167 -0.136 ± 0.002 -0.185 ± 0.003
Audio 14.7 3641 -0.387 ± 0.003 -0.405 ± 0.005 26.4 1802 -0.398 ± 0.003 -0.404 ± 0.005
Netflix 19.0 4003 -0.549 ± 0.002 -0.573 ± 0.002 28.9 1433 -0.557 ± 0.002 -0.572 ± 0.002
Jester 12.7 3033 -0.523 ± 0.002 -0.539 ± 0.003 17.0 1081 -0.540 ± 0.003 -0.538 ± 0.003
MSWeb 31.5 6313 -0.029 ± 0.000 -0.033 ± 0.001 24.3 1608 -0.029 ± 0.000 -0.033 ± 0.001
Book 20.6 4675 -0.071 ± 0.002 -0.072 ± 0.003 11.8 1877 -0.075 ± 0.003 -0.074 ± 0.004
WebKB 49.8 5193 -0.180 ± 0.004 -0.191 ± 0.006 41.1 2774 -0.186 ± 0.004 -0.190 ± 0.006
Reuters-52 122.0 8247 -0.092 ± 0.002 -0.106 ± 0.003 126.3 5156 -0.097 ± 0.002 -0.102 ± 0.003
20 Newsgroups 470.6 14526 -0.171 ± 0.002 -0.172 ± 0.003 495.2 6350 -0.177 ± 0.002 -0.172 ± 0.003

Results
Table 2 summarizes the BN and DN models learned on each
dataset.

Learning DNs is faster than learning BNs in 7 out of 12
datasets. Therefore, DN learning time is at least comparable
to BNs.

For pseudo-log-likelihood, DNs are significantly better
on 10 out of 12 datasets according to a paired t-test (p <
0.05). MSWeb is the only dataset where BNs perform bet-
ter. The better pseudo-likelihood of DNs in this experiment
is the consequence of the fact that DNs effectively optimize
pseudo-likelihood while learning.

We used Algorithm 1 from Heckerman et. al (Heckerman
et al. 2000) to approximate the log-likelihood in dependency
networks. Since this is a very slow sampling-based algo-
rithm, we used only 40% of the test data. Log-likelihood for
the BNs was computed exactly on the same subset. DNs are
significantly better on 3 datasets and BNs are significantly
better on 4, according to a paired t-test (p < 0.05). We ex-
pected BNs to do better, since they are directly optimizing
log-likelihood, but DNs were surprisingly competitive.

We then ran multiple inference algorithms on all data sets
to evaluate the accuracy of the different models and algo-
rithms in answering conditional queries. Figure 1 shows
the per-variable CMLL for each data set, averaged over all
amounts of evidence (10% to 90%). With the exception of
BN.MF, all algorithms have very similar accuracies. BN.BP,
BN.Gibbs, and DN.Gibbs tend to be slightly more accu-
rate than DN.MF. On every dataset, DN.MF is more accu-
rate than BN.MF. Whether DN.Gibbs is more accurate than
BN.Gibbs depends on the dataset. Overall, the accuracy of
DN.MF is superior to BN.MF and comparable to other in-
ference algorithms.

Figure 2 depicts the average inference time for each data
set, averaged over all amounts of evidence. For infer-
ence time, the MF methods are the fastest, often 1-2 or-
ders of magnitude faster than the other methods. In addition,
DN.MF is faster than BN.MF in 10 data sets out of 12.

To tease apart the differences between DNs and BNs, we

Table 3: Number and fraction of datasets on which
DN.Gibbs and DN.MF are more accurate than BN.Gibbs
and BN.BP, respectively.

DN.G DN.MF
Evidence vs. BN.G Percent vs. BN.BP Percent

10% 3 25% 1 8%
20% 1 8% 1 8%
30% 1 8% 1 8%
40% 3 25% 3 25%
50% 5 42% 5 42%
60% 7 58% 8 67%
70% 10 83% 9 75%
80% 10 83% 10 83%
90% 11 92% 11 92%
Total 51 47% 39 36%

looked at wins and losses by amount of evidence. Table 3
compares DN.Gibbs to BN.Gibbs and DN.MF to BN.BP,
respectively. We chose to compare DN.MF to BN.BP here
because BN.MF is consistently less accurate, and BN.BP is
also an iterative message-passing algorithm. Many of these
wins and losses are by very small amounts, but the trends are
still informative. At greater amounts of evidence, DNs are
increasingly accurate relative to BNs. This can be explained
by the fact that DNs are optimizing a conditional measure
when learned, while BNs are optimizing the overall likeli-
hood. This is also consistent with DNs having better PLL
values than BNs (see Table 2), since PLL conditions on the
most evidence possible: all other variables.

Since Gibbs sampling is an anytime algorithm, we can
force it to match the speed of mean field. Table 4 shows the
results of running Gibbs sampling in either DNs or BNs with
the same amount of time required by DN.MF to converge.
In most cases Gibbs sampling is less accurate, since DN.MF
converges much faster than Gibbs. In total, DN.MF wins
85% of the time compared to DN.Gibbs and 79% of the time
compared to BN.Gibbs.

Finally, we measured the difference between the marginal

!"#$%
&%!'$

())$*+,-...
/01234

5*678
!93:07;

<9439=
&%>9?

'88@
>9?('

A9*39=4BC-
-.,!9D4E=8*+4

B.FG

B.FC

B.FH

B.FI

B.F-

B.FJ

.

5K9=1E9,$&""

)!F&L

'!F&L

)!FM7??4

'!FM7??4

'!F'/

)131,%93

$
&

"
"

Figure 1: Per-variable CMLL for each dataset, averaged over all amounts of evidence. Shorter bars are better.

!"#$%
&%!'$

())$*+,-...
/01234

5*678
!93: 07;

<9439=
&%>9?

'88@
>9?('

A9*39=4BC-
-.,!9D 4E=8*+4

.

-.

F.

G.

H.

I..

I-.

)!J&K

'!J&K

)!JL7??4

'!JL7??4

'!J'/

)131,%93

#
7M

9
,N
4
9
O
8
2
6
4
P

Figure 2: Average inference time for each dataset, averaged over all amounts of evidence.

Table 4: Number and fraction of datasets in which DN.MF
is more accurate than DN.Gibbs and BN.Gibbs when run for
the same amount of time.

DN.Gibbs BN.Gibbs
Evidence MF Wins Percent MF Wins Percent

10% 9 75% 7 58%
20% 10 83% 6 50%
30% 10 83% 6 50%
40% 9 75% 10 83%
50% 10 83% 10 83%
60% 10 83% 11 92%
70% 11 92% 11 92%
80% 11 92% 12 100%
90% 12 100% 12 100%
Total 92 85% 85 79%

probabilities inferred by DN.MF and all other methods. We
chose root mean squared difference as our metric, since it
penalizes large differences more than small differences. For
10 out of 12 datasets, the root mean squared difference be-
tween DN.MF and the other methods was less than 0.005.
Between DN.MF and BN.Gibbs, the root mean squared dif-
ference was less than 0.001 on half of the datasets. Between
DN.MF and DN.Gibbs, the root mean squared difference
was less than 0.0005 on 9 datasets. This supports the hy-
pothesis that all methods produce similar results. In partic-
ular, MF and Gibbs sampling give very similar probabilities

in dependency networks.
Source code and additional results are available in

the online appendix at http://ix.cs.uoregon.edu/
∼lowd/dnmf.

Conclusion

Mean field inference in DNs offers similar accuracy to Gibbs
sampling but in significantly less time. It is also consistently
more accurate than running mean field inference in a BN
learned on the same data. When we compare to other BN
inference algorithms as well, we find that DNs are more ac-
curate when more evidence is available. Therefore, although
BNs remain a good choice for many applications of statisti-
cal learning and inference, DNs are a compelling alternative.

In future work, we intend to apply mean field to relational
dependency networks (Neville and Jensen 2007). In rela-
tional domains such as social network analysis, networks
are typically cyclical and large-scale, making dependency
networks with mean field inference a natural choice over di-
rected models or Gibbs sampling.

Acknowledgments

We thank Jesse Davis, Chloé Kiddon, and Aniruddh Nath
for feedback on earlier drafts of this paper, and Christopher
Meek for helpful discussions.

References
Besag, J. 1975. Statistical analysis of non-lattice data. The
Statistician 24:179–195.
Chickering, D.; Heckerman, D.; and Meek, C. 1997. A
Bayesian approach to learning Bayesian networks with local
structure. In Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence, 80–89. Providence,
RI: Morgan Kaufmann.
Chickering, D.; Heckerman, D.; and Meek, C. 2004. Large-
sample learning of Bayesian networks is NP-hard. Journal
of Machine Learning Research 5:1287–1330.
Chickering, D. M. 2002. The WinMine toolkit. Technical
Report MSR-TR-2002-103, Microsoft, Redmond, WA.
Davis, J., and Domingos, P. 2010. Bottom-up learning of
Markov network structure. In Proceedings of the Twenty-
Seventh International Conference on Machine Learning.
Haifa, Israel: ACM Press.
Gilks, W. R.; Richardson, S.; and Spiegelhalter, D. J., eds.
1996. Markov Chain Monte Carlo in Practice. London, UK:
Chapman and Hall.
Haft, M.; Hofmann, R.; and Tresp, V. 1999. Model-
independent mean field theory as a local method for approx-
imate propagation of information. Computation in Neural
Systems 10(1):93–105.
Heckerman, D.; Chickering, D. M.; Meek, C.; Rounthwaite,
R.; and Kadie, C. 2000. Dependency networks for infer-
ence, collaborative filtering, and data visualization. Journal
of Machine Learning Research 1:49–75.
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning 20:197–243.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA: MIT
Press.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001.
Factor graphs and the sum-product algorithm. IEEE Trans-
actions on Information Theory 47:498–519.
Lee, S.-I.; Ganapathi, V.; and Koller, D. 2007. Ef-
ficient structure learning of Markov networks using L1-
regularization. In Advances in Neural Information Process-
ing Systems 19, 817–824. MIT Press.
Lowd, D., and Davis, J. 2010. Learning Markov network
structure with decision trees. In Proceedings of the 10th
IEEE International Conference on Data Mining (ICDM).
Sydney, Australia: IEEE Computer Society Press.
Murphy, K.; Weiss, Y.; and Jordan, M. 1999. Loopy be-
lief propagation for approximate inference: An empirical
study. In Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence. Stockholm, Sweden: Mor-
gan Kaufmann.
Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B.; and
Shavlik, J. 2010. Boosting relational dependency networks.
In Proceedings of the Twentieth International Conference on
Inductive Logic Programming. Firenze, Italy: Springer.

Neville, J., and Jensen, D. 2007. Relational dependency
networks. Journal of Machine Learning Research 8.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Francisco, CA:
Morgan Kaufmann.
Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82:273–302.
Toutanova, K.; Klein, D.; Manning, C.; and Singer, Y.
2003. Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proceedings of the 2003 Human Lan-
guage Technology Conference and North American Chapter
of the Association for Computational Linguistics, 173–180.
Association for Computational Linguistics.

