Leveraging USB to Establish Host Identity Using
Commodity Devices

Adam Bates, Ryan Leonard, Hannah Pruse, Daniel Lowd, and Kevin R. B. Butler
Department of Computer and Information Science
University of Oregon, Eugene, OR
{amb, ryan, hpruse, lowd, butler}@cs.uoregon.edu

Abstract—Determining a computer’s identity is a challenge
of critical importance to users wishing to ensure that they are
interacting with the correct system; it is also extremely valuable
to forensics investigators. However, even hosts that contain trusted
computing hardware to establish identity can be defeated by
relay and impersonation attacks. In this paper, we consider how
to leverage the virtually ubiquitous USB interface to uniquely
identify computers based on the characteristics of their hardware,
firmware, and software stacks. We collect USB data on a corpus
of over 250 machines with a variety of hardware and software
configurations, and through machine learning classification tech-
niques we demonstrate that, given a period of observation on the
order of tenths of a second, we can differentiate hosts based on
a variety of attributes such as operating system, manufacturer,
and model with upwards of 90% accuracy. Over longer periods
of observation on the order of minutes, we demonstrate the
ability to distinguish between hosts that are seemingly identical;
using Random Forest classification and statistical analysis, we
generate fingerprints that can be used to uniquely and consistently
identify 70% of a field of 30 machines that share identical OS
and hardware specifications. Additionally, we show that we can
detect the presence of a hypervisor on a computer with 100%
accuracy and that our results are resistant to concept drift, a
spoofing attack in which malicious hosts provide fraudulent USB
messages, and relaying of commands from other machines. Our
techniques are thus generally employable in an easy-to-use and
low-cost fashion.

I. INTRODUCTION

Determining the identity of a computer is a necessary
precondition for trusting it. However, being able to verify that
a machine is actually what it presents itself as is a surpris-
ingly challenging problem. Consider a desktop computer in
a corporate office. For that computer’s user, it would seem
natural to assume that observing physical indicators about the
machine, such as seeing it is still there, it is the expected make
and model, and even that it has the correct serial number on
it, should be sufficient to have confidence that the machine
is the user’s own and is responding to the user’s commands.
However, even if the computer is physically present, there is
little preventing that machine from silently relaying commands

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS ’14, 23-26 February 2014, San Diego, CA, USA

Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

to another computer that is in turn providing responses in
place of the machine being used. Such an attack against
trusted hardware was proposed by Parno [1], who termed it
the “cuckoo attack™ after the birds that lay their eggs in the
nests of other species.

More generally, evading identification through relay or
wormhole attacks has been demonstrated in wireless net-
works [2], with RFIDs [3], and even with mobile devices
using near-field communication [4]. Solutions to the unique
identification problem have run the gamut from displaying
visual indicators on machines [5] to establishing uniqueness
in processor chipsets through physically unclonable functions
(PUFs) [6], to relying on trusted hardware such as the Trusted
Platform Module (TPM) [7] containing a unique private key.
However, as Parno showed, even trusted hardware has the
potential to be subverted. Additionally, solutions such as PUFs
and TPMs do not address the vast set of legacy systems in
place that do not have these devices deployed.

In this paper, we propose that the USB port found on
virtually every computer and many embedded devices can be
used as a means of determining identity. The combination
of software variation among USB stacks, differences in USB
host controllers, and variations in manufacture of the bus,
chipsets, and other hardware portions allow us to be able to
fingerprint machines based on the timing of USB messages
they send to a device connecting to them. Consequently,
we call our technique USB Fingerprinting, and in this work
we demonstrate its practicality and efficacy for a variety of
applications. Using machine learning classification techniques,
we demonstrate that, through observing the enumeration phase
of the USB protocol, we can differentiate hosts based on
attributes such as operating system, manufacturer, and model,
and in many cases develop a classification model that uniquely
identifies host machines. Our machine identification trials show
that USB Fingerprinting, at best, can build a set of models that
consistently identifies 70% of a field of 30 seemingly identical
machines. However, even these results are strong enough to
serve as a reference point in a larger forensic scheme.

Previously, USB forensics has required manual collection
of data via an expensive USB analyzer [8], or a the design of
a custom embedded device [9]. In contrast, we have developed
an automated data collection and protocol analyzer application
for a commodity Android smartphone. We confirm that our
platform provides equivalent results to USB analyzers, and
additionally that our techniques are applicable to even low-
cost embedded devices such as Gumstix [10].

The ability to perform USB fingerprinting was postulated
in a previous workshop publication [8], but this work suffered
from a small data corpus and classification techniques that
failed to establish even basic information about a host’s iden-
tity, such as machine model. Other works that have considered
USB information focused on the protocol as a vector for
attack [9], [11]. Crucially, these previous works, and more
generally, most other fingerprinting proposals (e.g., [12], [13],
[14]) have made the assumption of a benign environment in
which the fingerprint target’s input is essentially trusted and
no countermeasures are taken in case the host is responding
maliciously. For example, Eckersly’s proposal for website
identification [13] tests against existing browser anonymization
plug-ins, but the fingerprint scheme is still ultimately built on
trusted input from the target. By contrast, we demonstrate that
our approach is robust against a number of active attacks,
such as malicious inputs, making it potentially viable as
a fingerprinting mechanism in malicious environments. We
also demonstrate resistance to concept drift' in our approach
by examining data measured three months after the original
measurements were taken.

USB Fingerprinting identifies devices via a physical con-
nection, rather than relying on wireless [15] or visual in-
dicators [16]. While remote attestation is often desirable,
reliance on networked environments is also a limitation. For
example, network fingerprinting is not an option for non-
networked embedded devices or “sneaker nets”, which have
recently gained notoriety for having been targeted by the
Stuxnet virus [17]. Physical connectivity also prevents spoofing
and anonymization attacks to which networking fingerprinting
techniques are vulnerable [18], [14], [19].

This paper makes the following contributions:

e A methodology for feature extraction of USB trace
data: We examine USB enumerations, handshakes
representing milliseconds of communication between
master and slave devices. Applying this insight, we
develop a feature extraction methodology that we
apply to tens of thousands of traces. We conduct
a university-wide survey of USB stack behavior,
presenting a dataset of over 30,000 traces of USB
operations from 256 different machines of various
makes, models, and operating systems. We quantify
the information gain of the resultant feature vector
across a variety of class labels representing different
host machine attributes.

e Design and evaluation of USB-based machine clas-
sification techniques: We use USB data to differ-
entiate between different manufacturer models with
97% accuracy, between operating systems with 100%
accuracy, and between OS versions with an accuracy
of 94%. Even more remarkably, we employ statistical
techniques that allow us to iteratively refine results
for individual machines, yielding a fingerprint that
can uniquely identify 70% of a field of 30 identically
specified machines. We analyze our feature vectors
and machine learning models in order to discover
methods of further optimization. We also show that

'Concept Drift [20] is a machine learning problem in which statistical
properties (e.g., accuracy) of a classification model degrade over time.

Host
[oF]

USB Driver

|

|

|

|

| -

I HC Driver |
| USB System
|

|

|

|

|

|

manages pipes

|
Host luss
Controller SIE "

USB Bus Interface

Fig. 1: Overview of a host USB Stack.

our techniques apply to USB-equipped embedded de-
vices, and can be used to swiftly detect the presence
of virtualization. We consider the efficacy of our
approach against an active adversary, and discover that
our scheme is resistant to IP-based relay attacks, and
spoofing attacks that would prove successful against
previous USB fingerprinting techniques [8], [11], [9].

e Development of collection and analysis tools for
commodity deployment: While USB analyzers can
be used to get fine-grained protocol information, they
suffer from being bulky, expensive, and uncommon.
To make USB Fingerprinting broadly adoptable, we
develop and release smartphone applications for the
Android operating system that can be used to ef-
fectively and automatically perform the collection
and analysis of USB data. Both the applications and
dataset are to be released, with continual updates as
our corpus grows. To our knowledge, this is the largest
compilation of such data ever to have been made
publically available.

The rest of the paper is structured as follows: Section
2 provides an overview of USB operation and the specific
messages that we collect, Section 3 describes our methodology
for collecting USB trace data, and Section 4 describes our
classification techniques and results. Section 5 describes the
applicability of USB Fingerprinting to other contexts, such
as detecting virtualized environments, fingerprinting devices
that are not computers, using multiple collection devices, and
issues relating to concept drift. Section 7 describes how USB
Fingerprinting can be widely deployed with our developed
Android application, explores how we can defend against
fraudulent and relaying hosts, and discusses future directions.
Section 8 provides related work and Section 9 concludes.

II. USB PrROTOCOL
A. Overview of Operation

USB is a standard that defines a software protocol,
firmware protocol, and a set of hardware used in communi-
cation between a host and a device across a serial bus [21].
Since USB is a master/slave protocol, the host initiates all
interactions. As shown in Figure 1, USB stacks vary from

Host Device
GetDescriptor (Device)

Data

Out/Status Transaction

SetAddress (121)

In/Status Transaction

R

Fig. 2: An example USB data flow. Control transfers (dotted
lines) are comprised by a set of transactions (solid lines).

host to host, and are made up of a host controller, a controller
driver, a USB driver, and host software. Many machines today
support USB, including personal computers, servers, tablets,
routers, and embedded systems. We focus on the USB 2.0
protocol, since while the USB 3.0 “SuperSpeed” protocol has
been codified, it has not been as widely deployed.

In order for a USB device to be used with a given host, it
must go through a setup procedure consisting of three steps.
First, is the bus setup, during which a set of standard electrical
signals is relayed between the host and device’s respective
serial interface engines (SIE). This step indicates to the host
that a device is connected; the two parties then handshake
and negotiate parameters such as the communication speed
of the device. The second step is the enumeration phase,
whereby the host queries the device to determine information
such as the device’s type (e.g., mass storage, human interface
device), manufacturer and model, and the functionality it
supports, among other parameters. Finally, further interactions
are passed from the host’s client software through the standard
system call interface (e.g., read(), write(), ioctl()) to the
device’s high-level USB functions (e.g., providing an interface
to internal storage, relaying video from a webcam).

B. Enumeration

In this work, we analyze the enumeration phase of a
USB interaction to make inferences about a host’s USB stack.
Enumeration is a good candidate for analysis, as extensive
interaction with the host system is not required to force the
host to enumerate a device. Thus, it is possible to trigger
USB enumerations on any physically accessible machine, even
when lacking login credentials. Additionally, the enumeration
phase is well defined in the USB 2.0 specification [21],
making it easy to interpret. While specific message content
and timing will vary depending on the host’s USB stack and
the connecting peripheral, the presence and purpose of the
enumeration phase is host and device agnostic.

The process of enumeration is a host-driven operation
that consists of a three-layered protocol. At the top layer are
control transfers, USB data flows that offer lossless delivery,
that exchange configuration information between the host and
the device endpoint. An example of a control transfer is

GetDescriptor (String Manufacturer), which in-
forms the host of the device’s manufacturer. At the middle
layer, transactions offer a logical abstraction for bundles of
packets. A notable transaction is the setup transaction, which
describes in detail what the following transactions will be;
once the content of the setup transaction is known, the content
of subsequent messages is well defined. Note that interrupt
requests (IRQ) on a device must be signaled at the end of each
transaction, to inform the device’s software to queue a future
transaction. At the bottom layer there are USB packets, which
transmit the actual data. Each control transfer is formed by two
or more transactions, and each transaction is composed of two
or more packets. A sample composition of USB enumeration is
portrayed in Figure 2: the control transfers GetDescriptor
and SetAddress appear in the figure, and are composed of
transactions that include setup and out/status.

III. METHODOLOGY

This work is inspired by the advent of non-intrusive, high-
speed USB protocol analyzers. These tools passively intercept
individual packets in order to reconstruct USB traces at the
logical layer. Developers are able to use this information to
detect errors at different levels of the USB stack as well as
measure performance [22]. Unfortunately, these devices are
costly, reaching into the thousands of dollars. In this study,
we worked with a USB analyzer that weighed 1.65 pounds
with 6x5x2.5 inch dimensions, hampering its portability and
adoptability. In order to inspect the results of the USB trace,
users must also plug the USB analyzer into another PC with
specialized software. Additionally, it is difficult to collect large
numbers of USB traces, as manual unplugging and reinsertion
of the device is required.

This section is structured as follows: in Section III-A we
present a threat model for our scheme; in Section III-B we
compare the performance of an industry-class USB protocol
analyzer with our own Android-based device; in Section III-C
we detail our data collection procedure; in Section III-D we
discuss the contents of our corpus of collected data; in Section
III-E we describe our feature extraction procedures; and in
Section III-F we offer insights into how these features can be
used to identify hosts.

A. Threat Model

We assume that an adversary has the ability to arbitrarily
control the software of the host system being fingerprinted,
and has ownership of the kernel. We assume that the adversary
thus has the ability to modify the USB device driver and to
modify USB messages returned from the host. Additionally,
such ownership allows the host to arbitrarily relay messages
to a different computer through a network interface, thus
allowing the bypass of the LPC bus where the TPM resides,
and other peripherals. We assume that the attacker has the
ability to physically access the host machine and to tamper
with it; however, we assume that the initial collection of
measurements is performed on an uncompromised machine.
We do not assume the use of wireless USB on the system. We
further analyze the security of the scheme and its potential
limitations in Section VI-B.

Ly .
| Device

Function

| Android
| Application
[by

USB Bus
Interface

USB Bus
Interface

Logical Communications Flow

<@ Physical Communications Flow

Fig. 3: USB communications model. We observed physical
communications via an Ellisys USB Explorer to confirm the
correctness of an Android-based protocol analyzer.

B. Hardware USB Analyzer

Our approach to machine fingerprinting begins with the
observation that lightweight devices with USB interfaces are
now ubiquitous, to the point that many of us carry multiple
USB devices on our person throughout the day. Smart phones
charge and physically connect to other machines with USB,
and USB flash drives are a fixture of key chains and briefcases
in many work environments. Even certain USB drives, such
as Imation’s IronKey [23], now come equipped with on-board
CPUs that provide additional security and usability features.

As we developed our own protocol analyzer device, we
used the Ellisys USB Explorer 200 [22] to establish a ground
truth for USB observation. Figure 3 visualizes the Ellisys
explorer’s ideal vantage point in the USB communications
model; by physically intercepting packets as they traverse the
wire, Ellisys can obtain highly precise timing information and
perfectly reconstruct traces. This performance comes at the
cost of usability. Figure 3 also depicts the vantage point of
our own USB collection mechanism, an Android smartphone
application that intercepts messages at the device controller
driver level. By routing our own device through the USB
analyzer, we were able to confirm the correct behavior of
our Android application. Using Ellisys software, we were able
to map the timing data of our observed USB enumeration
recordings to the actual serial bus activity. A representative
mapping between Android and Ellisys data is shown in Table
I. This assured the proper functionality of our USB collection
application, allowing us to move forward with data collection.

C. Smartphone Collection

To avoid using costly and exotic hardware, we developed
a USB analyzer for a device that many users already own,
namely an Android smartphone. The timing data measurable
from the device’s userspace USB function proved too coarse-
grained, so we resorted to accessing kernel memory through
rooting the phone. We used kprobe modules to dynamically al-
ter musb_gadget_ep0.c (forward_ to_driver, musb_g_ep0_irq)
and android.c (android_setup). With these modifications in-
stalled, we were able to capture individual IRQs with microsec-

Control Transfer Android (sec) [Ellisys (sec)]
GetDescriptor (Device) 0 0
SetAddress (121) N/R | 0.111 992 200
GetDescriptor (Device) 0.132 202 0.131 983 683
GetDescriptor (Configuration) 0.132 508 0.132 773 683
GetDescriptor (Configuration) 0.132 782 | 0.132 890 216
GetDescriptor (String: Language) 0.133 057 0.133 015 483
GetDescriptor (String: Product) 0.133 423 0.133 257 716
GetDescriptor (String: Manufacturer) 0.133 698 0.133 390 216
GetDescriptor (String: Serial Number) 0.134 003 0.133 508 250
SetConfiguration 0.134 491 0.133 803 183
GetDescriptor (String: Interface) 0.134 918 0.134 272 716
ClearFeature (Endpoint 1 IN) N/R 0.165 663 866
ClearFeature (Endpoint 2 OUT) N/R 0.166 395 233
ClearFeature (Endpoint 1 IN) N/R 0.167 016 066
GetDescriptor (String: Language) 1.135 742 1.134 755 000
GetDescriptor (String: Serial Number) 1.136 048 1.135 822 016

TABLE I: Enumeration on a Linux host. The Ellysis USB Ex-
plorer confirms the approximated timing information captured
by our application in the Android kernel. N/R denotes events
that were not recorded by our device.

ond timing. We were also able to force calls to usb_disconnect
after each enumeration, thereby automating the process of
recording multiple traces on a target host. This allowed us
to collect the individual transactions that constitute the full
enumeration process. While the need to root the device is
a limitation to our approach, we note that the installation of
aftermarket open-source firmware for Android devices is now a
simple process thanks to communities like CyanogenMod [24].
Moreover, when finished collecting data, the kprobe modules
are automatically uninstalled, allowing the phone to resume
the standard USB behaviors of a stock Android device.

To ensure consistent behavior across a variety of hosts and
devices, we chose to collect timestamps from all transactions’
IRQs, but the data payloads of only the setup IRQs. We found
that logging the contents of every IRQ required excessive
memory copying in atomic functions, consequently causing
USB enumeration to fail and the device’s kernel to panic.
Additionally, the setup transaction dictates the contents of sub-
sequent transactions within the control transfer. We concluded
that dumping the payloads of setup transactions alone would
offer sufficient information to see the full context of enumer-
ation. We call the combination of transaction timestamps and
content captured over the course of enumeration a USB Trace.

Kernel-level buffering occurred whenever an IRQ’s times-
tamp was logged. The resulting average delay was 120 us
compared to the serial bus activity observed via Ellisys. For
example, the delay between the first and second IRQ in a
control transfer is as short as a 3 pus. However, the log
showed as much as 150 wus delay, a 147 pus discrepancy.
Fortunately, at the end of each control transfer, there is a
pause of sufficient length to permit the buffer time to fully
clear, thus resynchronizing with the serial bus. This gives us
accurate timing information for the setup transaction of every
control transfer, shown in Table 1.

Using the Android USB Analyzer application that we
explain in greater detail in Section VI-A, we were able to
automate collection of USB traces. The process for data
collection was as follows:

[Class [Label [[Host Count |
[Os [I 256 |
Linux 3.2 8
OSX 10.6 2
OSX 10.7 15
OSX 10.8 49
Windows 7 SP1 182
[Model | I 256 |
Apple iMac 10 27
Apple iMac 11 5
Apple iMac 12 25
Apple iMac 13 8
Apple Mac Mini 52 2
Dell Dimension 4700 2
Dell Latitude 6500 23
Dell Latitude 6510 3
Dell Optiplex 745 32
Dell Optiplex 760 6
Dell Optiplex 980 34
Dell Optiplex 990 43
Dell Optiplex gx520 4
Dell Optiplex sx280 5
Dell Precision t3500 32
Dell Precision t3600 5
[TOTAL MACHINES INSPECTED: 1 256 |
| TOTAL MEASUREMENTS COLLECTED: || 32,150 |

TABLE II: Description of data corpus.

1. Record target machine attributes in Android USB Analyzer
interface (e.g., serial number, OS, Manufacturer).

2. Hard reset the target machine.

3. Disconnect other USB devices from the target machine.

4. Plug the phone into the target machine.
5. Allow the Android USB Analyzer
automatically collect the specified
enumerations.

application to
number of USB

The procedure was meant to eliminate additional variables
that might influence the timing result. Determining the robust-
ness of the approach when the machine is potentially under
load, or identifying appropriate periods of machine quiescence,
is future work.

We elected to develop on Android due to the widespread
adoption of this platform. However, we note that our methodol-
ogy would be similarly effective using other collection devices.
For example, in preliminary tests we collected data using a
Gumstix device [10] running a Linux kernel that was modified
to record USB message timestamps. Using the Gumstix data,
we identified machines by OS and model with comparable
accuracy to our Android data corpus (see Section IV-B).

D. Data Corpus

Following the procedure described above, we performed
data collection on a variety of machines across a university
campus. In addition to 8 student-accessible computer labs, we
also obtained decommissioned machines from the university’s
IT department. Our dataset includes thousands of traces col-
lected from 6 Linux, 66 OSX, and 182 Windows hosts. The
corpus is described comprehensively in Table II. We collected
at least 50 enumeration traces from each machine, and col-
lected data from some machines multiple times, resulting in

®

®

" Windows 7 mmmm " Windows 7 mmm
Osx EzZz3 Osx =

Linux === 7 Linux === 7

- E

0.5 1 1.5 2 2.5 3 3.5 0 0.05 0.1 0.15 0.2 0.25 ES 0.35 0.4 0.45 0.5
Time (Milliseconds) Time (Milliseconds)

w oo N
w oo N
e

Frequency (Thousands)

ok N W

Frequency (Thousands)

ok N W
T

(a) GetDescriptor (Serial) (b) GetDescriptor (Language)

@

)

m Windows 7 mmmm m "Windows 7
o, Gsx == | o, Osx == |
c Linux == 27f Linux ==
I~ ©

w6l Tl

> >

g5l g

. E.

>

T3t 1 T3t

c c

Ll i @l

S E]

o o

ol 1 olF

2 s

o W o

0.1 02 0.; EA)A O‘S‘ 0.6 O‘; 0.8
Time (Milliseconds)

(d) SetConfiguration (1)

0.05 0.1 0.15 0.2 0.25 0.3 0
Time (Milliseconds)

o

(c) GetDescriptor (Manufacturer)

Fig. 4: Timing data for selected features by operating system.

over 30,000 traces collected. We continue to add to this dataset,
and expect it to eventually describe the USB characteristics of
tens of thousands of machines.

During data collection for this study, we were limited by
the homogeneity of the computer labs on our campus. For
example, all Windows 7 systems in university-administrated
labs were based on the same disk image. The use of decom-
missioned machines allowed us to supplement the university-
controlled hosts. For each machine class label, we collected
data from at least 2 machines, such that one machine could be
withheld for evaluation purposes.

E. Feature Extraction

As a necessary first step to analyzing our data, we per-
formed a variety of pre-processing tasks that extracted mean-
ingful information from each trace. The combined output
of these efforts was a per-trace feature vector that we used
as inputs to machine learning classification algorithms. We
constructed features that, based on our knowledge of the USB
enumeration phase, were likely to be stable and effective at
discriminating between different classes of machines. Initially,
each enumeration trace was a series of interrupts corresponding
to setup, out/status, in/status, and idle IRQs.
Our first set of features captured control transfer timing in-
formation. Control transfers were identified using the setup
IRQ, whose contents specifies the subsequent control transfer.
Control transfer responses vary in length, so we further divided
each control transfer by the size (in bytes) of the requested
response. For each control transfer feature, a time value was
assigned that was equal to the duration between the transfer’s
setup IRQ and the serup IRQ of the subsequent transfer.

Visual inspection of these features demonstrates the in-
tuition behind our fingerprinting approach. The frequency
histograms for a representative subset of control transfer fea-
tures are depicted in Figures 4a-4d, and are plotted by their

®

®

Windows 7 mmmm "Windows 7
Osx =3 Osx =
Linux E==3 7 Linux E==3

" oo N
w oo N
T

Frequency (Thousands)
Frequency (Thousands)

ok N W

ok N W
e —

0 8 10 12 14 16 18

2 4 6
Number of Interrupts
(a) Number of Idle IRQs.

0

50 100 150 200 250 300 350 400
Time (Milliseconds)

(b) Average Inter-IRQ Gap.

@

@

0 Windcwos7— m ‘Wmdowos7_
sx =3 sx =3

E 7 Linux === E 7r Linux ==

© ©

06 ner

=] >

25 25|

. E.

>

(O] b 3

c c

gz - gz

o o

ol o 1]

fud fud

o Lo

o

100 200 300 400 500 600
Time (Milliseconds)

)

50 100 150 200 250 300 350 400
Time (Milliseconds)

(c) Length of Enumeration. (d) ct_ngram(0;6)

Fig. 5: Timing data for additional features by operating system.

operating system class label. As an exercise, it is possible to
differentiate between operating systems with 100% accuracy
based on visual inspection of these 4 features alone. OSX
can be detected in a single step through the absence of
the GetDescriptor (Language) transfer (Fig. 4b), and
Linux and Windows hosts can be differentiated based on the
presence of GetDescriptor (Manufacturer) (Fig4c).

Trace-level statistics were also included in the feature
vector. A representative subset of these features is depicted in
Figures 5a - 5c. Figure 5c indicates that OSX hosts enumerate
much faster than Linux and Windows hosts. The per-trace
count of Idle IRQs (Fig 5a) have a shallow distribution, but
can also be used to differentiate operating system. We discover
in Section V-A that a high frequency of idle IRQs is also a
strong indicator of the presence of the Xen hypervisor.

Lastly, we attempted to include the order of the messages
in the trace at both the IRQ and control transfers level.
However, we found high variance in the ordering of IRQs
between traces, even when comparing traces from the same
machine. We also found that a feature describing the ordering
of control transfers would offer little discriminating power over
our existing features, as the string would primarily denote the
absence or presence of certain control transfers. Rather than
explicitly describe the sequence of messages, we chose to
include a family of features that clustered timing information
for sequences of messages. We summed the timing information
of every permissible sequence of messages in the trace, naming
each for its starting position and length, e.g., ct-gram(1,4)
represented the duration of 4 consecutive control transfers
starting at transfer 1. We repeated this process at the IRQ level,
adopting the naming convention irg-gram(-). A representative
n-gram feature is depicted in Figure 5d.

Combined, these measurements offered a vector of 152
features. We used a set of Python scripts to parse individual
traces, extract the features, and output them into a single CSV

Feature Information Gain
Length of Enumeration 3.4 bits
GetDescriptor (Interface) 2.6 bits
ct_ngram(0;6) 2.2 bits
Average Inter-IRQ Gap 2.2 bits
ct_ngram(0; 3) 2.1 bits

TABLE III: The 5 highest ranked features by information gain.
Class labels were assigned by machine for these measure-
ments.

file. This file was later converted to Attribute-Relation File
Format (ARFF) for use with the Weka software suite.

FE Feature Inspection

Prior to classification, we attempted to gain further in-
sight into the discriminating power of our feature vector.
To accomplish this, we calculated the information gain of
each individual feature. Information gain is a measure of the
reduction in entropy achieved by learning the output of a
given random variable. For a function F'(-) with the probability
density function P(f,),n € [0,1,..., N], entropy is given by
the formula H(F) = — ZnN:o P(fn)logy(P(fr)). For a class
X and a given feature output F'(X) = f,, information gain
(reduction in entropy) is calculated as I(X, f,,) = H(X) —
H(X|f»). The information gain for our 5 most discriminating
features is displayed in Table III. These values represent each
feature’s information gain in isolation. These measurements
were obtained based on assigning each trace a class label
corresponding to the machine from which it was collected.
Despite the difficulty of conceptualizing the usefulness of our
n-gram features, we see that they can be highly prioritized
inputs to machine learning classification algorithms, notably
ct_ngram(0; 6) and ct_ngram(0; 3).

IV. CLASSIFICATION

In this section, we undertake a variety of classification
challenges to explore the discriminating power of USB enu-
meration data. We do so by employing multiple machine learn-
ing classifiers, described in Section IV-A, to predict different
characteristics of the origin machines to which our device enu-
merated. In Section IV-B, we build on past work in using USB
to identify machine attributes such as OS and manufacturer
model. In Section IV-C we go a step further, developing a
fingerprint that will uniquely identify an individual machine
amidst a field of identically specified machines.

A. Classifier Survey

In an effort to maximize accuracy and ensure the robustness
of our models, we analyzed our data with several different
supervised learning classifiers. Supervised learning algorithms
generate an inferred function (or model) to classify previously
unseen data instances. They are built with a set of training
data instances that contain a vector of attributes, as well as
a class label. Supervised algorithms then analyze this data,
outputting a classification model. We used the popular Weka
libraries [25], which are well-respected tools in the machine
learning community.

The results of the full survey have been omitted for
brevity, but can be found in our technical report [26]. Briefly,

OS Version | Accuracy
Linux 3.2 100%
0OSX 10.6 100%
0OSX 10.7 68%
OSX 10.8 86%
Windows 7 100%

TABLE IV: OS Version accuracies by class label.

Model # OS Ver. Host Ctrl HC Drvr | Count
iMac 12 0OSX 10.7 | Intel C200 | 5.1.0 14
iMac 12 0OSX 10.8 | Intel C200 | 5.4.0 11
iMac 13 0OSX 10.8 | Intel C200 | 5.5.0 3

TABLE V: iMacs that shared a common host controller in our
dataset.

we experimented with a variety of classifiers on a prelim-
inary dataset, including Random Forests [27], J48 decision
trees [28], Decision Stump Boosting [29], Support Vector
Machines (SVMs), and Instance-Based Learners (IBLs). We
found that the decision trees classifiers were an excellent fit for
our dataset, particularly because individual features were often
sufficient to rule out large subsets of the possible class labels.
SVMs and IBLs, while effective in some of our tests, were
prone to the curse of dimensionality and thus only operated
effectively with smaller feature vectors. We ultimately chose
to make use of the Random Forest classifier, whose boosting
method of iterative model building is well known for producing
accurate results [30].

Next, we turned our attention to identifying machine mod-
els. Using the same approach, the classifier generated a model
that achieved 97% accuracy over the test data. Accuracies
by class label are contained in Table VI. The classifier was
extremely effective at identifying all models except for the
Mac Mini, which was undervalued due to representing less
than 1% of the dataset.

B. Host Attribute Identification

For our initial investigation, we used single USB
enumerations to predict a number of host machine attributes:
operating system family, operating system version, machine
model, and model number; an example set of attributes is
0SX, OSX 10.8, Apple iMac, and Apple iMac 13, respectively.
Stavrou et al. formulate host attribute identification as the first
step in a variety of phone-to-computer attacks, allowing the
adversary’s phone to exploit specific system vulnerabilities
while avoiding the need for brute force approaches [11].
Each of these attributes were formulated as a separate
machine learning problem, and for each problem we used
the Random Forest classifier. To test the parameterization of
the classifier, we used a separate preliminary dataset of a
small collection of machines. We selected a forest size of
20, leaving other parameters at the default Weka settings.
We found that these parameters were robust across all of our
host attribute identification experiments. Following the default
Weka parameters, the model was built on 66% of the dataset,
with 34% withheld for evaluation. The data was partitioned
such that traces from a specific machine would appear in
either the test set or training set, but not both. Percentage
splits are an alternative evaluation method to cross-validation,

Model Accuracy
Apple iMac 100%
Apple Mac Mini 88%
Dell Dimension 96%
Dell Latitude 94%
Dell Optiplex 99%
Dell Precision 95%

TABLE VI: Machine Model accuracies by class label.

MNF Model Number Accuracy
Apple | iMac 10 100%
Apple | iMac 11 76%
Apple iMac 12 92%
Apple iMac 13 65%
Apple | Mac Mini 52 90%
Dell Dimension | 4700 34%
Dell Latitude €6500 91%
Dell Latitude e6510 96%
Dell Optiplex 745 99%
Dell Optiplex 760 95%
Dell Optiplex 990 95%
Dell Optiplex 980 96%
Dell Optiplex 2x520 41%
Dell Optiplex sx520 57%
Dell Precision t3500 95%
Dell Precision t3600 64%

TABLE VII: Model Number accuracies by class label.

and are actually more conservative than the popular 10-fold
cross validation strategy in that they provide less training data
to the classifier.

As indicated previously, detection of operating system
family proved to be a trivial task using our feature vector,
and in fact the model was able to predict the OS of the
test dataset traces with 100% accuracy. In addition to the
features that we used in our example from Section III-E, the
classifier determined that the timing data of ct_ngram(0; 2)
and a variety of irgq_ngrams offered high information gain.
What these features had in common is that they all indicated
that OSX traces were the fastest, and that Linux traces were
consistently faster than Windows traces.

Using the same approach, we then built a model for
operating system by version. When evaluated against the test
data, this model achieved 94% accuracy. The cause for this
loss of accuracy is apparent in Table IV. The model struggled
in differentiating OSX 10.7 from OSX 10.8. This struggle is
explained through reviewing the iMac USB stack information,
contained in Table V. Apple iMacs 12 and 13 share a common
host controller, and the classifier prioritized OSX 10.8, which
appears 3 times more frequently in our training set. We note
that reweighting our training set would improve the accuracy
balance between these predictions.

Finally, we identified the specific model number of a host
machine. In part due to redundant USB stack components,
previous work has failed to offer a method of differentiating
hosts at this level of granularity [8]. In contrast, our model
achieves 90% accuracy. Accuracies by label are pictured in
Table VII. Predictably, accuracy suffered for classes that were
underrepresented in the dataset, such as the Dell Dimension
4700 and Optiplex sx520 (See Table II). Notably, there were no
crossover predictions between the Dell and Apple machines.

Host Acc Trace Req Sys Time Real Time
iMac 1-2 56% 150 traces 38 sec 5 min
iMac 3 64% 250 traces 63 sec 8 min
iMac 4 56% 450 traces 113 sec 15 min

[iMac 5-9 H 55-58% [N/A [N/A [N/A]
[PC 1-13 [60-86% | 150 traces | 38 sec | 5min__|
[PC 14-21 H 68-80% [250 traces [63 sec [8 min l
[PC 22-30 [[53-72% [NA | NA | NA]

TABLE VIII: Results for machine identification. Acc is the
accuracy of individual trace predictions. Trace Req shows
the number of traces required to reach 95% confidence of the
host’s identity using a X? test. Sys Time corresponds to the
total amount of USB activity observed, which is the theoretical
lower bound on the time required to achieve these results. Real
Time describes the time required to collect the traces on our
unoptimized device.

C. Machine Identification

We next set out to see if our feature vector was sufficiently
expressive to differentiate between identically specified ma-
chines. For this trial, we inspected 2 datasets from different
campus labs: one that contained 9 brand new Apple iMac
13.2s, and another that contained 30 Dell Optiplex 745s.
Due to the increased difficulty of this problem, we re-labeled
our dataset with binary classes such that the Random Forest
classifier generated a model to answer the following question:
Does this trace belong to the target machine, or some other
machine? Accordingly, we created a total of 39 different
models, one for each iMac or PC. In previous experiments
using a separate preliminary dataset, we determined that a
forest size of 125 and a maximum tree depth of 3 was an
effective configuration for this problem. The other classifica-
tion parameters remained at their default settings in Weka.
Once again, our datasets were split 66%/34% for the respec-
tive training and test data. In order to prevent the Random
Forest boosting mechanism from over-prioritizing the more
frequently-appearing other label, the datasets were reweighted
such that both labels were equally prevalent. These accuracies
are pictured in the Acc column of Table VIII; our ability to
identify the origin machine of a trace ranged from 53% to 80%
in accuracy depending on machine.

Due to noise and variability, multiple traces from the
same machine were often classified differently. We hypoth-
esized that, by combining the classification results of multiple
samples, we would be able to reduce the error rate of our
prediction. We would like to choose the label that is predicted
most often as the sample count approaches infinity. If that
label correctly identifies the machine from which the traces
originated, we know that we have overcome the variance in our
data, and that our model is truly able to identify the machine. If
this label is incorrect, there is systematic error due to bias, and
our model is broken. In practice, the model is also broken if
the difference in prediction frequency between the correct and
incorrect label is not statistically significant; that is, we have
not overcome the sample variance, and classifier’s prediction
is not much better than a fair coin toss.

First, we determined how many predictions were necessary
to be confident that the selected label was significantly more
accurate than a fair coin toss. To do so, we applied the Chi-

Squared (X?) statistical test of independence to each model
for increasing numbers of traces T = {150, 250, 350,450}.
We adopted the null hypothesis that, after ¢ traces, the target
and other labels were equally likely to be predicted for a
given trace, giving us the expected result £ = {0.5,0.5}. We
then polled the model for ¢ predictions using traces that were
drawn from the target machine, forming a set of observed
results O. The X22test statistic is given by the formula
X2 = 22:1 % where O; are observed frequencies and
F; are expected frequencies. This statistic can be compared to
a critical value from the X? distribution that is parameterized
to a given confidence level; if the statistic is greater than
the critical value, we rejected the null hypothesis that the
observed and expected frequencies were drawn from the same
underlying distribution. To account for false positives, this
process was then repeated using traces from other. For each
machine, a test that used ¢ traces succeeded if the model
predicted the correct label for both cases in each of 20 trials
with randomized test inputs.

The results of the X? test are summarized in the Trace
Req, Sys Time, and Real Time columns of Table VIIL. If the
test did not reach 95% confidence with ¢ = 450 traces, it was
considered a failure and N/A is listed in the row. Otherwise,
the minimum number of required traces required to reach 95%
confidence is listed. We note that many statistical hypothesis
tests could be used in place of X2 to determine how many
predictions are necessary to sufficiently reduce the error rate
of the classifier; we also modeled the label predictions as
a Bernoulli process, with each trace being an independent
Bernoulli trial. Assigning the target and outlier labels the
values 0 and 1 respectively, ¢ trials were performed. If, at the
end of the process, the standard error of the sample mean was
more than 2 standard deviations (i.e. 95% confidence) away
from 0.5, we knew the result to be statistically significant. For
each machine, we found that a comparable number of trials
was required to the result found using the X? test.

These results can be interpreted as follows. At t = 250,
we predicted machine identities in the Windows corpus with
100% effective accuracy, but just 70% coverage. That is,
PCs 1-21 are identified 100% of the time after 250 traces,
while PCs 22-30 remain unidentifiable. During the intermittent
phases of the test, e.g., at ¢ = 50, the accuracy for PCs 1-21
has increased compared to ¢=1, but are not yet statistically
significant according to the X? test?. Coverage is worse for
the iMac corpus, with just 44% coverage with ¢t = 450.
While these results are encouraging, we conclude that USB
Fingerprinting in its present state does not have sufficient
coverage for commodity deployment. We discuss how we
intend to build on these results in Section VI-C.

V. ANALYSIS

We now perform additional testing to explore a variety of
special circumstances and challenges for USB Fingerprinting.
First, we demonstrate the ability to detect virtual environments,
establishing USB Fingerprinting as a viable detection method
for virtual machine-based rootkits. We also show that, in
contrast to other fingerprinting methods, USB Fingerprinting is

2Note that the values in the Ace column of Table VIII represent the expected
accuracy of a random trial in which ¢t = 1.

~12 ; - . ~0.45 _—
(0] are Metal [(%) Bare Metal I 1
o Virtual Machine T 04 Virtual Machine 531
c 1 B =
o S o35
3os| 3 o3
= =
0.25
Zosf £
& o
co4r co1sf
19} [}
> 3 01r
0.2 o
@ @ 0.05 -
ful — Q|
[1 [N

o

o
o

1 12 14 16 18
Number of Interrupts

(b) Number of Idle IRQs

0.5 1 15 2 2.5 3 3.5 o]
Time (Milliseconds)

(a) GetDescriptor (Serial Number)

Fig. 6: Control transfer timing data exposes the presence of
Virtual Machine Monitors.

a more universal technique that can be applied to a variety of
USB-equipped embedded devices. Finally, we challenge the
robustness of our USB Fingerprinting classification models
against multiple collection devices and concept drift over time.

A. Virtualization

One particularly promising application for USB Finger-
printing is as a detection method for virtual machine-based
rootkits (VMBRs). VMBRs are difficult to discover with many
existing security utilities because they control the host state
observed by software, and make almost no alterations to the
host state [31]. This makes VMBR detection difficult without
a method of physical attestation.

To discover potential USB-based indicators of virtualized
environments, we collected trace data from a Xen-enabled
Linux system. When the Xen kernel boots, it specifies another
kernel in storage to hoist into a virtual machine and run
as an administrative domain (domO) [32]. This allowed us
to observe USB enumerations for an unmodified target host
running both on bare metal and on top of a virtual machine
monitor. The hoisting procedure is actually quite similar to in-
the-wild VMBRs that load a hypervisor on-the-fly [33], [34],
[31], particularly an exploit that hijacks the Xen hypervisor by
executing malicious code in dom0 [35]. Xen exposes a USB
host controller to dom0O and does now otherwise interfere with
its USB activity. This is in contrast to domUs, which must
access USB through passthrough or emulation mechanisms.

Data collection occurred on a Dell PowerEdge R610 server
running Xen 4.1. The target host was running the Linux 2.6.40
kernel. We collected 2000 total USB enumerations on the
target host, 1000 from bare metal and 1000 from the hardware-
virtualized VM. A few of the features are visualized in Figure
6. As evident through visual inspection of these graphs, there
are several strong USB indicators of virtualized environments.
In fact, when trained on traces from both the bare metal and
dom0O hosts, the Random Forest classifier could distinguish
between them with 100% accuracy over separate testing data.

In the event of an actual attack, however, we would not
have the luxury of foreknowledge of the VMBR’s character-
istics. As such, we re-formulated hypervisor detection into
an anomaly detection problem. We employed a One Class
SVM classifier that was only permitted to train on traces from
the bare metal machine. One Class classifiers can fall victim

«

«

Windows 7' s Windows 7 memm
Osx =3 Osx =3

Linux £ Linux =1
Belkin N600 =3 .{ Belkin N600 =3 |

IS
IS

~ w
~N w

Frequency (Thousands)

o

Frequency (Thousands)

o

o

0.5 1 15 2 2.5 3 3.5
Time (Milliseconds)

o

2 4 6 8 10 12 14 16 18
Number of Interrupts

(a) GetDescriptor (Serial Number) (b) Number of Idle IRQs

Fig. 7: Timing data for Belkin N600 Router is distinct when
compared to other hosts.

to the curse of dimensionality, so in this trial we applied
our knowledge from the previous trial to select a compact
feature vector. The following features had the highest infor-
mation gain: GetDescriptor (SerialNumber), Idle
IRQ Count, Enumeration Duration, Average IRQ
Gap, and ct_ngram(1,5). The SVM used a polynomial
kernel, and its nu-value was set such that at least 80% of
training traces would fall into the support region. Against
the test data, the SVM misclassified just 2.9% of the dom0
traces as falling within the support region. This results in
a False Positive rate of 20% and a False Negative rate of
2.9%, making USB Fingerprinting a promising defense against
VMBR attacks. As in Section IV-C, the effectiveness of this
model can be boosted by taking an ensemble vote of many
trace classifications and performing a X? test on the result; in
100 out of 100 trials, we successfully distinguished virtualized
environments from bare metal using just 13 seconds of obser-
vation (50 traces). This finding is consistent with the recent
observation that obscuring timing evidence of a hypervisor-
based rootkit is extremely difficult [33].

B. Embedded Device Fingerprinting

In contrast with other fingerprinting techniques, USB Fin-
gerprinting can be applied to any USB-enabled device that
can run in host mode. To demonstrate this, we collected traces
from a Belkin N600 wireless router. The router had a USB port
intended for use as a plug-and-play media server. Following the
same data collection procedure, we collected 500 traces from
the router, processed them, and compared them to the features
of the rest of our dataset. The router exhibits visibly different
timing for many features, some of which are pictured in Figure
7. We re-built the machine model classifier from Section IV-B
to include the Belkin N600, and found that the router was
correctly identified with 100% precision.

C. Cross-device Collection

We are the first study to demonstrate the ability of using
USB Fingerprinting to detect minute differences in hardware
and software that are present in seemingly identical machines.
This being the case, it is reasonable to speculate as to the
robustness of our classifiers when data is being collected across
multiple slave devices. The act of data collection could possi-
bly be too sensitive for the intermingling of multiple collection
devices. Should this be the case, system administrators using

2w

'=;l Collect Sample

'+ Indicates Required Field Collect Sample CONFIRMED!
*Sample Count (<10000): 5 ol
*Unique ID: V
140]‘ Identity: PC 4
) Elapsed: 250 traces
*Make: Apple
*Model: iMac 13 Continue

*Model Version: o

*Host 0S: gy

*Host OS Version: 1gg 9

ANOMALY!

*Host Instr Set: g4

Notes:

Rebooted host prior to collection. Identity: UNKOWN

Elapsed: 250 traces

A= e I e |

Continue

Fig. 8: Screenshots from our Android machine fingerprinting
apps: attribute entry (left), and machine identity notices (right).

USB Fingerprinting would need to preserve a single collection
device for the lifetime of each machine. When this device fails
or is lost, they would need to re-fingerprint all machines with
a new device. Such a constraint would seriously undermine
the adoptability of our approach.

To test classifier robustness across different devices, we
collected data from the same machines using two identical
Samsung Galaxy Nexus phones. The phones both collected
traces for each machine within minutes of each other. We
collected 3750 traces from 75 different machines: 27 Apple
iMac 10, 27 Dell Optiplex 750, and 21 Dell Optiplex 980;
in previous trials, we were able to identify these machines
with upwards of 96% accuracy. We used the dataset from
one of the phones to train a Random Forest classifier to
detect the Model Number attribute. When evaluated against the
dataset from the second, the model achieved 100% accuracy.
This test demonstrates the feasibility of using multiple USB
Fingerprinting devices within an enterprise.

D. Resistance to Concept Drift

We now consider the resiliency of USB Fingerprinting
against concept drift, the well-known machine learning prob-
lem in which a model’s performance degrades over time.
Concept drift would undermine our arguments regarding the
adoptability of USB Fingerprinting, as ideally system admin-
istrators will be able to re-use machine learning models for
months or years before re-training is required. Our study tested
for concept drift by re-evaluating one of our models against
new data that was collected 3 months after our original trials.
Using the Model Number classifier described in Section IV-B,
we attempted to predict the label of newly collected traces from
20 Dell Latitude e6500’s and 11 Apple iMac 10.1’s. These
machines were selected due to ease of access, and because their
computer labs had not seen much machine turnover during
the 3 month span. The old Model Number classifier achieved

10

97% accuracy over the newly collected evaluation dataset.
These results show that USB-based machine fingerprinting
methodologies are resistant to concept drift over long spans
of time, which contrasts with previous work [8] that showed
inconsistent characteristics after a two-week period.

VI. DISCUSSION

A. Towards Commodity Deployment

In an effort to encourage the further exploration of USB
Fingerprinting, we are releasing the two Android applications
that were developed in this study (see Section VIII). While
these apps greatly simplify USB collection and analysis, we
stress that our methodologies are generally employable using
any device that can record USB timing events at sufficient
granularity. For example, we replicated the results of Section
IV-B using Gumstix, an inexpensive embedded device. We
imagine a variety of potential applications for USB Finger-
printing, from attesting personal computers with our Android
app, to datacenter-wide monitoring using dedicated hardware.

Android USB Analyzer: this application rapidly collects
USB enumeration data from USB-enabled hosts and embedded
devices. The app requires approximately 2 seconds to record
and conclude a single enumeration period. In most of our
experiments, we collected 50 traces from each machine. If
an organization employing USB Fingerprinting used our col-
lection procedure, this app would allow a single administrator
to collect from as many as 260 host machines in a typical
eight-hour day. The app does not require human intervention
after initial connection to the target host, allowing the admin-
istrator to perform other tasks during data collection. The app
also stores the attribute information of previously collected
machines, shown in Figure 8, minimizing the amount of data
entry required prior to data collection.

Android USB Identifier: this distributed application performs
real-time machine identification using a previously generated
fingerprint model. This model can be generated in Weka using
the traces collected from Android USB Analyzer by following
the procedures in Section IV-C. The client app sends USB
enumeration traces to a remote server, building a testing set that
is used to verify the previously generated machine fingerprint.
The server performs the Chi-Squared test described in Section
IV-C, and then notifies the client app of the result. Once the
machine is labeled as either target or other, a notification
message is displayed to the user. Sample notifications are also
displayed in Figure 8.

B. Attacks against USB Fingerprinting

In this section, we explore how USB Fingerprinting might
perform in the presence of a strong adversary. With sufficient
knowledge of our approach, an attacker-controlled machine
may attempt to evade detection through manipulating the
behavior of its own USB stack. Let us consider the case in
which the attacker has replaced a victim’s machine with one
that is identically specified but under attacker control, and
seeks to trick the victim’s USB Fingerprinting model into
incorrectly identifying the device as safe for use. The attacker
can attempt this feat by 1) altering the sequence or presence
of descriptor requests, 2) sending invalid data to the device
that violates the USB protocol, 3) launching a mimicry attack

that relays USB messages from the victim’s true machine, or
4) within certain constraints, altering the timing information
of his messages to the device.

1) Our approach offers strong assurances against spoofed
descriptor requests. This is because, in contrast to previous
work [9], [11], our scheme does not rely on the presence
or absence of certain descriptor sequences to identify host
attributes. We demonstrate this via a proof-of-concept attack
against Davis’s Windows fingerprint [9], which searches for
the presence of 3 GetDescriptor (Configuration)
requests. On a dual-booted desktop, we trained a classification
model on a small set of traces from two OS’s: Windows 7 SP1,
and a Red Hat Linux 2.6.32 kernel. We then modified the Linux
kernel source, causing the usb_new_device function in hub.c to
issue an additional GetDescriptor (Configuration)
request at the end of enumeration. Running the newly built
Linux kernel, we then collected a set of test traces. While
Davis’ scheme as described in [9] would identify the traces as
belonging to a Windows host, our classifier correctly identifies
the test traces as belonging to a Linux distribution.

2) If the invalid data causes enumeration to fail, the attacker
is detected. If enumeration completes, the attacker may be
able to trigger unexpected results, injecting confusion into
the classification process. Our scheme as described does not
prevent this attack; it would need to be modified to include
fail-safe mechanisms in the event of unexpected host behavior.
Adding a preliminary check similar to those used by Stavrou et
al. and Davis would help here, as it would force the attackers
inputs to conform to those of known OS behaviors [11], [9].

3) The compromised host may attempt to leverage a remote
host acting as a proxy helper in order to mislead a USB
Fingerprinting verifier, e.g., performing a mimicry attack. The
challenges of overcoming the latency imposed by such an
attack were well-defined by Li et al. [36]; the colluding hosts
can trick the verifier if they are able to keep the round-trip
time to the helper (724 T ocal) and the helper’s computation
(Tlelrer) within the same time bound as the local host’s com-
putation (T/9c1). We will conservatively assume that 7)c/Per
is zero because of the helper’s vast computational resources.
In the values of our USB enumeration feature vectors, it was a
common to observe transactions within 122us of one another,
which we adopt as a time bound for USB Fingerprinting to
detect an anomaly. Previous work has shown that an optimized
Linux network stack has a maximum request-response rate of
processing 7985 IP packets per second, a per-packet processing
time of 125 us receiving each USB transaction over the
wire [37]. If the local host is bound by this value, it will
require at least 250 ps to relay packets to the proxy helper
(Tlocal 4 Tlocal . 950us). As this latency is well above

the inter-IRQ time that is captured by many of our features, a
mimicry attack will be detected.

4) The attacker can cause arbitrary message delays; if this is suf-
ficient to mislead the classifier, the attack will go undetected.
More likely, though, the attacker will need to speed up some
messages or precisely control the spacing between messages,
which is significantly more complicated. This would require
modification of host behavior near the USB Bus Interface level.
One method of reliably controlling message spacing would
be to statically replay the correct USB enumeration. If the
attacker had access to the victim’s uncompromised machine,

11

they could statically compile the full enumeration process
expected by the collection apparatus, then execute it in place
of allowing the typical interactions between the upper layer of
the USB stack from the serial interface engine (SIE). This
attack would go undetected by the Android USB Identifier
application. One method of strengthening our scheme against
this attack would be to incorporate Stavrou et al’s method
of emulating randomly selected USB peripherals [11]. This
would alter the characteristics of the collection device, forcing
the attacker to guess which enumeration to replay.

C. Future Work

We will undertake a variety of additional USB Fingerprint-
ing trials, including the investigation of the impact of system
load and quiescence. Although the vector in our current scheme
offers over 150 features, we believe that additional contextual
information can be mined from the USB protocol, both through
continued passive observation as well as active analysis. These
features may help to improve USB Fingerprinting results for
machine identification; our preliminary results, while promis-
ing, do not offer sufficient machine coverage for general use. In
spite of this, we feel that USB Fingerprinting in its current state
can serve as a point of reference in a variety of applications,
which we intend to explore. While we have shown that USB
Fingerprinting is robust against particular forms of tampering,
a full security analysis was outside the scope of this work.
We intend to demonstrate that a modified version of USB
Fingerprinting is fully secure against active adversaries.

VII. RELATED WORK

A. Fingerprinting

Fingerprinting has become a popular method for device
identification, and has been used to identify home electron-
ics [38], websites [39], [40], [41], [42], [43], [44], the op-
erating system of VMs [45], [46], and the source of phone
calls [47]. The concept of fingerprinting stems from leverag-
ing measurable signals caused by hardware imperfections in
analog circuitry to uniquely identify devices. Fingerprinting
has been extensively studied and used for identifying RFID
smart cards [48], Ethernet cards [49] and 802.11 devices [15],
[50], [51], [12], [52], as well as users [53].

Remote fingerprint techniques identify devices using only
characteristics of their communication [48]. Identifying ma-
chines remotely has been a popular method, resulting in tools
like Nmap [54] and Xprobe [55] that detect operating systems
by examining network traffic. While effective in some cases,
network fingerprints can be fooled by systems that spoof
operating systems at the network layer, such as Honeyd [19].
Other remote schemes, such as work by Kohno et al. [56]
and Jana et.al. [57], identify machines using clock skew data.
However, it has been shown that TCP and ICMP timestamps
can be disabled or manipulated [18], [14], [S8]. Semi-persistent
network data has also been used to fingerprint devices [59],
[53] and browsers [60], [61]. Services to fingerprint browsers
are available commercially, and are of particular interest to
advertising agencies [62]. Eckersly employs similar methods
of feature evaluation in his work on browser fingerprinting
[13]. His highly instructive method of plotting fingerprint
surprisal distribution is sadly not applicable to our feature

vector due to its size and use of noisy continuous variables.
Machine learning classification techniques have been also been
deployed to create accurate fingerprinting schemes for user
re-authentication in smartphones. Li et al. [63] used feature
extraction and SVMs to recognize an individual smartphone
user’s finger movements.

While many remote fingerprinting methods exist, there has
been little previous exploration into host identification using
USB traffic through a physical connection. A recent work by
Wang et al. [11] uses USB-equipped smart phones to identify
host operating systems. However, their approach of reading
the contents of the URB field from packets is not effective
against a knowledgeable adversary, who can manipulate packet
data. Butler et al. [8] employ a USB protocol analyzer to
inspect the timing of bus states. In ignoring the contents
and timing of USB protocol events, their approach sacrifices
critical information gain, is subject to concept drift, and fails
to differentiate between basic host attributes such as model
number. In contrast, we demonstrate over a 10-times larger
machine corpus that USB Fingerprinting is resistant to concept
drift, easily distinguishes between similar machine models,
and can even be used to differentiate between hosts in a
set of identically specified machines. Finally, our collection
mechanism is a freely available app for commodity devices,
while their study relied on an expensive specialty device that
requires a field expert to operate competently.

Our approach offers several benefits over existing machine
classification methods. Work proposed by Desmond et al. [15],
can take one hour at a minimum to collect enough data
to perform classification. With our scheme, we can collect
data and make a decision in a matter of minutes. Device
identification work by Gerdes et al. [49] and Brik et al. [12]
differentiates unique network cards of the same model, but
is only applicable to network devices. Our fingerprinting
technique is applicable to any device using the USB protocol.
Network-based OS classification methods such as Richardson
et al.’s [64] suffer from more noise than our USB approach.
By using the same classifiers investigated by these authors, we
distinguish between individual OSes with 100% accuracy.

B. Compromise Detection

Network-based (NIDS) and host-based (HIDS) intrusion
detection systems [65], [66], [67], [68] can be used for compro-
mise detection. NIDS analyze incoming and outgoing network
traffic in order to determine if a system has been infected.
HIDS usually refers to software that examines audit logs
for suspicious activity, looking for changes in user behavior.
However, an attacker with kernel control will be able to
manipulate all software on the computer, including HIDS.

Garriss et al.’s trustworthy kiosk system [16] uses a smart-
phone to remotely verify system integrity based on trusted
computing techniques. A disadvantage of this approach is the
fact that a separate visual identification channel is required.
Butler et al.’s Kells system [69] provides similar guarantees,
but uses a USB flash drive as a remote verifier. Ensuring
physical interaction with the target machine eliminates the
need for a visual channel, but the approach is still susceptible
to relay attacks, such as Parno’s “cuckoo” attack [1].

12

C. Distance Bounding

Distance bounding protocols have been used in numerous
systems, from computers to radio. Rasmussen et al. [70]
demonstrate the need for fast processing speeds on any system
implementing such protocols to prevent distance spoofing.
Ramaswamy et al. [71] showed that processing delay within
networks has become a significant concern, and an individual
packet can experience increasing delays. Since our method per-
forms the fingerprinting task over a direct physical connection,
we are able to obtain more accurate timing measurements than
possible over a network. VIPER [36] demonstrates software at-
testation with embedded systems, and also shows resilience to
similar relay or proxy attacks. Our discussion in Section VI-B
demonstrates our robustness against the attacks on distance
bounding protocols, including distance hijacking [72].

VIII. CONCLUSION

USB Fingerprinting is a technique that can allow for the
identification of unique machines in many cases, and can
accurately differentiate over host attributes such as machine
model and OS. We showed that a commodity smartphone is
sufficient for collecting data, thus obviating the need for ex-
pensive dedicated USB analyzers to perform these operations.

This work opens an intriguing avenue for future investi-
gation, particularly as ever more unique interfaces, potentially
possessing their own characteristic stimuli and responses, come
to market. This future work will involve determining whether
our techniques work on technologies such as Firewire, Apple’s
new “Lightning” interface, and other commodity interfaces,
and whether we can loosen restrictions on detaching pe-
ripherals prior to measurement. Formalizing and modeling
interactions with these protocols would be of great interest
to those looking to exploit and defend these interfaces and the
devices that use them.

AVAILABILITY

Source code for the Android USB Analyzer and Android
USB Identifier apps, along with data sets of USB enumera-
tion traces, will be made available from our lab website at
http://osiris.cs.uoregon.edu.

ACKNOWLEDGEMENTS

We thank our shepherd, Jonathan McCune, for his guidance
and the anonymous reviewers for feedback to improve the final
paper. We also thank Joe Pletcher for his technical assistance
and contributions of ideas, and Patrick Traynor for his valuable
comments, as well as Ellisys Corporation for their generous
donation of equipment to support our experiments. This work
is supported in part by the US National Science Foundation
under grant number CNS-1118046. Ryan Leonard and Hannah
Pruse were funded in part through an NSF REU supplement.

REFERENCES
(1]

B. Parno, “Bootstrapping Trust in a “Trusted” Platform,” in Proceedings
of the 3rd USENIX Workshop on Hot Topics in Security (HotSec’08),

San Jose, CA, Aug. 2008, pp. 1-6.

Y. Hu, A. Perrig, and D. Johnson, “Wormhole Attacks in Wireless Net-
works,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 2, pp. 370-380, 2006.

(2]

[3]

[7]

[8]

[10]
(1]

(12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

G. P. Hancke and M. G. Kuhn, “An RFID Distance Bounding Proto-
col,” in Proceedings of the First International Conference on Security
and Privacy for Emerging Areas in Communications Networks (Se-
cureCommy), Washington, DC, USA, 2005, pp. 67-73.

L. Francis, G. Hancke, K. Mayes, and K. Markantonakis, ‘“Practical
NFC Peer-to-Peer Relay Attack Using Mobile Phones,” Radio Fre-
quency Identification: Security and Privacy Issues, pp. 3549, 2010.

J. M. McCune, A. Perrig, and M. K. Reiter, “Seeing-is-believing: Using
Camera Phones for Human-verifiable Authentication,” in Proceedings
of the IEEE Symposium on Security and Privacy, 2005, pp. 110-124.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in CCS ’02: Proceedings of the 9th ACM Conference
on Computer and Communications Security, Washington, DC, USA,
2002, pp. 148-160.

TCG, TCG Storage Architecture Core Specification, trusted computing
group ed., ser. Specification Version 1.0, Revision 0.9 — draft. Trusted
Computing Group, 2007.

L. Letaw, J. Pletcher, and K. Butler, “Host Identification via USB
Fingerprinting,” Systematic Approaches to Digital Forensic Engineering
(SADFE), 2011 IEEE Sixth International Workshop on, pp. 1-9, May
2011.

A. Davis. “Revealing Embedded Fingerprints: Deriving Intelligence
from USB Stack Interactions,” in Blackhat USA 2013. July, 2013.

Gumstix, Inc. Available: https://www.gumstix.com/.

Z. Wang and A. Stavrou, “Exploiting Smart-phone USB Connectivity
for Fun and Profit,” in Proceedings of the 26th Annual Computer
Security Applications Conference, ser. ACSAC *10. New York, NY,
USA: ACM, 2010, pp. 357-366.

V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless Device
Identification with Radiometric Signatures,” in Proceedings of the 14th
ACM International Conference on Mobile Computing and Networking
(MobiCom). ACM, 2008, pp. 116-127.

P. Eckersley, “How unique is your web browser?” in Privacy Enhancing
Technologies. Springer, 2010, pp. 1-18.

R. Pang, M. Allman, V. Paxson, and J. Lee, “The Devil and Packet
Trace Anonymization,” SIGCOMM Comput. Commun. Rev., vol. 36,
no. 1, pp. 29-38, January 2006.

D. Loh, C. Y. Cho, C. P. Tan, and R. S. Lee, “Identifying Unique
Devices Through Wireless Fingerprinting,” in Proceedings of the
1st ACM Conference on Wireless Network Security, ser. WiSec ’08.
New York, NY, USA: ACM, 2008, pp. 46-55. [Online]. Available:
http://doi.acm.org/10.1145/1352533.1352542

S. Garriss, R. Ciceres, S. Berger, R. Sailer, L. van Doorn, and X. Zhang,
“Trustworthy and Personalized Computing on Public Kiosks,” in Pro-
ceedings of the 6th International Conference on Mobile Systems,
Applications, and Services (MobiSys '08), Breckenridge, CO, USA, Jun.
2008, pp. 199-210.

N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier.”

G. Minshall, “TCPDPRIV,” http://ita.ee.Ibl.gov/html/contrib/tcpdpriv.
html, February 05 2004 (current release).

N. Provos, “A Virtual Honeypot Framework,” in Proceedings of the
13th USENIX Security Symposium, 2004, pp. 1-14.

A. Tsymbal, “The Problem of Concept Drift: Definitions and Related
Work,” Trinity College Dublin, Tech. Rep. TCD-CS-2004-15, 2004.
Compaq, Hewlett-Packard, Intel, Microsoft, NEC, and Phillips, “Uni-
versal serial bus specification, revision 2.0,” April 2000.

Ellisys, “USB Explorer 200 USB 2.0 Protocol Analyzer,” http://www.
ellisys.com/products/usbex200/index.php, 2013.

IronKey, “Ironkey,” http://www.ironkey.com/en-US/resources/, 2013.
S. Kondik. (2009) Cyanogenmod. [Online]. Available: http://www.
cyanogenmod.org/

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.

A. Bates, R. Leonard, H. Pruse, K. Butler, and D. Lowd, “Leveraging
USB to Establish Host Identity Using Commodity Devices,” University
of Oregon, Tech. Rep. CIS-TR-2013-12, 2013.

13

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

J. Quinlan, C4. 5: Programs for Machine Learning. Morgan Kaufmann,
1993, vol. 1.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, pp. 119-139.

R. Caruana and A. Niculescu-Mizil, “An empirical comparison of su-
pervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 161-168.

S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch, “SubVirt: Implementing Malware with Virtual Machines,”
Proceedings of the 27th IEEE Symposium on Security and Privacy,
vol. 0, pp. 314-327, 2006.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art
of Virtualization,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles, ser. SOSP ’03. New York,
NY, USA: ACM, 2003, pp. 164-177. [Online]. Available: http:
//doi.acm.org/10.1145/945445.945462

T. Ptacek, N. Lawson, and P. Ferrie, “Dont tell joanna, the virtualized
rootkit is dead,” Black Hat, 2007.

J. Rutkowska, “Introducing blue pill,” The official blog of the invisi-
blethings. org, vol. 22, 2006.

R. Wojtczuk, “Subverting the xen hypervisor,” Black Hat USA, vol.
2008, 2008.

Y. Li, J. M. McCune, and A. Perrig, “VIPER: Verifying the Integrity of
PERipherals’ Firmware,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security. ACM, 2011, pp. 3-16.

A. Menon and W. Zwaenepoel, “Optimizing TCP Receive Perfor-
mance,” in Proceedings of the USENIX 2008 Annual Technical Con-

ference, 2008.

S. Gupta, M. S. Reynolds, and S. N. Patel, “ElectriSense: Single-point
Sensing Using EMI for Electrical Event Detection and Classification in
the Home,” in Proceedings of the 12th ACM International Conference
on Ubiquitous Computing. ACM, 2010, pp. 139-148.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from
a Distance: Website Fingerprinting Attacks and Defenses,” in CCS
’12: Proceedings of the 19th ACM Conference on Computer and
Communications Security, Oct. 2012.

X. Gong, N. Kiyavash, and N. Borisov, “Fingerprinting Websites Using
Remote Traffic Analysis,” in Proceedings of the 17th ACM Conference
on Computer and Communications Security. ACM, 2010, pp. 684—686.

L. Lu, E-C. Chang, and M. Chan, “Website Fingerprinting and
Identification Using Ordered Feature Sequences,” in Computer
Security, ESORICS 2010, ser. Lecture Notes in Computer Science,
B. Gritzalis, T. Dimitris, and M. Preneel, Eds. Springer Berlin
Heidelberg, 2010, vol. 6345, pp. 199-214. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15497-3_13

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
Fingerprinting in Onion Routing Based Anonymization Networks,” in
Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society, ser. WPES *11. New York, NY, USA: ACM, 2011,
pp. 103—114. [Online]. Available: http://doi.acm.org/10.1145/2046556.
2046570

D. Herrmann, R. Wendolsky, and H. Federrath, “Website Fingerprinting:
Attacking Popular Privacy Enhancing Technologies with the
Multinomial Naive-Bayes Classifier,” in Proceedings of the 2009
ACM Workshop on Cloud Computing Security, ser. CCSW ’09.
New York, NY, USA: ACM, 2009, pp. 31-42. [Online]. Available:
http://doi.acm.org/10.1145/1655008.1655013

A. Hintz, “Fingerprinting Websites Using Traffic Analysis,” in
Privacy Enhancing Technologies, ser. Lecture Notes in Computer
Science, R. Dingledine and P. Syverson, Eds. Springer Berlin
Heidelberg, 2003, vol. 2482, pp. 171-178. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36467-6_13

Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin, “OS-Sommelier: Memory-
only Operating System Fingerprinting in the Cloud,” in Proceedings of
the Third ACM Symposium on Cloud Computing. ACM, 2012, p. 5.

https://www.gumstix.com/
http://doi.acm.org/10.1145/1352533.1352542
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://www.ellisys.com/products/usbex200/index.php
http://www.ellisys.com/products/usbex200/index.php
http://www.ironkey.com/en-US/resources/
http://www.cyanogenmod.org/
http://www.cyanogenmod.org/
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://dx.doi.org/10.1007/978-3-642-15497-3_13
http://doi.acm.org/10.1145/2046556.2046570
http://doi.acm.org/10.1145/2046556.2046570
http://doi.acm.org/10.1145/1655008.1655013
http://dx.doi.org/10.1007/3-540-36467-6_13

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Owens, Rodney and Wang, Weichao, “Non-interactive OS Fingerprint-
ing Through Memory De-duplication Technique in Virtual Machines,”
in Proceedings of the 30th IEEE International Performance Computing
and Communications Conference. 1EEE, 2011, pp. 1-8.

V. A. Balasubramaniyan, A. Poonawalla, M. Ahamad, M. T. Hunter,
and P. Traynor, “PinDrOp: Using Single-ended Audio Features to
Determine Call Provenance,” in Proceedings of the 17th ACM
conference on Computer and communications security, ser. CCS *10.
New York, NY, USA: ACM, 2010, pp. 109-120. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866320

B. Danev, T. S. Heydt-Benjamin, and S. Capkun, “Physical-layer
Identification of RFID Devices,” in Proceedings of the USENIX Security
Symposium, 2009, pp. 199-214.

R. M. Gerdes, T. E. Daniels, M. Mina, and S. F. Russell, “Device
Identification via Analog Signal Fingerprinting: A Matched Filter
Approach,” in In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2006.

J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk, and
D. Sicker, “Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting,” in Proc. USENIX Security Symposium, 2006.

N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng, “Device Fingerprinting
to Enhance Wireless Security Using Nonparametric Bayesian Method,”
in Proceedings of the 30th IEEE International Conference on Computer
Communications, Apr. 2011.

S. Bratus, C. Cornelius, D. Kotz, and D. Peebles, “Active Behavioral
Fingerprinting of Wireless Devices,” in Proceedings of the Ist
ACM Conference on Wireless Network Security, ser. WiSec ’08.
New York, NY, USA: ACM, 2008, pp. 56-61. [Online]. Available:
http://doi.acm.org/10.1145/1352533.1352543

J. Pang, B. Greenstein, R. Gummadi, S. Srinivasan, and D. Wetherall,
“802. 11 User Fingerprinting,” in Proceedings of the 13th Annual ACM
International Conference on Mobile Computing and Networking, vol. 9,
2007, pp. 99-110.

G. Lyon, “Nmap Free Security Scanner,” http://nmap.org/, July 16 2010
(current release).

F. Yarochkin, M. Kydyraliev, and O. Arkin, “Xprobe,” http://ofirarkin.
wordpress.com/xprobe/, July 29 2005 (current release).

T. Kohno, A. Broido, and K. C. Claffy, “Remote Physical Device
Fingerprinting,” IEEE Trans. Dependable Secur. Comput., vol. 2, pp.
93-108, April 2005.

S. Jana and S. K. Kasera, “On Fast and Accurate Detection of Unau-
thorized Wireless Access Points Using Clock Skews,” in Proceedings
of the 14th ACM International Conference on Mobile Computing and
Networking. ACM, 2008, pp. 104-115.

14

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

G. Shah, A. Molina, and M. Blaze, “Keyboards and Covert Channels,”
in Proceedings of the 2006 USENIX Security Symposium, Aug. 2006,
pp. 59-75.

X. Hu and Z. M. Mao, “Accurate Real-time Identification of IP Prefix
Hijacking,” in Proceedings of the 2007 IEEE Symposium on Security
and Privacy, ser. SP ‘07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 3-17.

P. Eckersley, “How Unique Is Your Web Browser?” Electronic Frontier
Foundation, Tech. Rep., 2009.

S. Kamkar, “evercookie,” http://samy.pl/evercookie/, October 13 2010
(current release).

J. Angvin and J. Valentino-Devries, “Race Is On to ‘Fingerprint’
Phones, PCs,” Wall Street Journal, November 30 2010.

L. Li, X. Zhao, and G. Xue, “Unobservable Re-authentication for Smart-
phones,” in Proceedings of the 20th Annual Network & Distributed
System Security Symposium, 2013.

D. W. Richardson, S. D. Gribble, and T. Kohno, “The Limits of
Automatic OS Fingerprint Generation,” in Proceedings of the 3rd ACM
workshop on Artificial Intelligence and Security. ~ ACM, 2010, pp.
24-34.

D. E. Denning, “An Intrusion-detection Model,” IEEE Transactions on
Software Engineering, vol. 13, no. 2, pp. 222-232, 1987.

B. Mukherjee, L. Heberlein, and K. Levitt, “Network Intrusion Detec-
tion,” IEEE Network, vol. 8, no. 3, pp. 2641, 1994.

R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999
DARPA Off-line Intrusion Detection Evaluation,” Computer Networks,
vol. 34, no. 4, pp. 579 — 595, 2000.

G. H. Kim and E. H. Spafford, “The Design and Implementation of
Tripwire: A File System Integrity Checker,” in Proceedings of the 2nd
ACM Conference on Computer and Communications Security, ser. CCS
’94, Fairfax, VA, 1994, pp. 18-29.

K. Butler, S. McLaughlin, and P. McDaniel, “Kells: A Protection
Framework for Portable Data,” in Proceedings of the 26th Annual
Computer Security Applications Conference, ser. ACSAC "10. New
York, NY, USA: ACM, 2010, pp. 231-240.

K. B. Rasmussen and S. Capkun, “Realization of RF Distance Bound-
ing,” in Proceedings of the 19th USENIX Security Symposium, 2010,
pp- 389-402.

R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing Network
Processing Delay,” in Global Telecommunications Conference, 2004.
GLOBECOM’04. IEEE, vol. 3. IEEE, 2004, pp. 1629-1634.

C. Cremers, K. Rasmussen, B. Schmidt, and S. Capkun, “Distance
Hijacking Attacks on Distance Bounding Protocols,” in Security and
Privacy (SP), 2012 IEEE Symposium on, May 2012.

http://doi.acm.org/10.1145/1866307.1866320
http://doi.acm.org/10.1145/1352533.1352543
http://nmap.org/
http://ofirarkin.wordpress.com/xprobe/
http://ofirarkin.wordpress.com/xprobe/
http://samy.pl/evercookie/

	Introduction
	USB Protocol
	Overview of Operation
	Enumeration

	Methodology
	Threat Model
	Hardware USB Analyzer
	Smartphone Collection
	Data Corpus
	Feature Extraction
	Feature Inspection

	Classification
	Classifier Survey
	Host Attribute Identification
	Machine Identification

	Analysis
	Virtualization
	Embedded Device Fingerprinting
	Cross-device Collection
	Resistance to Concept Drift

	Discussion
	Towards Commodity Deployment
	Attacks against USB Fingerprinting
	Future Work

	Related Work
	Fingerprinting
	Compromise Detection
	Distance Bounding

	Conclusion
	References

