Detecting Smart, Self-Propagating Internet Worms

Jun Li (presenter)
Shad Stafford

at:
IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY
October 30, 2014
Outline

- Introduction
- SWORD — Self-propagating Worm Observation and Rapid Detection
- Experiment Methodology
- SWORD Performance Against Classic Worms
- SWORD Performance Against Smart Worms
- Concluding remarks
A network worm is a program that actively tries to copy itself to other hosts across network connections.

The environment for worms is getting more fertile:
- >700,000 Android devices activated per day
- 100 million iCloud users
- 25 billion iOS App Store downloads

We need to be prepared for worm outbreaks.
Worm defense

✧ Prevention
 ‣ Design software and hardware with no vulnerabilities
 ‣ Ensure all software is deployed with configuration that does not allow worm propagation

✧ Detection
 ‣ Find worm outbreaks as they occur

✧ Disinfection
 ‣ Isolate infected hosts or remove worm code from them
Worm detector taxonomy

- **Host-based**
 - Buffer Overflow Detection
 - Input Correlation
 - System Calls

- **Honeypot-based**
 - Honeypot

- **Content-based**
 - Static Signature
 - Dynamic Signature
 - Advanced Signature
 - Protocol Field Length

- **Behavior-based**
 - Network Telescope
 - Connection Failures
 - Destination Addresses
 - Causation

Detecting Smart, Self-Propagating Internet Worms

Jun Li, CNS 2014, San Francisco
Behavior-based detectors

- Deployable at a single point (gateway)
- Does not require access to connection payload
 - content independent

TRW
RBS
TRWRBS
MRW
DSC
PGD
Smart, evasive Worm

- These detectors all assumed naive worm
 - more evaluation results later
- But worm may be able to avoid expressing certain behavior traits
 - worm authors not likely to be so simplistic
- Worm detectors must be effective even against smart, evasive worms
Outline

✦ Introduction

✦ SWORD — Self-propagating Worm Observation and Rapid Detection

✦ Experiment Methodology

✦ SWORD Performance Against Classic Worms

✦ SWORD Performance Against Smart Worms

✦ Concluding remarks
Design principles

- Effective detectors must target *essential behaviors* of worms
- Recall a self-propagating worm is defined as code that scans the network to find and infect new hosts
- We believe the only truly essential behavior of worms is that of connecting to new destinations
SWORD detector

- Two main modules: a Burst Duration Detector (BDD) and a Quiescent Period Detector (QPD)
- Two modules complement each other: if a worm does not violate one module, it will violate the other
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Detecting Smart, Self-Propagating Internet Worms

Jun Li, CNS 2014, San Francisco

- **Burst-duration detector (BDD)**
 - Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
 - BDD determines if a host is making first-contact connections faster than usual
 - Every different size of burst has a threshold: the minimum duration learned during the training phase

Time

1 2 3 4
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase

1 2 3 4 5

Time
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase

Time

Detecting Smart, Self-Propagating Internet Worms Jun Li, CNS 2014, San Francisco
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase

![Time Diagram]

Time
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase

![Diagram showing time intervals for different bursts](image-url)
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
- cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase

![Time Diagram]

Detecting Smart, Self-Propagating Internet Worms

Jun Li, CNS 2014, San Francisco
Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Detecting Smart, Self-Propagating Internet Worms

Jun Li, CNS 2014, San Francisco

Burst-duration detector (BDD)

- Self-propagating worms must contact new destinations
 - cannot be avoided as a worm seeks new victims
- BDD determines if a host is making first-contact connections faster than usual
- Every different size of burst has a threshold: the minimum duration learned during the training phase
Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)

For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period

QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD).
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period.
- QPD raises the alarm if the threshold is exceeded.

![Diagram showing time and QPD with a threshold at 1 time unit.](image-url)
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD).
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period.
- QPD raises the alarm if the threshold is exceeded.

Time
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)

- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period

- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD).
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period.
- QPD raises the alarm if the threshold is exceeded.

Time

1 2 3 4 5
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Quiescent period detector (QPD)

- Hosts are not constantly active and smart worms can use those quiet periods to propagate (which may also escape BDD)
- For each quiet period of a certain length or longer, QPD learns the threshold as the maximum duration for an active period
- QPD raises the alarm if the threshold is exceeded
Combine BDD and QPD

- SWORD declares a host to be infected with a worm when either BDD or QPD raises an alarm.

- If a worm wishes to escape BDD, it cannot shorten the duration of a burst of any size, and will have to lengthen active periods, thus caught by QPD.

- If a worm wishes to escape QPD, it has to ensure quiescent periods, and will have to insert its connections to active periods, which makes certain bursts to be shorter than permitted, thus caught by BDD.
Outline

- Introduction
- SWORD — Self-propagating Worm Observation and Rapid Detection
- Experiment Methodology
- SWORD Performance Against Classic Worms
- SWORD Performance Against Smart Worms
- Concluding remarks
Evaluation framework

- Support multiple standardized network environments
- Allow pluggable worm implementations that can support advanced worm types
- Make it easy to implement a variety of detectors, and include popular detectors as benchmarks
Metrics

- **False positive rate**
 - By host: the number of false alarms raised during a time period (limited to one alarm per host)
 - By time: Percentage of minutes during time period τ when a false alarm is triggered

- **False negative rate**
 - Percent of instances where a worm infection occurs but is not detected in time period

- **Detection latency**
 - The number of outbound worm connections prior to detection
Outline

- Introduction
- SWORD — Self-propagating Worm Observation and Rapid Detection
- Experiment Methodology
- SWORD Performance Against Classic Worms
- SWORD Performance Against Smart Worms
- Concluding remarks
SWORD vs other detectors

- SWORD beats everything but TRW
 - beats TRW in department and wireless

![Graphs showing comparison of worm scanning rate and false negative rate for different detectors.](image)

Detecting Smart, Self-Propagating Internet Worms

Jun Li, CNS 2014, San Francisco
<table>
<thead>
<tr>
<th>Detector</th>
<th>Campus</th>
<th>Enterprise</th>
<th>Department</th>
<th>Wireless</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWORD</td>
<td>21.73</td>
<td>24.97</td>
<td>22.99</td>
<td>264.94</td>
</tr>
<tr>
<td>DSC</td>
<td>2</td>
<td>22</td>
<td>19</td>
<td>15.93</td>
</tr>
<tr>
<td>MRW</td>
<td>28.88</td>
<td>51.7</td>
<td>43.64</td>
<td>1014.16</td>
</tr>
<tr>
<td>PGD</td>
<td>93.8</td>
<td>28.11</td>
<td>25.81</td>
<td>621.75</td>
</tr>
<tr>
<td>RBS</td>
<td>17.36</td>
<td>4.25</td>
<td>26.44</td>
<td>349.53</td>
</tr>
<tr>
<td>TRW</td>
<td>4.23</td>
<td>11.13</td>
<td>24.75</td>
<td>49.93</td>
</tr>
<tr>
<td>RWRBS</td>
<td>57.97</td>
<td>30.39</td>
<td>58.66</td>
<td>167.95</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- SWORD — Self-propagating Worm Observation and Rapid Detection
- Experiment Methodology
- SWORD Performance Against Classic Worms
- SWORD Performance Against Smart Worms
- Concluding remarks
Goals

- Determine how fast a worm can scan while evading detection most of the time
- The lower this rate, the more time we have to intervene before the worm causes extensive damage
What capabilities should an evasive worm have?

Knowledge of the network

- **blind**: can’t see any traffic
- **perceptive**: can see all traffic on the network

Knowledge of the detector

- **speculative**: guesses at the detector configuration, but knows nothing about it
- **informed**: has detailed knowledge of the detector configuration
Methodology

- Evasive worms evaluated using the same framework and methods as the previous experiments
- Introduce a parameter: load factor
Load factor

- Imagine a rate-based detector that would raise an alarm when >20 connections per second are made.

- Evasive worm models this detector internally:
 - load factor of 1.0, would cause worm to issue 20 connections per second.
 - load factor of 0.5 would cause worm to issue 10 connections per second.
Metrics

✦ Evasion Rate
 ‣ for a given scenario, in what % of experiments a worm was able to evade detection

✦ Effective Scan Rate
 ‣ how many worm scans a worm was able to make while avoiding detection

✦ Maximum Effective Scan Rate
 ‣ the maximum effective scan rate achieved with an evasion rate of 90% or greater
Effective scanning rate

- Effective rate increases linearly with load factor
- Knowledge of environment can make a substantial difference
Evasion rate

- Evasion rate is always excellent at low load factors
- Results not meaningful until combined with effective rate

![Graphs showing Evasion rate across different load factors and network types](image-url)
Max effective rate (campus)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Blind Speculative Worm</th>
<th>Blind Informed Worm</th>
<th>Perceptive Speculative Worm</th>
<th>Perceptive Informed Worm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRW</td>
<td>0.11</td>
<td>10.0</td>
<td>0.22</td>
<td>10.0</td>
</tr>
<tr>
<td>DSC</td>
<td>0.14</td>
<td>10.0</td>
<td>0.27</td>
<td>10.0</td>
</tr>
<tr>
<td>PGD</td>
<td>0.14</td>
<td>10.0</td>
<td>0.12</td>
<td>10.0</td>
</tr>
<tr>
<td>TRW</td>
<td>1.33</td>
<td>1.45</td>
<td>1.33</td>
<td>1.45</td>
</tr>
<tr>
<td>RBS</td>
<td>0.66</td>
<td>3.30</td>
<td>0.66</td>
<td>3.30</td>
</tr>
<tr>
<td>TRWRBS</td>
<td>0.83</td>
<td>0.92</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>SWORD</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Max effective rate (enterprise)

Effective Rate (scans/sec)

- Blind Speculative Worm
- Blind Informed Worm
- Perceptive Speculative Worm
- Perceptive Informed Worm

<table>
<thead>
<tr>
<th></th>
<th>MRW</th>
<th>DSC</th>
<th>PGD</th>
<th>TRW</th>
<th>RBS</th>
<th>TRWRBS</th>
<th>SWORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Rate (scans/sec)</td>
<td>0.05</td>
<td>0.06</td>
<td>0.03</td>
<td>1.26</td>
<td>5.95</td>
<td>4.98</td>
<td>0.02</td>
</tr>
<tr>
<td>Max effective rate (enterprise)</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>1.05</td>
<td>1.05</td>
<td>0.70</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Detecting Smart, Self-Propagating Internet Worms

Jun Li, CNS 2014, San Francisco
Max effective rate (department)

<table>
<thead>
<tr>
<th>Method</th>
<th>Effective Rate (scans/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blind Speculative Worm</td>
<td>0.07, 0.09, 0.09</td>
</tr>
<tr>
<td>Blind Informed Worm</td>
<td>0.15, 0.15, 0.10</td>
</tr>
<tr>
<td>Perceptive Speculative Worm</td>
<td>1.33, 1.37, 1.37</td>
</tr>
<tr>
<td>Perceptive Informed Worm</td>
<td>5.95, 5.99, 5.97</td>
</tr>
<tr>
<td>RBS</td>
<td>1.09, 1.09, 0.92</td>
</tr>
<tr>
<td>TRWRBS</td>
<td>0.90, 0.90, 0.92</td>
</tr>
<tr>
<td>SWORD</td>
<td>0.01, 0.02, 0.03</td>
</tr>
</tbody>
</table>
Max effective rate (wireless)

<table>
<thead>
<tr>
<th></th>
<th>Blind Speculative Worm</th>
<th>Blind Informed Worm</th>
<th>Perceptive Speculative Worm</th>
<th>Perceptive Informed Worm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRW</td>
<td>3.15</td>
<td>0.11</td>
<td>0.02</td>
<td>0.17</td>
</tr>
<tr>
<td>DSC</td>
<td>3.26</td>
<td>0.09</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>PGD</td>
<td>10.0</td>
<td>0.15</td>
<td>0.15</td>
<td>0.44</td>
</tr>
<tr>
<td>TRW</td>
<td>10.0</td>
<td>0.19</td>
<td>3.31</td>
<td>3.38</td>
</tr>
<tr>
<td>RBS</td>
<td>10.0</td>
<td>1.33</td>
<td>3.38</td>
<td>3.28</td>
</tr>
<tr>
<td>TRWRBS</td>
<td>10.0</td>
<td>1.35</td>
<td>3.38</td>
<td>3.39</td>
</tr>
<tr>
<td>SWORD</td>
<td>10.0</td>
<td>1.36</td>
<td>3.38</td>
<td>3.39</td>
</tr>
</tbody>
</table>
Q) Can worms get smarter and evade detection?

A) Against some worm detectors, YES!

- DSC performed well against naive worms, but miserably against evasive worms
- when TRW has known hosts available, it can scan rapidly while evading detection
- detectors based on counting first-contact connections not easily evaded
Findings (2)

- SWORD outperforms existing detectors
 - against both classic and evasive worms
- PGD is the only detector that even comes close
 - SWORD outperforms PGD against classic worms with better sensitivity and latency in all environments
 - SWORD outperforms PGD in 11 of the 16 evasive worm scenarios
Outline

- Introduction
- SWORD — Self-propagating Worm Observation and Rapid Detection
- Experiment Methodology
- SWORD Performance Against Classic Worms
- SWORD Performance Against Smart Worms
- Concluding remarks
Conclusions

- Internet worms continue to be a significant risk and research is required to defend against them.
- SWORD can detect worms effectively by focusing on the fundamental worm behaviors.
- SWORD outperforms other behavior-based detectors against both classic and smart worms.
This research is supported by the National Science Foundation (NSF) Award No. CNS-0644434. Any opinions, findings, and conclusions or recommendations expressed in this research are those of the author(s) and do not necessarily reflect the views of the NSF.

Jun Li, Ph.D.
Associate Professor, Computer and Information Science
Network & Security Research Laboratory
University of Oregon
Email: lijun@cs.uoregon.edu
http://www.cs.uoregon.edu/~lijun