A Resource Management Approach to Web Browser Security

Jun Li
University of Oregon
Carlos III Univ of Madrid
Institute IMDEA Networks

Dongting Yu, Luke Maurer
University of Oregon

ICNC, 1/31/2012
Problem Statement

- A web browser is no longer a client for downloading and rendering *static* content from web sites.
- It has become a common environment shared by *principals* from different origins.
 - Every principal can be a frame with JavaScript, or a plug-in.
- However, there is no resource management of these principals: a principal can access resources of other principals.
Examples

- A malicious frame can cause another frame to navigate a phishing site.
- A malicious gadget in a mashup site (e.g., iGoogle) can replace another benign gadget with a spoofed one.
- A malicious web site www.malicious.com can invoke the browser to send a request to another web site www.honest.com in the name of the user, effectively impersonating the user by “hijacking” the browser.
In Contrast ...

- A modern operating system can separate processes cleanly, and every process has its own logical address space.
- A process can access a system resource only if it is explicitly made available.
A Resource Management Approach

- Just as an OS is a resource allocator for processes, a web browser should also be a resource allocator for its principals.
- Every principal must be isolated and protected from each other.
- The web browser must support a reference monitor concept to systematically enforce resource access control and protect inter-principal interaction and communication.
Resource Allocation Model
Resource Management Framework

- Mandatory access control at the web browser level
 - What to allow, what not, under what conditions
 - Applies to all principals based on a browser’s configuration

- Discretionary access control specified by relevant principals
 - How other principals (e.g. a child principal) can access its resources
Resource Policy Language Design

- Three types of objects: principal, resource, and action.
- **Rules**: Whether a principal can take specific actions on a resource.
- Properties of a resource: class, type, protocol, domain, port, path, document, parent.
- Properties of an action: class, protocol, security.
Examples

1) The principal has the class `script`
 The principal’s `protocol`, `domain`, and `port` match those of the resource
 * Verdict: allow

2) The principal has the class `script`
 * Verdict: deny

Fig. 3. Rules implementing the Same-Origin Policy. In practice, such rules would have stipulations for browser Chrome and other nuances.

1) The resource has the class `image`
 The resource’s `protocol` is `http` or `https`
 The resource’s `domain` is `images.x.edu`
 The resource’s `port` is 80 or 443
 * Verdict: allow

2) The resource has the class `image`
 * Verdict: deny

Fig. 4. A discretionary policy for a site `www.x.edu` allowing those images, and only those images, served from `images.x.edu`.
Security Effectiveness

- With the resource management framework in place, all we need is to specify robust security policies to secure web-based activities.

- Application examples to web-based attacks:
 - Frame Hijacking
 - Cross-Site Request Forgery (CSRF)
 - DNS Rebinding Attack
Frame Hijacking

- A frame often contains sub-frames (Google maps, ads, Flickr albums, etc.) from different sources.
- One frame can direct another frame to load its content from an arbitrary URL: the `navigate` action.
- Dangerous if a malicious frame sends another frame to a phishing site, or replace a gadget with a malicious one.
Frame Hijacking Prevention via Resource Access Control

- A frame is both a principal and a resource.
- Following [BJM 2008], we can specify a policy such that a frame can only navigate its descendants.

1) • The action has the class **navigate**
 • The principal is an ancestor of the resource
 • *Verdict*: **allow**

2) • The action has the class **navigate**
 • *Verdict*: **deny**

Jun Li
Conclusions

- A web browser is not a static content viewer, but a common environment shared by multiple principals from different origins.

- A web browser should be a resource allocator to secure principals from one another and secure web operations.

- We proposed a resource management framework that is general enough for various browsers to implement.
Thank you!

Questions?

Email: lijun@cs.uoregon.edu