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Abstract. While mitigating link-flooding attacks on the Internet has
become an essential task, little research has been done on how an at-
tacker can further attack and abuse the mitigation solutions themselves.
In this paper, we propose a two-wave attack with collateral damage
of millions (or Carom), a new link-flooding attack that poses a mitiga-
tion dilemma for multiple simultaneously attacked networks, which must
either endure the flooding attack or suffer unwanted side effects in miti-
gating the attack. Composed of practical components, the Carom attack
aims to maximize the burden on attack mitigation systems and the col-
lateral damage to defending networks, thereby wreaking havoc on large
swaths of the Internet. After modeling real-world mitigation solutions,
we evaluated the attack against the mitigation solutions with real-world
datasets, showing the feasibility of the attack and quantifying the amount
of damage it can inflict on today’s Internet. We hope that this work can
motivate the improvement of existing link-flooding mitigation solutions.

Keywords: link-flooding attack; distributed denial-of-Service (DDoS);
collateral damage

1 Introduction

As the Internet continues to witness high-profile, large-scale distributed denial-
of-service (DDoS) attacks, edge networks that receive DDoS traffic, defined as
first-wave victims in this paper, only use DDoS mitigation solutions that are
inadequate. The two typical DDoS mitigation protocols nowadays in use are
remotely triggered black hole (RTBH) [21] filtering and BGP FlowSpec [29]
which deploy traffic filters at routers in their upstream networks. The upstream
networks will then distribute the filters at their traffic ingress points to mitigate
unwanted traffic before it propagates within the networks, hoping to unclog the
links connected with the edge networks.

However, such mitigation protocols above have shortcomings. For example,
RTBH removes all traffic, benign or malicious, towards a specified destination
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network prefix, which can generate massive amounts of collateral damage as
it also filters traffic from legitimate sources, which we define as second-wave
victims. While BGP FlowSpec enables fine-grained traffic filters with its ex-
tensive list of supported IP header fields, many networks implement them in
their network routers or switches with little ternary content-addressable mem-
ory (TCAM) for storing filters [35]. Hence, networks often limit the number of
filters their downstream customer networks can deploy, limiting the attack traffic
they can cover.

On the other hand, fine-grained DDoS traffic filtering also face major chal-
lenges in order to effectively mitigate DDoS. First of all, as the victim is at the
mercy of the attacker who decides how to construct each DDoS packet, the vic-
tim may not be able to identify attack flows accurately and thus derive filters
that can effectively mitigate the attack. Further, as first-wave victims often use
the source IP addresses of the attack traffic to match and filter attack traffic,
the source-IP-based filtering method is only feasible when a victim has enough
memory capacity on their routers and the attack does not employ IP spoofing
(i.e., DDoS bots do not spoof their IP addresses). Sadly, to date, IP spoofing
remains a significant problem on the Internet [25].

Given the above observations, we present a two-wave attack with collateral
damage of millions, or Carom, a link-flooding attack that introduces a mit-
igation dilemma to many first-wave victims distributed among multiple au-
tonomous systems (ASes) on the Internet. They must either endure the attack or
disconnect themselves from a wide spread of second-wave victims during attack
mitigation. The second-wave victims include disconnected networks that origi-
nate both attack and benign traffic and those networks that do not originate
any attack traffic.

To the best of our knowledge, Carom is the first work that studies the pro-
cedure and consequences of launching a DDoS attack against multiple ASes
simultaneously with practical techniques, and further exploiting the DDoS miti-
gation mechanisms in place to further trigger a second-wave attacks toward more
victims. We also evaluate the attack against real-world mitigation solutions and
demonstrate that the attack s practical and can inflict severe damage to today’s
Internet.

2 Related Work

Real-world DDoS attacks often employ simple, practical techniques. Lately, how-
ever, we begin to see real-world DDoS attacks that employ advanced attack
techniques described in academic research [2]. Exemplified by the Coremelt at-
tack [44] and the Crossfire attack [19], these advanced attacks do not need to
directly flood targeted services but the network resource of the services. Or,
exemplified by the pulsing attacks [45, 20, 41], they do not need to flood the tar-
geted services constantly but deceive legitimate hosts to reduce their frequency
of issuing service requests. We describe and discuss these advanced DDoS at-
tacks in this section. In particular, while the Carom attack, as we present in
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this paper, is feasible to launch on today’s Internet with severe consequences, we
explain below that these advanced attacks are not so practical and face differing
real-world challenges to launch successfully.

The Coremelt Attack [44]. This attack aims to overwhelm transit links
on the Internet. It does not target any particular service but all services that
rely on the overwhelmed transit links. In this attack, bots exchange ‘legitimate’
traffic among themselves, aiming to overwhelm the transit links that carry their
traffic. The traffic is ‘legitimate’ since all traffic among the bots follow application
protocols. Furthermore, the bots could mimic the traffic patterns of benign users
to mask the attack. Hence, the attack is difficult to detect and mitigate.

However, the requirement to launch this attack is questionable on today’s
Internet. The work uses inferred AS-level topologies [9] and a simplified link
bandwidth model to evaluate the attack. It does not consider the rich, inter-
connected, router-level paths in transit networks nor the load-balancing schemes
that utilize these rich connections. The work also assumes that there exist bot-
nets that can generate sufficient ‘legitimate‘ traffic to overrun core transit links.
While not impossible, it is still extremely challenging to realize such an attack
since most DDoS attacks today produce less than 100 Gbps attack bandwidth.
Finally, the attack does not target any specific service, which reduces its prac-
tical value. Nevertheless, the work influenced another attack (i.e., the Crossfire
attack [19]) on network resources that is more practical to launch.

The Crossfire Attack [19]. This attack sends traffic towards hosts in a
selected set of networks to overwhelm their shared link. Unlike common DDoS
attacks that send all attack traffic to the targeted victim services, bots in this
attack distributes their traffic to multiple public-facing hosts who share the tar-
get upstream link, flooding and congesting the link and therefore all services
downstream from the link. Here, the Crossfire attack has a more focused target
area than the Coremelt attack [44]. Also note each host only receives partial
attack traffic and each attack flow is of a low volume. The authors claim that
real-world intrusion detection systems (IDS) will fail to sound alarms. Therefore,
the DDoS mitigation will not be initiated.

While the Crossfire attack requires less attack resource than the Coremelt
attack, the resource requirement is also not trivial as it needs to overrun an
upstream link which is typically of a high bandwidth.

The Pulsing Attack [22, 15, 26, 40, 20]. A pulsing attack is to discon-
nect a network with periodic, short-lived traffic pulses. These pulses can cause
congestion-aware flows to believe in traffic congestion, thereby reducing the send-
ing rate of the congestion-aware flows. In addition, because the pulse duration is
often short (e.g., 100s of milliseconds), DDoS detection systems may not detect
such an attack since their traffic information feed (e.g., NetFlow/IPFIX) is too
coarsely grained to spot the attack pulses. The main challenge of pulsing attacks
is to synchronize the traffic pulses among DDoS bots. For example, a pulsing at-
tack typically requires a pulsing duration of 100s milliseconds, which is virtually
impossible to accommodate across thousands, not to mention millions of bots.
Indeed, Park et al. [37] show the synchronization difficulty in practice even
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with the latest pulsing attacks (e.g., CICADAS [20]) that claim higher feasibil-
ity. In the Carom attack, we apply pulsing durations that last for seconds rather
than milliseconds; we trade the stealthiness of a pulsing attack for the attack
feasibility in practice and the ability to observe the attack’s effectiveness.

3 Carom—A Two-Wave Attack with Collateral Damage
of Millions

This section presents the procedure of the Carom attack. It includes the following
phases:

– Reconnaissance. In this phase the attacker gathers information on bots,
attack-source networks (i.e., networks that contain bots), and first-wave vic-
tims (i.e., networks that receive attack traffic).

– First wave. In this phase the attacker disconnects victims in cycles, each
cycle attacking first-wave victims group by group.

– Second wave. Should a first-wave victim chooses to mitigate the attack, it
is then forced to block its communication with what we call second-wave
victims.

3.1 Reconnaissance

Before launching its attack, an adversary can gather all kinds of information
useful to its attack, such as the available bandwidth between every bot and
every victim, or list of the actively running services at victims. Below we focus
on two specific tasks essential to Carom.

Verify IP Spoofing Capability IP spoofing allows bots to send attack traffic
with arbitrary source IP addresses. It is made possible when stub (edge) net-
works do not validate the source addresses of traffic leaving the networks. Carom
leverages IP spoofing to increase its mitigation difficulty. Therefore, knowing the
bots that have spoofing capability is crucial. We provide an elaborated discus-
sion in Sec. 4. According to the Spoofer project [6], at the time of this writing,
well over 22.5% of 8, 067 autonomous systems (ASes) on the Internet allow IP
spoofing consistently. The sampled 8k ASes account for less than 10% of all ASes
on the Internet. In other words, the actual number of networks that allow IP
spoofing can be drastically different. Despite years of research [24], the Internet
continues to allow large-scale IP spoofing to happen [27].

Select Networks to Attack Carom considers several factors when selecting
its first-wave victims. First, the total attack bandwidth of the botnet should
be larger than any selected first-wave victim’s link capacity. Albeit not always
accurate, with online databases such as PeeringDB [38], the adversary can infer
a first-wave victim’s link capacity and build a list of first-wave victims that the
botnet can disconnect.
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The adversary may also configure Carom to attack networks that share the
same network provider to increase the collateral damage during their attack mit-
igation. For example, the adversary can perform a traceroute scan to construct
the router-level paths from each bot to each first-wave victim. The adversary
can then group first-wave victims by their common network providers.

Carom also needs to rule out first-wave victims that major DDoS protec-
tion service (DPS) providers protect to avoid wasting attack traffic. Major DPS
providers’ mitigation capacity ranges from several Tbps to 10s of Tbps [12, 1, 39,
32, 18, 34], which is sufficient to absorb recent large-scale DDoS attacks. An ad-
versary can employ several approaches to learn DPS-protected networks. First,
the adversary can leverage the traceroute results from the botnet to first-wave
victims to search for routers’ hostnames or IP addresses associated with DPS
providers. Second, the adversary may monitor for the round trip time changes
of a first-wave victim to infer if anycast is invoked, as proposed by Sommese et
al. [43]. Finally, the adversary can monitor the BGP announcements from DPS
providers to know the network prefixes protected by DPS providers (i.e., such
network prefixes do not belong to DPS providers).

3.2 First Wave via Moving Attacks

Carom can disconnect more first-wave victims than its botnet’s total attack
bandwidth permits by moving from one group of victims to another. In essence,
Carom can send attack traffic only towards a group of first-wave victims for a
fixed amount of time, and then moves on to attack another group of first-wave
victims. An attack cycle is completed whenever Carom begins to attack the first
group again.

Carom relies on two conditions to change attack targets: low attack effec-
tiveness and pulse duration of an attack. The first condition happens when a
first-wave victim is under the protection from a DPS provider or, in rare cases,
the victim’s upstream network. Carom utilizes bots from different geographical
regions as vantage points to observe whether first-wave victims are overwhelmed
during attack time. It can also use approaches in Sec. 3.1 to rule out victims
that just subscribed to DPS providers upon the attack. The second condition,
pulse duration, is a property that we extracted from pulsing attacks [22, 15, 26,
40, 20]. In general, a pulsing attack sends short-lived, bursty attack traffic (i.e.,
pulses) to a network at a frequency. We define the period with attack traffic as
pulse duration, and the pulse volume as pulse amplitude. As the attack pulses can
force congestion-aware flows to reduce their sending rate, the pulses can severely
impact the user experience of real-time applications such as online gaming and
conferencing calls. To address the feasibility issues of the pulsing attacks (dis-
cussed in Sec. 2), Carom launches attack pulses that last for seconds or a longer
period of time.

We illustrate Carom in Figure 1. In each attack cycle, a botnet attacks mul-
tiple attack groups. Each group contains a number of first-wave victims. For
example, Carom completes an attack cycle as follows: The botnet first attacks
the attack group that contains AS 1 to AS 4, it then attacks AS 5 to AS 7 in the
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Fig. 1: A Carom attack example in action

second attack group. Note that the pulse duration does not have to be the same
for each first-wave victim (e.g., AS 2 and 3 have a shorter pulse duration than
other ASes). In other words, an adversary can increase the number of first-wave
victims in each attack group by decreasing the pulse durations of some first-wave
victims. Before the botnet attacks group 1 again, Carom replaces AS 4 with an-
other first-wave victim (i.e., AS 8) since the attack effectiveness against AS 4 is
low.

3.3 Second Wave by Exploiting DDoS Mitigation

The attack toward first-wave victims will trigger DDoS mitigation in place.
Carom then tries to cause the DDoS mitigation to generate high collateral dam-
age by dropping traffic from legitimate sources, i.e., second-wave victims. To do
so, Carom generates DDoS traffic that is difficult for the DDoS mitigation to
produce accurate filters. Below, we introduce three building blocks that Carom
employs to generate DDoS traffic.

Indiscernible Packets Attack packets are discernible when they contain shared
characteristics that a mitigation system can leverage for accurate traffic filtering.
Common link-flooding attacks consist of discernible attack packets. For example,
in a DNS amplification attack, each amplified packet’s source port is 53 and has
a DNS resolver’s IP address. In such an attack, a network can drop all traffic
sourced from port 53 to mitigate the attack and only allow traffic from trusted
DNS resolvers.

If a mitigation system cannot find shared characteristics of the attack packets,
its mitigation accuracy suffers, such as when an attack generates packets with
random packet headers (e.g., IP addresses, ports) and payloads. If a mitigation
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system deploys many filters that happen to cover benign traffic, it then may
introduce a huge number of second-wave victims.

Traffic Dispersion Carom disperses its attack packets among a set of desti-
nation IP addresses of a first-wave victim. Such a technique is also referred to
as carpet bombing [11] by the network community. Traffic dispersion is the pri-
mary technique that enables the Crossfire attack [19], which aims to overwhelm
a target network’s upstream link(s). However, the target network only receives
part of the attack traffic. Hence, the authors of the Crossfire attack claim such
an attack is difficult to detect. Unlike the Crossfire attack, we assume first-wave
victims can always detect all attack traffic with perfect accuracy, and we focus
on evaluating the mitigation dilemma a first-wave victim faces.

In case the network employs a stateful defense method, Carom disperses
its attack traffic among the subnets that host services open to the Internet to
increase the amount of attack traffic the network receives (see Sec. 4.3). Bots
may also apply the traffic dispersion technique to its source IP addresses if they
can spoof IP addresses.

In contrast, common DDoS attacks target one or a few IP addresses of the
first-wave victim. Coarsely-grained filtering techniques, such as RTBH, are of-
ten sufficient to mitigate the attack with manageable collateral damage; RTBH
removes all traffic (benign or malicious) towards the attacked IP addresses. In
other words, such coarsely-grained mitigation is undesirable against traffic dis-
persion.

Stateful and Stateless Attack Traffic Depending on the mitigation method
of a first-wave victim, Carom generates attack traffic in either stateless or stateful
mode. By default, Carom runs in the stateless mode where it sends TCP SYN or
UDP packets with port numbers that the first-wave victim allows, and Carom
discards the responses from the first-wave victim. However, in case the first-
wave victim employs stateful mitigation solutions that filter traffic that does
not comply with traffic protocols (e.g., TCP handshake), Carom will follow the
protocol to bypass the mitigation. From there, Carom can generate traffic at a
congestion-unfriendly rate to cause link congestion.

4 Mitigation Models Against Carom

We use three mitigation models (M1, M2, M3) to cover the mitigation methods
in practice. For each mitigation model, we cover (1) the suitable Carom strategy
against it, and (2) the conceivable collateral damage caused by the model with
and without IP spoofing.

4.1 Stateless Coarse-Grained Mitigation (M1)

M1 employs RTBH and source-based RTBH (S/RTBH) to mitigate attack traf-
fic by either destination or source IP addresses, respectively; they cannot take
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advantage of fine-grained DDoS detection results (e.g., attack flows presented in
a 5-tuple format). Specifically, RTBH drops all traffic towards the IP addresses
of a first-wave victim. If the RTBH is deployed by the direct upstream ASes of
the first-wave victim, they effectively disconnect the first-wave victim from the
Internet. On the other hand, if the first-wave victim can deploy RTBH filters at
remote upstream ASes that are close to or at the attack-source networks, the
collateral damage is reduced; it no longer blocks all networks from accessing the
IP addresses. Unfortunately, Nawrocki et al. [31] show the latter scenario rarely
happens in practice — remote ASes rarely accept inter-AS RTBH messages.

With S/RTBH, an AS can drop all traffic from the IP addresses that generate
attack traffic. Because S/RTBH only drops traffic by source IP addresses, when
deployed, the AS blocks all their customers networks (including the first-wave
victim) from accessing the IP addresses that generate attack traffic. Therefore,
S/RTBH is best deployed at locations close to the first-wave victim so the vic-
tim’s neighboring customer networks remain unaffected. For example, if an up-
stream AS deploys S/RTBH filters at the egress port that directly connects to
the first-wave victim, all other customer networks are not affected. However, in
a link-flooding attack, it is too late to deploy a filter at the egress port, and the
best practice is to filter attack traffic at its ingress points, which contradicts the
example above and renders the method rarely practiced.

Carom Against M1

Since M1 cannot match and filter traffic based on layer-4 information, Carom
does not need to craft traffic defined in Sec. 3.3. In other words, each bot can
simply blast the same packet at a first-wave victim that employs M1. Instead,
Carom employs the traffic dispersion technique (Sec. 3.3) to distribute the attack
traffic among all IPs of the first-wave victim, which ensures that the victim has
to include take all its IPs offline to mitigate the attack. In the unusual case where
S/RTBH is enabled, Carom with IP spoofing can cause the network provider to
disable all its clients from reaching the Internet. Carom detects the usage of M1
as follows:

– RTBH: Ask geographically distributed vantage points to connect with the
IP addresses under attack. RTBH is employed when all such attempts fail
to establish.

– S/RTBH: The adversary checks whether his/her bots can reach the first-
wave victim’s sibling networks (i.e., networks that share the same provider).
S/RTBH is employed when none of the bots can communicate with the
sibling networks.

4.2 Stateless Fine-Grained Mitigation (M2)

M2 includes but is not limited to BGP FlowSpec or BPF with eXpress Data
Path (XDP) [17]. They offer fine-grained traffic mitigation, which can introduce
fewer second-wave victims than M1. For example, a first-wave victim can ask
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its upstream network to forward only HTTP(s) traffic to one of its subnets.
BGP FlowSpec is a filter dissemination protocol that allows its users to filter
traffic by layer 3 and 4 packet header values. Its filters are often implemented
in hardware routers that rely on low-latency memory (i.e., CAM/TCAM) for
packet matching and filtering. BPF with XDP is an efficient software-based
filtering solution. Specifically, XDP allows BPF to filter packets in kernel space
before the kernel’s network stack constructs the packets.

While each filter in M2 generates virtually no second-wave victims, M2 is
constrained by its filtering capacity, which forces it to use a limited number
of filters to mitigate DDoS attacks. For example, a first-wave victim may only
able to deploy one thousand filters at its upstream ASes, which prevents the
victim from mitigating an attack that involves thousands of bots. To mitigate
the attack, the victim needs to use network prefixes to cover as many bot IPs as
possible.

Carom Against M2

A first-wave victim may leverage M2 to employ strict network policies to pre-
vent unsolicited traffic from congesting its network link. Carom generates attack
packets selectively as described in Sec. 3.3 and disperses the attack packets as
described in Sec. 3.3. The first technique allows Carom to bypass the network
policies (if any) to ensure its traffic can reach the first-wave victim. The latter
technique forces the first-wave victim to deploy more filters or use coarse-granular
filters. The problem worsens when Carom employs IP spoofing: A first-wave vic-
tim can disconnect itself from the Internet with automated mitigation under the
limited filter capacity.

Carom can detect M2 with the help of vantage points that are not part of the
attack. Specifically, M2 is engaged if the vantage points can establish connections
with the first-wave victim IPs during the attack.

4.3 Stateful and Stateless Mitigation (M3)

Stateful mitigation solutions are deployed in-line with the production traffic.
They rule out traffic that does not follow transport or application protocols with
little to no collateral damage. For example, conntrack drops TCP packets with
incorrect states (e.g., sequence numbers). A web application firewall (WAF) may
use a reCAPTCHA-like system to prevent bots from reaching first-wave victims
directly. Note that bots may still bypass reCAPTCHA if they have ample compu-
tational resources. These solutions face performance issues at upstream networks
to withstand large-scale attacks; they require immense computational and I/O
resources. Indeed, during a large-scale attack, we often see under-provisioned
stateful solutions (43% reported DDoS attacks) to cause a denial of service on
the protected networks [33].

A network can combine both stateless and stateful mitigation solutions to
remove attack traffic. For example, the network may first use a stateless mitiga-
tion solution to remove obvious attack traffic and have the stateful mitigation
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solution to handle the remaining traffic. However, only DPS providers have the
resources to deploy stateful solutions to absorb large-scale link-flooding attacks
in practice.

Carom Against M3

The attack strategy against M3 is identical to the strategy against M2 (Sec. 4.2),
and the explanation is as follows. An attack can involve 10s or even 100s of thou-
sands of bots; these bots force M3 to track a devastating amount of flows. Mian et
al. [30] and Corin et al. [13] show that the throughput of a software-switched
network is severely reduced with only thousands of traffic filters. Depending on
the packet volume, packet rate, and how packets are processed in software, the
throughput reduction ranges from 30% to 80%.

Furthermore, with IP spoofing, Carom can render stateful mitigation solu-
tions fruitless: IP spoofing not only allows bots to spoof addresses but to bypass
stateful firewalls for an extended period. Specifically, a stateful firewall
must allow the very first packet of a connection (i.e., SYN packet of a TCP con-
nection) to reach its destination IP address. Only then can the firewall drop the
same subsequent packets from the packet source. In other words, should each
bot only sends unique SYN packets during the entire attack period, the firewall
will forward all the attack packets.

5 Evaluation

5.1 Overview

The first-wave victims of Carom: Since the point of Carom is to put mul-
tiple first-wave victims in a mitigation dilemma, we study how many first-wave
victims an adversary can disconnect simultaneously given different magnitudes
of attack power and attack scenarios. (Note that the main first-wave victims
are tier-3 ASes; they source information but rely on network links that ordinary
DDoS attacks can overwhelm.) We approach the problem from three aspects
as follows: First, we demonstrate how to infer the ASes that are protected by
DPS providers; we developed a tool to track if an AS is protected by a DPS
provider in near real time. Carom can rely on this tool to determine whether
it should spend its attack power on the AS or not. Second, we use collected
network information to infer the link capacity of ASes. A high inference accuracy
allows Carom to better estimate the required attack bandwidth to overwhelm
a group of first-wave victims. While an attacker can target a first-wave victim
with a gradually increasing attack volume to estimate the required amount of
attack traffic of each first-wave victim more accurately, the attacker can lever-
age the link capacity inference to reduce reconnaissance time. Lastly, with the
bandwidth inference result, we show the relationship between the magnitudes
of attack power and the first-wave victims an adversary can disconnect. Specifi-
cally, we show the various types of possible victims with and without the moving
target attack technique.
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asn providers peers siblings country org_name info_type info_traffic info_ratio info_scope

3043 0 4 0 US Amphibian Me...NSP 20-50Gbps Balanced Regional

3058 1 0 84 RU Federal Stat...

3061 2 0 6476 US ProvDotNet L... NSP Not Disclosed North America

3064 2 0 11149 US Affinity Int... Content 1-5Gbps Heavy OutboundGlobal

Fig. 2: A snapshot of the AS information database (with a reduced number of
columns).

The second-wave victims of Carom: Each first-wave victim is in a miti-
gation dilemma — it either: (1) does not mitigate the attack and suffer a poor
network goodput or (2) mitigates the attack and (un)intentionally introduces
second-wave victims (i.e., the IP addresses and ASes who do not carry any DDoS
traffic). To make an informed decision, a first-wave victim needs to quantify the
second-wave victims given its mitigation model.

For obvious ethical and legal reasons, we cannot launch real DDoS attacks
against networks on the Internet. Therefore, we built a simulation to examine the
scale of the second-wave victims under different magnitudes of attack power and
mitigation resources. The simulation leverages real-world network measurement
data and our DDoS mitigation survey results to synthesize the botnets and each
first-wave victim’s defense model.

5.2 The First-Wave Victims of Carom

Experiment Setup This section introduces our primary datasets and how we
processed them to facilitate our understanding of the potential first-wave vic-
tims. First, we use the CAIDA AS relationship dataset [9] to find tier-3 ASes (i.e.,
ASes with no customer networks) on the Internet. For each tier-3 AS, we main-
tain counters to track its providers, peers, and sibling ASes. We then augment
each AS number (ASN) with CAIDA prefix to ASN [7], CAIDA AS organiza-
tions [8], and PeeringDB datasets [38]. As a result, we built an AS information
database, as demonstrated in Figure 2. Each row is identified by an ASN and
contains the information about the AS (e.g., neighbor AS counters, organization
name, geographic location, traffic level, network type, and its network prefixes).
Second, we collect and parse BGP updates from a total of 61 BGP route col-
lectors from different geographic locations (using BGPKIT [4]) and monitor for
the BGP announcements originated from major DPS providers [14]. We then
manually select the corresponding ASNs of the major DPS providers using the
AS information database above.

The Subscribers of DPS Providers As part of the Carom design, it does not
waste its attack power on ASes with over-provisioned resources, (i.e., the ASes
who pay for anycast-based DDoS defense offered by major DPS providers), we
developed a tool to conduct a week-long BGP-based measurement study to find
such ASes. In other words, the study is to find the ASes that were under DDoS
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Fig. 3: The CDF of the number of DPS subscribers.

attacks and then protected by DPS providers. Note that anyone can use the tool
and live BGP updates to track ASes under DPS protection in near real time.

Figure 3 applies the cumulative distribution function (CDF) to the number
of DPS subscribers in a seven-day time window. It indicates how busy the DPS
providers are given a time frame; we find the DPS providers initiated DDoS
mitigation efforts to protect 46 ASes within a seven-day time window. Note, in
the first day, we captured over 50% of all the protected ASes in the entire time
window. Subsequently, we captured only 3 to 4 newly protected ASes each day.
This implies that there is a limited set of ASes that are constantly protected by
DPS providers.

The Accuracy of Link Capacity Inference To know who are the potential
first-wave victims in Carom, we infer the link bandwidth of the ASes on the
Internet and find the ASes whose links can be fully disconnected by a botnet.
At the time of this writing, 7,239 tier-3 networks disclosed their traffic level
information on PeeringDB while there are more than 61,300 tier-3 networks on
the Internet. In this work, we assume the traffic level of a network is 50% of
the network’s link bandwidth. E.g., if a network’s traffic level is 5Gbps, then
we assume its link capacity is 10Gbps. The assumption is a common convention
accepted by the network community [16].

Because we do not have the resources to manually ask for each of the re-
maining networks about its network capacity, we infer each network’s traffic
level instead. We used scikit-learn [5] and applied three classification methods:
decision tree, k-nearest neighbors (KNN), and random forest, on the features
available in our AS information database to infer the network capacity of each
AS. Specifically, the selected AS features are ASN, provider count, sibling count,
peer count, and IP count. We reduced 16 traffic levels available in PeeringDB to
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Fig. 4: The traffic level inference accuracy of three classification algorithms.

4 traffic levels. To train and test each classifier, we used a 70%/30% data split
for training and testing. We then evaluate each classifier 100 times with random
states.

Figure 4 shows that the three classifiers can infer traffic levels with at least
77% median accuracy. Out of the three classification algorithms, KNN provides
the best overall accuracy on our dataset. We use the trained KNN model to infer
each AS’s link capacity for the remaining studies. Note that the inference accu-
racy can vary significantly as networks update their traffic levels on PeeringDB.
For example, in 2018, Smith et al. [42] reported a 90% inference accuracy of
link capacity of transit ASes using decision tree. The discrepancies in inference
accuracies is due to the updated information in PeeringDB and the type of ASes
that we are evaluating.

Attack Power vs. First-Wave Victims With the link capacity inference
results, we can now study the number of first-wave victims an adversary can
introduce given different magnitudes of attack power with Carom. To maximize
the number of first-wave victims, we first rank all tier-3 ASes by their link
capacity from low to high, and then apply Carom against the ASes from the
lowest end. For each first-wave victim, we use attack traffic that is worth 150%
of the victim’s link capacity to disconnect it. Because we cannot launch actual
DDoS attacks to measure the required attack bandwidth for each first-wave
victim, we choose a constant factor (i.e., 150%) to compensate for the attack
traffic transmission loss due to various network conditions such as early link
congestion. The study contains four Carom profiles that ranges from one attack
group to four attack groups. When Carom only has one attack group, Carom
focuses all its attack power on the same set of first-wave victims. Meanwhile,
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Fig. 5: Estimated first-wave victim ASes.

when Carom has four attack groups, Carom rotates its attack power among 4
sets of first-wave victims, which introduces more first-wave victims.

Figure 5 illustrates the numbers of potential first-wave victims by their net-
work types. Specifically, the types are (1) tier-3 ASes, (2) Internet/network ser-
vice providers (ISP/NSP), and (3) education/enterprise/content networks. Due
to the limitation of PeeringDB dataset, only a subset of ASes disclosed their net-
work types. Therefore, we expect the results of the latter two types to change as
more ASes discloses their network types. With just 100 Gbps of attack through-
put and Carom that attacks four groups of ASes, an adversary can attack up to
295 ISP/NSP ASes. Worse, the adversary can disconnect over 1,436 first-wave
victims when he/she attacks any tier-3 ASes. When an adversary poses a bot-
net that can deliver 1Tbps attack throughput, it can periodically disconnect
over 5,000 (≈ 8.2%) tier-3 ASes with Carom that attacks four groups of tier-3
ASes. This study is an estimation of the potential number of first-wave victims.
It does not consider the mitigation strategies each victim applies. We consider
mitigation models in the evaluation of second-wave victims.

Figure 6 shows the number of first-wave victim IP addresses affected by the
same attacks above. For example, with the 100 Gbps attack above, the 295
ISP/NSP first-wave victims own a total of 1.6M IP addresses. If we map each
IP address to a household, the 100 Gbps DDoS attack can cause 1.6M homes
to experience frequent Internet disconnection when the first-wave victims do
not react to the attack. To put the number into perspective, such an attack
could potentially disconnect more households than the Los Angeles city (1.38
million households) according to the U.S. Census Bureau [10]. With the same
attack throughput, the attacker can disconnect up to 7,504,129 IP addresses
when attacking any tier-3 ASes.
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Fig. 6: Estimated first-wave victim IP addresses.

5.3 The Second-Wave Victims of Carom

Experiment Setup The experiment is a simulation-based study that evaluates
the second-wave victims caused by the first-wave victims who employ M2 under
various attack scenarios. (Note that the attack strategy against M3 is the same
as M2.) It is unnecessary to evaluate ASes that employ M1 (Sec. 4.1): Such an AS
blocks all incoming traffic from all other ASes on the Internet; the second-wave
victims are the entire Internet to the AS.

Because M2 employs fine-grained filters that matches source IPs of the bots
in an attack, the source IP distribution affects what filters are generated hence
critical to the experiment. Therefore, we built a set of synthesized Mirai botnets
based on a real-world DDoS incident report [3]. Specifically, given a botnet size
and the country distribution of the botnet, we map a set of bots to each country
proportionally. Each bot is then assigned with an IP address of its belonging
country and its uplink bandwidth using the Ookla’s speedtest dataset [36]. The
sizes of the synthesized botnets range from 5K to 100K.

We assume each first-wave victim has a perfect DDoS detection accuracy
which puts Carom in a disadvantageous situation. With the perfect detection
result, each first-wave victim also employs a filter generation process to optimize
for the attack traffic coverage within a fixed budget. In this study, the shortest
filter prefix length the filter generation process can generate is /8, each first-
wave victim in the simulation allows attack traffic occupying at most 30% of its
link capacity, and for the sake of simplicity, we do not allow bots to spoof IP
addresses to increase the mitigation difficulty.
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Fig. 7: The second-wave victim IP addresses under varying botnet sizes and filter
budgets.

Botnets vs. Second-Wave Victims Figure 7 shows the numbers of second-
wave victim IPs under different attacks and filter budgets (i.e., how many fine-
grained filters a first-wave AS can deploy). In all attacks, we first see the number
of second-wave victim IPs gradually increases as we increase the filter budgets
initially. This is because the available filter budgets are too small for mitigating
the attacks even we filter attack traffic using /8 prefix filters. Using the 5K-bot
attack as an example, as we continue to increase the filter budget, the number
of second-wave victim IPs reaches 1.6 billion, which corresponds to 43.2% of
the public IP space or 34K to 42K of second-wave victim ASes, at its peak
with 100 filters. The affected number of IPs then starts to decline as the filter
budget continues to grow. With a 1K filter budget (20% of the botnet size), the
number of second-wave victim IPs is reduced to ≈ 70M, which corresponds to
approximately 3K second-wave victim ASes.

Figure 8 demonstrates how the filter budgets affects the prefix lengths of
generated filters under the same 5K-bot attack. We see that the filters become
more specific as we increase the filter budget. With 2K filters, we no longer
produce second-wave victims, this is because the rule generation process allows
attack traffic to occupy at most 30% of an AS’s link capacity. In other words,
all filters are generated at /32-level (individual IPv4 addresses).

5.4 Evaluation Summary

In this section, we demonstrate the feasibility in choosing first-wave victims
from two aspects: First, to avoid attacking networks that are subscribed to DPS
providers, we created and evaluated a tool that allows an attacker to track ASes
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Fig. 8: The distribution of filter sizes with different filter budgets and 5K bots.

under DPS protection in near real time. We found that over a seven-day period,
there is a small set of ASes under constant DPS protection. Second, to increase
the probability that each set of first-wave victims can be fully disconnected, an
attacker may attempt to infer link capacity of the potential first-wave victims. We
proposed an inference method that applies classification techniques to publicly
available data from PeeringDB. We show that an attacker can infer traffic levels
with at least 77% median accuracy.

We then analyzed the number of first-wave victims an attacker may discon-
nect given different magnitudes of attack power, and found that with merely
100 Gbps of attack power attacking a total of four sets of first-wave victims, an
attacker could disconnect up to 295 ISPs/NSPs (which total 1.6M IPs) or 1,436
tier-3 ASes (which total 7.5M IPs).

Lastly, we analyzed the impact that deploying stateless fine-grained filters
(M2) has on second-wave victims. We show that the number of second-wave
victims in fact (counterintuitively) increases as the filter budget increases to a
certain point, and decreases after that point. For example, with a 5K-bot and
budgets of 10 filters, 100 filters, and 1000 filters, the number of second-wave
victims are 167M IPs, 1.5B IPs, and 70M IPs, respectively.

6 Conclusion

Since the first documented attack over 20 years ago, the Internet continues to
face severe large-scale DDoS attacks. While some ASes can overprovision their
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computing and network resources to fight off large-scale attacks (e.g., by sub-
scribing to a DPS provider), most ASes rely on insufficient solutions to mitigate
such attacks. The two-wave attack with collateral damage of millions, or Carom,
exploits this mitigation insufficiency to wreak havoc on wide swaths of the In-
ternet. Specifically, the attack leverages main ideas from prior attack research
(i.e., pulsing and Crossfire) and the practical attack and defense constraints to
impose a mitigation dilemma on its first-wave victims, which may then lead
to a significant number of second-wave victims. Through experimentation on
real-world data, we show that such an attack can simultaneously disconnect
hundreds of ISP/NSP ASes or thousands of tier-3 ASes with a mere 100 Gbps
attack. Furthermore, if these first-wave victims employ stateless fine-grained fil-
tering to mitigate the attack, depending on the filter budget, they may end up
disconnecting themselves from nearly 43.2% of the entire usable IPv4 space.

Given the potential devastation the Carom attack can unleash on today’s
Internet, we hope this work can raise the awareness of the network community
and ultimately help spearhead the development and deployment of adequate
DDoS mitigation solutions. For example, Carom can leverage IP spoofing to
impose a higher mitigation capacity demand on the first-wave victims. Thus,
a critical component to defend against it is to prevent spoofed packets from
congesting a first-wave victim’s network link. While initiatives such as CAIDA’s
Spoofer project [6] and MANRS [28] are calling network operators to implement
ingress/egress filtering to prevent IP spoofing, a much higher AS participation
rate is needed for an effective IP spoofing prevention. The filter budget of a DDoS
mitigation directly affects the number of second-wave victims, too. The existing
DDoS mitigation research has two complementary ideas: One is the machine-level
filtering using programmable switches with efficient use of low-latency memories
(e.g., TCAM/CAM) [46, 23], or using commodity servers and efficient packet
processing pipelines such as XDP [17]. The other is the Internet-level filtering
which is about building a filter distribution system so the participating ASes can
each contribute some traffic filtering capacity.
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