
Capturing Performance Knowledge
for Automated Analysis

Kevin A. Huck1, Oscar Hernandez2, Van Bui2,
Sunita Chandrasekaran3, Barbara Chapman2, Allen D. Malony1,
Lois Curfman McInnes4, Boyana Norris4

1University of Oregon
2University of Houston
3Nanyang Technological University
4Argonne National Laboratory

SC’08 – Austin, TX – Nov. 20, 2008

November 20, 2008 SC'08 - Austin, TX 2

Objectives

•  To capture and automate performance analysis
process and higher level reasoning (meta-
analysis)
–  Design flexible analysis components and usable

interfaces for integration
–  Engage the parallel programming and tuning

environments to use knowledge-based analysis
automation capabilities

•  Make this available for other problem solving
scenarios

Motivation
•  Parallel performance analysis is complicated and

intimidating
–  Management of multi-experiment performance data
–  Application of multi-step processes can introduce errors if done

manually

•  Lack of support for automation translates to loss of
knowledge
–  Which analysis methods are useful for each performance

problem type
–  How performance models are obtained and validated
–  How to interpret performance results relative to opportunities for

optimization

November 20, 2008 SC'08 - Austin, TX 3

Application of Analysis Automation

•  Application: provide runtime performance data to the
OpenUH compiler to improve analysis for optimization
(for time, efficiency, power)

•  Long term goal: to improve cost model computation for
auto-parallelizing code with feedback-based optimization
–  Loop Nest Optimization (LNO)

•  Medium term goal: to improve OpenMP performance
with feedback-based optimization

•  Short term goal: capture expertise from hand-optimized
application code as re-usable analysis process

November 20, 2008 SC'08 - Austin, TX 4

November 20, 2008 SC'08 - Austin, TX 5

PerfExplorer 2.0
•  Data mining framework for parallel profile

performance data and metadata
•  Programmable, extensible workflow automation
•  Rule-based inference for expert system analysis

November 20, 2008 SC'08 - Austin, TX 6

Automation & Knowledge
Engineering

Analysis Components:
Correlation
Derive Metric
Difference
Extractions
K-Means
Smart K-Means
Linear Regression
Log Transform
Merge Trials
PCA
Scale Metric
Split
Process Rules
Save
Draw Chart

November 20, 2008 SC'08 - Austin, TX 7

OpenUH Compiler

•  C, C++, Fortran95 compiler
•  Complete support for OpenMP 2.5
•  Front end, IPA and middle/back end:

– Loop nest optimizer (LNO)
– Auto parallelizer (with an OpenMP module)
– Global optimizer (WOPT)
– Code generator (CG)

•  Each module supports feedback-directed
optimizations*

November 20, 2008 SC'08 - Austin, TX 8

OpenUH Cost Model

•  Some optimization guided by cost model
– Loop Nest Optimizer:

•  Processor model
•  Cache model
•  Parallel overhead model

•  Cost model computed with static
information (and control-flow feedback)

•  Long term goal: improve the cost model
accuracy using runtime analysis feedback

November 20, 2008 SC'08 - Austin, TX 9

OpenUH & PerfExplorer Integration

Example #1 – Multiple String
Alignment (MSA)

•  Compare protein sequences with
unknown function to sequences with
known function

•  Widely used heuristic: progressive
alignment (Smith-Waterman)
–  Compute a pairwise distance matrix

(90% of time spent here)
–  Construct a guide tree
–  Progressive alignment along the tree

•  OpenMP parallelism did not scale well
November 20, 2008 SC'08 - Austin, TX 10

Photo © NASA

November 20, 2008 SC'08 - Austin, TX 11

MSA – OpenMP Load Imbalance
#pragma omp for
for (m=first; m<=last; m++) {
 for (n=m+1; n<=last; n++) {
 …
 }
}

Inner Loop Outer Loop

November 20, 2008 SC'08 - Austin, TX 12

MSA – Improved Scaling

•  Before: efficiency <
70% with 16
processors, 400
sequence set

•  After: efficiency >
92.5% with 16
processors, 400
sequence set

•  Efficiency ~= 80% with
128 processors, 1000
sequence set

#pragma omp for schedule (dynamic,1) nowait

Scheduling parameters

November 20, 2008 SC'08 - Austin, TX 13

Analysis Workflow, Inference Rules
for each instrumented region:

 compute mean, stddev across all threads
 compute, assert stddev/mean ratio
 correlate region against all other regions
 assert correlation
 assert “severity” of event (exclusive time)

Rule1: IF severity(r) > 0.05 AND ratio(r) > 0.25
THEN alert(“load imbalance: r1”) AND assert imbalanced(r)

Rule2: IF imbalanced(r1) AND imbalanced(r2) AND calls (r1,r2) AND
correlation(r1,r2) < -0.5

THEN alert(“new schedule suggested: r1, r2”)

November 20, 2008 SC'08 - Austin, TX 14

Example output
--------------- PerfExplorer test script start ------------
--- Looking for load imbalances ---

Loading Rules… Reading rules: openuh/OpenUHRules.drl... done.
loading the data… Main Event: main
Firing rules...

The event LOOP #3 [file:/mnt/netapp/home1/khuck/openuh/src/fpga/msap.c <63, 163>] has a
high load imbalance for metric P_WALL_CLOCK_TIME

Mean/Stddev ratio: 0.667, Stddev actual: 6636425.1875

Percentage of total runtime: 27.15%

The event LOOP #2 [file:/mnt/netapp/home1/khuck/openuh/src/fpga/msap.c <65, 158>] has a
high load imbalance for metric P_WALL_CLOCK_TIME

Mean/Stddev ratio: 0.260, Stddev actual: 1.74530281875E7
Percentage of total runtime: 71.40%

LOOP #3 [file:/mnt/netapp/home1/khuck/openuh/src/fpga/msap.c <63, 163>] calls LOOP #2
[file:/mnt/netapp/home1/khuck/openuh/src/fpga/msap.c <65, 158>], and they are both
showing signs of load imbalance.

If these events are in an OpenMP parallel region, consider methods to balance the
workload, such as dynamic instead of static work assignment.

...done with rules.
---------------- PerfExplorer test script end -------------

  Rule1 true!

  Rule1 true!

  Rule2 true!

November 20, 2008 SC'08 - Austin, TX 15

Example #2 – GenIDLEST
•  Generalized Incompressible Direct

and Large-Eddy Simulations of
Turbulence

•  Overlapping multi-block body-fitted
structured mesh topology, and
unstructured inter-block topology

•  SPMD parallelism, using MPI and/or
OpenMP

•  Test cases: investigate turbine
cooling duct, 45 and 90 degree ribs
–  Detached Eddy Simulations (45)
–  Large Eddy Simulations (90)

Images © Danesh Tafti, Virginia Tech

GenIDLEST OpenMP Scaling

November 20, 2008 SC'08 - Austin, TX 16

Problems mainly related to
remote memory references
on NUMA architecture,
excessive memory copies
initiated by master thread

before...

before...

...after

...after

November 20, 2008 SC'08 - Austin, TX 17

Analysis Workflow, Inference Rules
for each instrumented region, exclusive:

 derive, assert inefficiency metric
 derive, assert memory/total stall cycles metric
 derive, assert memory cycles metric
 derive, assert remote memory accesses ratio metric
 assert “severity” of event

also compute values for main, inclusive

Rule1: IF severity(r) > 0.02 AND inefficiency(r) > inefficiency(main)
THEN alert (“inefficient, r”) AND assert(inefficient(r))
Rule2: IF inefficient(r) AND tsm(r) > 0.9
THEN alert (“memory stalls, r”) AND assert (memstall(r))

Rule3: IF memstall(r) AND memory(r) > memory(main)
THEN alert (“memory cycles, r”)
Rule4: IF memstall(r) AND remote(r) > remote(main)
THEN alert (“remote references, r”)

November 20, 2008 SC'08 - Austin, TX 18

Example output
Firing rules...

The event exchange_var__ has a higher than average stall / cycle rate
Average stalls per cycle: 0.79877, Event stalls per cycle: 0.95439
Percentage of total runtime: 31.16%

...

The event exchange_var__ has a high percentage of stalls due to L1 data
cache misses and FP Stalls.

Percent of Stalls due to these two reasons: 99.88%
...
The event exchange_var__ has a higher than average number of cycles

handling memory references.
Average memory cycles: 73.72%, Event memory cycles: 100.09%

...
The event bicgstab_ has a lower than average local memory reference

percentage. If this is an OpenMP parallel region, consider methods for
parallelizing data initialization.

Average percentage: 93.77%, Event ratio: 90.44%

...done with rules.
---------------- JPython test script end -------------

  Rule1 true!

  Rule4 true!

  Rule2 true!

  Rule3 true!

November 20, 2008 SC'08 - Austin, TX 19

Example #3 – Power Estimation
•  May want to optimize for metric other than time
•  Hardware counter data can be used to estimate

power consumption
•  Simplified model – Itanium2:

CPU = (instructions / cycles) * 0.0459 * 122
L1 = (L1 references / cycles) * 0.0017 * 122
L2 = (L2 references / cycles) * 0.0171 * 122
L3 = (L3 references / cycles) * 0.935 * 122

TOTAL = CPU + L1 + L2 + L3

scaling factor max power

November 20, 2008 SC'08 - Austin, TX 20

Power Estimation – Results
Metric -O0 -O1 -O2 -O3
Time 1.0 0.338 0.071 0.049
Instructions Completed 1.0 0.471 0.059 0.056
Instructions Issued 1.0 0.472 0.063 0.061
Instructions Completed Per Cycle 1.0 1.397 0.857 1.209
Instructions Issued Per Cycle 1.0 1.400 0.909 1.316
Power Consumed (Watts) 1.0 1.025 1.001 1.029
Energy Consumed (Joules) 1.0 0.346 0.071 0.050
FLOP/Joule 1.0 2.867 13.684 19.305

November 20, 2008 SC'08 - Austin, TX 21

Future Work

•  Modify cost model calculation to integrate
feedback from runtime data analysis

•  Feed information about sources of overhead and
causes to OpenMP infrastructure

•  Implement strategies for variable privatization
and first touch policies

•  Parallel model could be improved for auto-
parallelized code

•  Optimizations for performance and power

November 20, 2008 SC'08 - Austin, TX 22

Conclusion

•  Initial work into capturing analysis process
•  Automation and expert knowledge to direct

processing, interpret results, and provide
decision support

•  Flexible scripting, rule-based system is
reusable, extensible to other analysis
scenarios

November 20, 2008 SC'08 - Austin, TX 23

Acknowledgements
•  US Department of Energy (DOE)

–  Office of Science
•  US National Science Foundation (NSF)
•  Argonne National Lab
•  NASA / CSC (Altix 300)
•  NCSA (Altix 4700)
•  Virginia Tech (GenIDLEST application)

