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CQoS in Quantum Chemistry:  Motivation and Approach

• QCSAP Challenges: How, during runtime, can we make the best choices
for reliability, accuracy, and performance of interoperable quantum
chemistry components based on NWChem, MPQC, and GAMESS?
– When several QC components provide the same functionality, what

criteria should be employed to select one implementation for a
particular application instance and computational environment?

– How do we incorporate the most appropriate externally developed
components (e.g., which algorithms to employ from numerical
optimization components)?

• Initial Focus: Parallel application configuration of QC applications so that
these can run effectively on various high-performance machines
– Eliminate guesswork or trial-and-error configuration

• Future Work:  More sophisticated analysis to configure algorithmic
parameters for particular molecular targets, calculation approaches, and
hardware environments

Motivation:

Interactions of the chemistry CQoS component with
the database and comparator CQoS components.
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CQoS Approach:

• Overall: Develop infrastructure for dynamic component adaptivity, i.e.,
composing, substituting, and reconfiguring running CCA component
applications in response to changing conditions
– Performance, accuracy, mathematical consistency, reliability, etc.

• Approach:  Develop CQoS tools for
– Analysis: Performance monitoring, problem/solution characterization,

and performance model building
– Control: Interpretation and execution of control laws to modify an

application’s behavior
– CQoS database component: Manage interactions with performance

and runtime databases to facilitate analysis and decision making
– Leverage external tools under development by PERI and others

• Phases of work:

• The CCA Forum provides a specification and software tools for the
development of high-performance components.

• Components = Composition
– A component is a unit of software deployment/reuse
– Components interact through standard interfaces – no restrictions

on implementation (language, parallel model, etc.)
– A component architecture specifies a framework for composition of

units into applications
• Key CCA benefits:

– Programming language interoperability via Scientific Interface
Definition Language (SIDL) and Babel

– Common component interfaces
– Dynamic composability

• Facilitates collaboration
among domain scientists,
mathematicians, and
computer scientists

Every package implements these interfaces to create its own
components … Facilitates sharing capabilities among
chemists and the wider scientific community.

CCA Overview:

• Construct interoperating mechanism among several leading high-
performance QC codes (NWChem, GAMESS, and MPQC) through
CCA infrastructure

• CCA_chem_generic package defines several interfaces for QC
calculations
– Molecule, Model, GaussianBasis, IntegralEvaluator

Quantum Chemistry Scientific Application Partnership:

Isoprene HF/6-311G(2df,2pd) parallel speedup in
MPQC-based CCA simulations using components
from the Toolkit for Advanced Optimization (TAO),
a math library in the SciDAC TOPS project.

Quantum Chemistry and the 
Common Component Architecture (CCA)
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CQoS Infrastructure and Preliminary Results for Quantum Chemistry

CQoS Database Usage in Quantum Chemistry:

CQoS Database Usage
• Application metadata

– Molecule characteristics: atom types, topology, moments of
inertia

– Algorithm parameters: tunable parameters, convergence level
• System parameters

– Compilers
– Machine info, e.g., number of nodes, threads per node, network

• Historical performance data
– Execution times, iterations to convergence, etc.
– Obtained through source instrumentation, e.g., TAU
– Can guide configuration of related new simulations

CQoS Comparator Components
• Compare sets of parameters within the

performance database
• Quantum chemistry applications can match

the current application state against
historical data through database queries
during runtime.

• Use metadata to guide parameter selection
and application configuration
– Match molecule similarity, basis set similarity,

electronic correlation approach, etc.

CQoS database infrastructure provides a programmer-friendly component front-end to database implementations.  These wiring diagrams made by the
CCA Ccaffeine framework GUI (developed by SNL) represent component connections between ports. (Uses ports are gold; provides ports are blue.)

CQoS Analysis Using PerfExplorer and PerfDMF:

basis set=cc-pVDZ, scf type=RHF, run type=energy, cores=8, vary molecule, mp level, method, and node counts
test machine: bassi.nersc.gov: IBM POWER5, 111 compute nodes with 8 cores, 32GB memory per node
Direct is faster than conventional for some molecules at higher node counts – the correlation is data dependent.

Construction of Recommender System

Construction of Classifier (detail)

The # ob basis sets are in the case of cc-VDZ quality basis.

Preliminary performance evaluation of QC packages to
learn effective configurations
• 7 test molecules: bz (benzene), bz-dimer,
  AT, np (naphthalene), np-dimer, GC, C60

• 3 run types: energy, gradient, Hessian
• 5 SCF wavefunctions: RHF, ROHF, UHF,
  GVB, MCSCF
• 2 MP levels: 0, 2
• 4 basis sets: cc-pVDZ, 6-31G, 6-31G*,
   6-31G**
• 2 methods: direct (dir) or conventional (con)
• 672 combinations, without even considering
   node/core counts, machine parameters, architectures …

Sample Results for GAMESS


