

Office of

Science

Computational Quality of Service (CQoS) in Quantum Chemistry

Joseph Kenny¹, Kevin Huck², Li Li³, Lois Curfman McInnes³, Heather Netzloff⁴, Boyana Norris³, Meng-Shiou Wu⁴, Alexander Gaenko⁴, and Hirotoshi Mori⁵

¹Sandia National Laboratories, ²University of Oregon, ³Argonne National Laboratory, ⁴Ames Laboratory, ⁵Ochanomizu University, Japan

This work is a collaboration among participants in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS), Performance Engineering Research Institute (PERI), Quantum Chemistry Science Application Partnership (QCSAP), and the Tuning and Analysis Utilities (TAU) group at the University of Oregon.

This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research and Scientific Discovery through Advanced Computing (SciDAC) initiative, Office of Science, U.S. Dept. of Energy, under Contracts DE-AC02-06CH11357, DE-AC04-94AL85000, DE-AC02-07CH11358, and DE-FG02-07ER25826.

