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ABSTRACT
Parallel applications running on high-end computer systems
manifest a complexity of performance phenomena. Tools
to observe parallel performance attempt to capture these
phenomena in measurement datasets rich with information
relating multiple performance metrics to execution dynam-
ics and parameters specific to the application-system exper-
iment. However, the potential size of datasets and the need
to assimilate results from multiple experiments makes it a
daunting challenge to not only process the information, but
discover and understand performance insights. In this pa-
per, we present PerfExplorer, a framework for parallel per-
formance data mining and knowledge discovery. The frame-
work architecture enables the development and integration
of data mining operations that will be applied to large-scale
parallel performance profiles. PerfExplorer operates as a
client-server system and is built on a robust parallel per-
formance database (PerfDMF) to access the parallel profiles
and save its analysis results. Examples are given demon-
strating these techniques for performance analysis of ASCI
applications.

1. INTRODUCTION
As high-end parallel computer systems scale in number of
processors, their operation, programming, and performance
evaluation grow more complex. Complexity, as it arises from
the evolving nature of scalable machines and applications,
has been either the bane or the bugaboo (or both) of paral-
lel performance tools. The general goal of any performance
tool is to provide the user with an understanding of per-
formance phenomena, whether that be by interactive data
analysis or by more automatic methods for performance in-
vestigation. However, when faced with systems and appli-
cations of greater sophistication, size, and integration, the
requirements to address new performance complexity goals
challenge tool design, engineering, and technology.
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How do we build performance tools that can deliver high
utility and productivity for the parallel computing commu-
nity without being overwhelmed by high-end complexity de-
mands? In The Path of Law (1897), Oliver Wendell Holmes
wrote, “I would give my life for the simplicity on the other
side of complexity.” Here Holmes is commenting on how
the realities of society question the näıve reason and moral-
ity inherent in the practice of law. He believes the great-
est potential of law as a force for change comes only from
embracing societal complexities, and in doing so, the true
purpose of law is realized. In the same spirit, large-scale
parallel computing presents a complex face to performance
tools. Tools that ignore the complexity are limited in power,
either by their simplicity or by their scope. Similarly, tools
that feature creative solutions but which are complicated
and unusable in practice will go largely unnoticed. Parallel
performance technology must acknowledge the complexity
challenges of high-end systems and strive to deliver tool solu-
tions of high value and productivity. Ultimately, the poten-
tial of performance tools will be realized by both addressing
hard performance analysis problems and by developing and
delivering tools with strong computer science contributions
and high engineering standards.

In this paper, we describe our research and development
work on PerfExplorer, a framework for parallel performance
data mining. The research is motivated by our interest in au-
tomatic parallel performance analysis and by our concern for
extensible and reusable performance tool technology. Perf-
Explorer is built on an open performance data management
framework (PerfDMF [9]) that provides a common, reusable
foundation for performance results storage, access, and shar-
ing. Our work targets large-scale performance analysis for
single experiments on thousands of processors and for mul-
tiple experiments from parametric studies. PerfExplorer ad-
dresses the need to manage large-scale data complexity using
techniques such as clustering and dimensionality reduction,
and the need to perform automated discovery of relevant
data relationships using comparative and correlation anal-
ysis techniques. Such data mining operations are engaged
in the PerfExplorer framework via an open, flexible inter-
face to statistical analysis and computational packages, in-
cluding the R system1, WEKA2, and Octave3. With these

1http://www.r-project.org
2http://www.cs.waikato.ac.nz/ ml/weka/
3http://www.octave.org/



programmable packages, PerfExplorer functionality can be
extended by us and others in the future.

The following sections describe how PerfExplorer is built
and used for performance data mining. Section 2 outlines
the goals of the PerfExplorer project and presents the Perf-
Explorer framework architecture, software design and engi-
neering. Here we also describe the different analysis meth-
ods PerfExplorer will support in its data mining repertoire.
The intent of the framework is to provide easy access to
these methods and to coordinate their use. In Section 3,
details on the implementation of PerfExplorer are given. In
Section 4, we show the application of PerfExplorer to three
performance analysis studies. The first demonstrates Perf-
Explorer’s ability to rediscover performance features previ-
ously found by clustering analysis in the sPPM benchmark
[1]. This exercise both validates the PerfExplorer data min-
ing methodology as well as demonstrates the automation of
the clustering techniques. The second study applies cluster
discovery methods to the Miranda code run on 8K proces-
sors of the Lawrence Livermore (LLNL) BG/L machine. We
show how PerfExplorer is used to uncover computational
structure and per cluster performance features. The last
study is a comparative analysis of the GYRO benchmark
run on multiple large-scale platforms and problems sizes.
Section 5 describes the related work in this area. Final con-
clusions and future work are given in Section 6.

2. GOALS AND DESIGN
The overall goal of the PerfExplorer project is to create a
software infrastructure to help conduct parallel performance
analysis in a systematic, collaborative, and reusable manner.
The infrastructure should exist to provide easy performance
data access and to link analysis capabilities. It is also im-
portant to provide support to manage the analysis process.
In particular, our objective is to integrate sophisticated data
mining techniques in the analysis of large-scale parallel per-
formance data. Given existing robust data mining tools,
PerfExplorer’s design motivation is to interface cleanly with
these tools and make their functionality easily accessible to
the user. The analysis leverage and extensibility gained,
coupled with the data and analysis process management,
gives the PerfExplorer environment a powerful set of capa-
bilities for performance knowledge discovery.

2.1 Complexity Management
One important goal of PerfExplorer is to reduce the degree of
complexity in large performance profiles and in their analy-
sis. This is accomplished by more robust support for perfor-
mance data and results management as well as management
of analysis processes and automation. To discover charac-
teristics of an application or parallel machine which may be
hidden in the data, we need flexibility in a performance data
mining tool to select features of interest to investigate and
mining operations to perform. PerfExplorer manages data
complexity through the use of a performance data reposi-
tory (PerfDMF) and by making it easy for a user to select
datasets and parameters in different combinations for anal-
ysis. PerfExplorer manages analysis complexity through the
abstraction of data mining procedures, thereby reducing the
expertise required of the user to develop these procedures or
to efficiently access them via available statistical packages.
There is also significant value to the automation of data min-

ing processes that may involve multiple experiments and a
sequence of analysis steps.

The intended uses of PerfExplorer includes, but is not lim-
ited to benchmarking, procurement evaluation, modeling,
prediction and application optimization. In all these uses,
the ability to quickly compare the results of several experi-
ments, and summarize characteristics of large processor runs
will replace the need for users to develop their own tools or
manually orchestrate several tools in a analysis process. Our
aim is to provide an application that does not require a per-
formance expert to operate, and yet still provide meaningful
performance analysis.

2.2 PerfExplorer Architecture
From the start, PerfExplorer was targeted to large-scale per-
formance data analysis. The concept was one of an interac-
tive environment from where analysis processes would be
launched and results would be visually reviewed. Initial
tests running data analyses against large data sets made
it obvious that for an interactive application to be respon-
sive to user events, the framework would need to be either
multi-threaded or distributed. We decided to support both a
client-server architecture and a multi-threaded, standalone
option. In the client-server configuration, several analysis
clients can share a single analysis server. Remote clients
would request data mining operations and retrieve results.
In a distributed environment, the architecture affords the
potential to locate clients and servers where desired, and to
leverage Internet and other technologies when implementing
the components. For example, the PerfExplorer client has
been configured to be launched from a web browser, with
no prior installation or configuration of the environment or
client workstation required.

The architecture can be effectively realized on a single ma-
chine, when workstation performance is not an issue, or
where network security may be an obstacle to distributed
applications. When PerfExplorer is executed as a standalone
application, the behavior of the client application is exactly
the same. The only difference is that rather than requesting
remote objects from a server application, the analysis would
be performed in a separate thread, allowing for responsive
interactive queries while long-running analysis is performed
by the server thread.

Figure 1 shows the PerfExplorer architecture. It consists of
two main components, the PerfExplorer Client and the Perf-
Explorer Server. The PerfExplorer Client is a standard Java
client application, with a graphical user interface developed
in Swing. The client application connects to the remote
PerfExplorer server (also written in Java) using Remote
Method Invocation (RMI), and makes processing requests
of the server. The process of performing the data mining
analysis is straightforward. Using the PerfDMF API, The
server application makes calls to the performance database
management system (DBMS) to get raw performance data.
The server then passes the raw data to an analysis engine
which performs the requested analysis. Once the analysis
is complete, the PerfExplorer server saves the result data to
the PerfDMF DBMS. Output graphics can also be requested
at the server and images saved for later review. Because the
analysis server is multi-threaded, it can continue to serve
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Figure 1: The PerfExplorer architecture. The Performance Client sends requests to the Performance Server.
The Performance Server gets the data from the DBMS, performs the analysis using the toolkit of choice, and
saves the results in the DBMS.

interactive requests to the client (or multiple clients) while
performing analysis. One such type of interactive request
is to perform comparative analysis. In that case, the user
selects two or more data objects, and requests the data to
be compared from the server. The server performs the data-
base query, and returns the results to the client, which are
rendered for the user. The types of interactive displays avail-
able include scalability charts, four dimensional correlation
scatterplots, and data summarizations.

2.3 Analysis Methods
Data mining of large-scale parallel performance data seeks
to discover features of the data automatically. Some areas
in which we are interested are clustering, summarization,
association, regression, and correlation. Cluster analysis
is the process of organizing data points into logically simi-
lar groupings, called clusters. Summarization is the process
of describing the similarities within, and dissimilarities be-
tween, the discovered clusters. Association is the process
of finding relationships in the data. One such method of
association is regression analysis, the process of finding in-
dependent and dependent correlated variables in the data.
In addition, comparative analysis extends these operations
to compare results from different experiments, for instance,
as part of a parametric study. The objective of PerfExplorer
is to provide a common framework for the incorporation of
multiple analysis capabilities.

Clustering
Cluster analysis is a valuable tool for reducing large paral-
lel profiles down to representative groups for investigation.
Currently, there are two types of clustering analysis imple-
mented in PerfExplorer. Both hierarchical and k-means
analysis are used to group parallel profiles into common
clusters, and then the clusters are summarized. Initially,
we used similarity measures computed on a single parallel
profile as input to the clustering algorithms, although other
forms of input are possible. Here, the performance data is

organized into multi-dimensional vectors for analysis. Each
vector represents one parallel thread (or process) of execu-
tion in the profile. Each dimension in the vector represents
an event that was profiled in the application. Events can be
any sub-region of code, including libraries, functions, loops,
basic blocks or even individual lines of code. In simple clus-
tering examples, each vector represents only one metric of
measurement. For our purposes, some dissimilarity value,
such as Euclidean or Manhattan distance, is computed on
the vectors. As discussed later, we have tested hierarchi-
cal and k-means cluster analysis in PerfExplorer on profiles
with over 32K threads of execution with few difficulties.

Hierarchical clustering is a form of clustering which starts
with individuals, and works to organize them into clusters
by merging the two closest members into a new cluster. Ini-
tially, each individual is assigned to a different cluster with
size 1. Using a Manhattan distance calculation between the
cluster centers, the two closest clusters are merged into one
cluster, and the mean is calculated for the new cluster. The
process is continued until there is only one cluster. The
result is typically displayed as a tree dendrogram.

k-means clustering groups the individuals into k common
groups, or clusters. The clustering is performed by selecting
k initial cluster centers, and assigning the individuals to
the cluster to which they are the closest, using a Euclidean
distance calculation. New cluster centers are calculated as
the mean of the members of the cluster, and the process is
repeated until convergence. k-means clustering results are
typically displayed as scatterplots.

Dimensionality Reduction
Clustering algorithms perform reasonably well on datasets
of low dimensions, with ”low” defined as less than 15. Un-
fortunately, we have test datasets with dimensions over 100.
As pointed out by several authors[2, 8, 12], locality-based
clustering methods are not fully effective when clustering



high dimensional data. In high dimensional data sets, it is
very unlikely that data points are nearer to each other than
the average distance between data points because of sparsely
filled space. As the dimensionality increases, the difference
between the nearest and farthest neighbors within a cluster
goes to zero. As a result, a high dimensional data point
is equally likely to belong to any cluster. Because of this,
dimension reduction is necessary for accurate clustering.

We have implemented three types of dimension reduction in
PerfExplorer. The first type of dimension reduction is to
ignore dimensions which are less significant. That is, only
consider dimensions which are statistically significant with
respect to the overall runtime behavior of the application.
The user specifies a minimum percentage, and any events
which, on average, constitute less than that percentage of
the total execution are not included. For example, if time is
the metric of interest and the user sets a minimum percent-
age of 3%, only events which, on average, constitute greater
than or equal to 3% of the execution time will be included in
the dimensions. For the sPPM application discussed further
below, a setting of 1% reduced the number of dimensions
from 105 down to 10. A future version of PerfExplorer will
calculate and suggest a minimum percentage to the user.

Another method of dimension reduction implemented is ran-
dom linear projection. It has been demonstrated by Das-
gupta[5] that data from a mixture of k Gaussians can be
projected into just O(log k) dimensions while still retaining
the approximate level of separation between the clusters. In
addition, even if the original clusters are far from spherical,
they are made more spherical by linear projection. Because
of these two properties, random linear projection is a good
solution for dimension reduction.

A third method supported in PerfExplorer is Principal Com-
ponents Analysis (PCA). PCA is designed to capture the
variance in a particular dataset in terms of the principle
components, that is, the dimensions which define the maxi-
mum amount of variation within the dataset. Because each
component is orthogonal to, and therefore uncorrelated with,
the other components, this method helps to remove corre-
lated variables in the data, leaving only the data which de-
scribes the maximum variance. PCA is useful in reducing
the number of metrics in a dataset. Ahn and Vetter[1] used
this technique to demonstrate that many hardware counters
are often highly correlated.

Correlation
PerfExplorer also implements Coefficient of Correlation anal-
ysis. This is a measure of the strength of the linear relation-
ship between two variables, x and y. The coefficient value
will lie between 1.0 and -1.0, indicating whether there is a
linear relationship (close to 1.0), no relationship (close to
0.0) or a negative linear relationship (close to -1.0) between
the two variables. The coefficient of correlation is useful
in determining the relationships among different events and
metrics in the data. For example, in parallel applications
which implement message passing, there often are relation-
ships between sending and receiving events. Also, hardware
counters are often highly correlated, and this type of anal-
ysis can help differentiate between the metrics which will
contribute to the understanding of the performance of the

Figure 2: In this example, the data for the B1 bench-
mark of the GYRO application has been loaded into
the database organized by processor count, and then
by input problem, as shown on the left. By creat-
ing views and sub-views, as shown on the right, the
same data can be reused in a scalability analysis.

application and those which can be ignored or not collected
at all.

Comparative Analysis
In addition to the data mining operations available, the user
may optionally choose to perform comparative analysis. The
types of charts available include time-steps per second, rela-
tive efficiency and speedup of the entire application, relative
efficiency and speedup of one event, relative efficiency and
speedup for all events, relative efficiency and speedup for all
phases and runtime breakdown of the application by event
or by phase. In addition, when the events are grouped to-
gether, such as in the case of communication routines, yet
another chart shows the percentage of total runtime spent
in that group of events. These analyses can be conducted
across different combinations of parallel profiles.

Views
Because the comparisons depend on the organization of the
data, it is necessary to support arbitrary views of the per-
formance data in the database. For example, suppose the
data for a particular experiment is organized to facilitate
a scalability study. If the same data is needed for a para-
metric study related to the implementation of some user-
tunable calculation, then it should not be necessary to re-
load the data in order to re-organize it. Therefore, we have
designed the comparative analysis to execute on user de-
fined views. The views are designed such that the user can
select a subset of data from the database, and then further
subdivide that data into different organizations based on ar-
bitrary data columns. Figure 2 shows an example where the
data has been loaded into the database organized by pro-
cessor count, and then by input problem. By creating views
and sub-views, the same data can be reused in a scalability
analysis.

3. IMPLEMENTATION
In this section, we will look in more detail at the technology
involved in PerfExplorer’s construction, and take a look at
the PerfExplorer user interface.



3.1 Components
The types of analysis described and their respective visu-
alizations would take many man-months of development to
implement. It makes much more sense to leverage the avail-
able tools in the open-source community, rather than strug-
gle with the complexities of implementing our own analysis
routines. Several software components are needed for this
research project, and we will discuss the major contributors.

TAU and PerfDMF.
PerfExplorer is an extension of the Tuning and Analysis
Utilities (Tau

4) project at the University of Oregon. Tau

is both a framework and technology toolkit for performance
instrumentation, measurement and analysis of scalable par-
allel programs. It targets a general computational model
consisting of shared-memory compute nodes where multi-
ple contexts reside, each providing a virtual address space
shared by multiple threads of execution. The measurement
library in Tau implements performance profiling and trac-
ing support for performance events, and organizes the data
on a (node, context, thread) basis. Additionally, Tau pro-
vides data analysis and presentation utilities, text-based and
graphical tools to visualize the performance data, as well as
bridges to third-party software, such as Vampir5 for sophis-
ticated trace analysis and visualization. TAU’s ParaProf
tool is used for parallel profile viewing.

Distributed with Tau is the Performance Data Manage-
ment Framework (PerfDMF)[9]. PerfDMF is a database
schema and API for building performance database appli-
cations. The performance data are statistical profiles from
parallel executions. The data parsers in PerfDMF support
over a half dozen common parallel profile data formats (e.g.,
mpiP6, dynaprof7, HPMtoolkit[14], and TAU), and the schema
represents a union of their profile data specifications. Queries
to the database are constructed in standard SQL, to ensure
compatibility with a large subset of DBMS implementations,
assuming they provide a Java database connectivity (JDBC)
interface. PerfDMF provides both a Java API and a C inter-
face for accessing the data. PerfDMF provides the founda-
tion on top of which we have built the performance analysis
toolkit, with extends the API to perform queries against the
database to characterize parallel performance behavior.

While code instrumentation can be difficult, tools such as
tau compiler[15] make this process much easier. With the
ability to easily generate parallel profile data and store it
in the PerfDMF database, we are now attempting to pro-
vide easy, automated performance analysis which does not
require a performance expert to produce or understand.

PostgreSQL.
PerfDMF supports many different DBMS implementations,
including Oracle, MySQL, DB2 and PostgreSQL. The data-
base selected for the development of this project is Post-
greSQL 7.4. PostgreSQL is a robust, open source relational
DBMS. PostgreSQL is also the primary development data-
base for PerfDMF. However, the selection of the database

4http://www.cs.uoregon.edu/research/paracomp/tau
5http://www.pallas.com/e/products/vampir/index.htm
6http://www.llnl.gov/CASC/mpip
7http://www.cs.utk.edu/∼mucci/dynaprof

to use for development is immaterial, as the PerfDMF pro-
vides a homogeneous interface to connect to all supported
databases.

Java.
The primary development language for the tools in the Tau

project and PerfExplorer is Java 1.3, to ensure the maxi-
mum portability among systems today. The developers of
the Tau project are focused primarily on integration, re-
usability, and portability, based on robust and open soft-
ware. Java was selected for its near ubiquitousness, its facil-
ity for extension, and for the large selection of class libraries
which use Java as a code base. By using Java, we can lever-
age the software base already developed and in use in the
PerfDMF project, as well as other supporting libraries and
frameworks.

R and Weka.
There are several techniques for statistical analysis and data
mining on parallel performance data. Many of these tech-
niques have already been implemented in other tools. It
makes little sense to re-implement these capabilities in our
own Java library. One of the goals of the PerfExplorer de-
velopment is to leverage mature, open source software solu-
tions where possible. In addition, if a performance analyst
using PerfExplorer already has a library of analysis opera-
tions which he/she has developed, we would like to integrate
that functionality within the PerfExplorer framework. Cur-
rently, we have designed PerfExplorer as a wrapper around
two analysis packages: R and Weka.8

R is a language and environment for statistical computing
and graphics. It is essentially an open source implemen-
tation of the S language and environment, which was de-
veloped at Bell Laboratories. R provides a wide variety of
statistical and graphical techniques, and is highly extensible.
R has been ported to a number of platforms. We used the
available Omegahat9 interface to integrate the R analysis
into the PerfExplorer Java application.

The second package we integrated is Weka, a collection of
machine learning algorithms for data mining tasks. Unlike
R, Weka is written entirely in Java. It contains tools for data
pre-processing, classification, regression, clustering, associ-
ation rules, and visualization. Several projects have used
Weka and contributed new tools. PerfExplorer’s wrapping
approach allows R and Weka to be used separately or in
combination.

JFreeChart.
Each of the analysis packages mentioned have visualiza-
tion functionality included, but they are dissimilar and non-
uniform. Visualization is an important component of Perf-
Explorer and we desire consistent visualization results, re-
gardless of the choice of package for analysis. For this reason,
it makes sense to use a charting graphics package written in
Java to integrate into the environment. JFreeChart10 in-
cludes support for a large number of charts, including pie,

8We are presently investigating the integration of Matlab
and/or Octave into PerfExplorer.
9http://www.omegahat.org/RSJava

10http://www.jfree.org/jfreechart/
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Figure 3: The PerfExplorer user interface. Performance data is organized in a tree view on the left side of
the window, and the cluster analysis results are visible on the right side of the window. Various types of
comparative analysis are available from the drop down menu selected.

bar, line, area, scatter, bubble, time series and combination
charts. By loading the performance data and/or results in
a common data format, we are able to visualize this data
using one visualization call. JFreeChart can be used to gen-
erate visualizations on the server side which are stored in
the database, awaiting request from the client. It can also
be used to generate charts in the client, for interactive data
display.

3.2 User Interface
As important as the data mining functionality provided, the
user’s interface to PerfExplorer will determine how produc-
tively it is used. Figure 3 shows the user interface design
for PerfExplorer. The PerfExplorer client serves as a man-
agement console for requesting, checking the status of, and
reviewing the results of analysis operations. The main client
window is divided in two. The left side contains a naviga-
tion tree, representing the performance data as it is stored
in the database. PerfDMF data is organized in an Appli-
cation / Experiment / Trial hierarchy, and that hierarchy
is represented in the top of the tree. In addition, the user
has the ability to create views of the data, with arbitrary
organization. The views are visible in the lower section of
the tree view.

The tree navigation is primarily used for selecting the fo-
cus of the data analysis, requesting analysis operations, and
querying the status of the analysis operations. In a sam-
ple user case, as shown in Figure 3, the user will browse to
the trial(s) of interest. The user then selects the relevant
datasets that will form the basis of analysis. After setting

optional analysis parameters, the user will then request the
analysis operation. While the operation is being performed,
the user can use the Analysis Monitor (not shown) to query
the status of the analysis. As soon as preliminary results
of the analysis are available, or when the analysis is com-
plete, the user can access the other two tabbed consoles to
examine the results.

As shown in Figure 3, the Cluster Results console presents
the user with a “thumbnail” view of the performance graphs
generated by the analysis. If the user finds a graph that is
particularly interesting, she can select the thumbnail. A
larger view of the graph will be presented and additional
data will be shown to the user, including the raw data,
method, and numerical results that were used to generate
the performance graph.

The Correlation Results console (not shown) presents the
user with thumbnail views of correlation analysis. Currently,
the user can request correlation analysis of events or met-
rics, the result of which will help guide the selection of per-
formance metrics and/or events of interest. Scatter plots
are used to represent the results of the correlation analy-
sis, along with tables showing the coefficient of correlation
between the events and/or metrics.

When performing comparative analysis, the user can browse
the data in the database, and either select data from the
existing application / experiment / trial structure, or build
custom views of the data. The user can then select a number
of experiments, where each experiment represents a machine
and parameter combination. Then the user selects a com-



parative analysis to perform from the drop-down menu at
the of the application, as demonstrated in Figure 3.

4. EXPERIMENTAL RESULTS
To demonstrate how PerfExplorer is used in practice, this
section reviews our work with three large-scale parallel ap-
plications: sPPM, Miranda, and GYRO. While the discus-
sion highlights the data mining results for these applica-
tions, the relative simplicity of using PerfExplorer should
also be emphasized. Much of the analysis process is auto-
mated and the user interfaces with the framework at a high
level. It is straightforward to capture the analysis results
graphically for reports, or have them recorded back into the
performance database for later use.

4.1 ASCI Purple Benchmark: sPPM
The sPPM11 benchmark solves a 3D gas dynamics problem
on a uniform Cartesian mesh using a simplified version of
the PPM (Piecewise Parabolic Method) code. The code is
written to simultaneously exploit explicit threads for shared
memory parallelism and domain decomposition with mes-
sage passing for distributed parallelism. sPPM represents
the current state of ongoing research and has demonstrated
good processor performance, excellent multi-threaded effi-
ciency, and excellent message passing parallel speedups. The
sPPM code is written in Fortran 77 with some C routines,
OpenMP, and MPI. We compiled and executed sPPM on
parallel computing resources at LLNL. Instrumentation and
measurement was done with Tau. sPPM has been analyzed
by others and much is known about its execution and per-
formance behavior. Our interest was to see if PerfExplorer
could uncover these well understood features. The pro-
gram uses MPI to communicate between computer nodes
and OpenMP to activate parallelism within a node. By
clustering thread performance for different metrics, Perf-
Explorer should discover these relationships and which met-
rics best distinguish their differences.

sPPM was executed on LLNL’s Frost machine. Frost is
a cluster of 16-way IBM Power3 processors running AIX.
sPPM used 16 processes (one per node), with 16 threads
per process for a total of 256 threads of execution. Clus-
tering on execution time, initial analysis showed that events
executed by the master threads dominate. Worker threads
sit idle for nearly all of the time, since they are only active
during short OpenMP loops. Plus, the master threads per-
form all communication operations. The only metric which
showed a balanced work load is that of floating point opera-
tions, where the work is nearly evenly distributed among the
threads. For any choice of metrics, PerfExplorer will take
the clustering results and display the representative perfor-
mance for each cluster based on the average performance
from the threads that are members of the cluster.

Consider the clustering analysis results for floating point
instructions shown in Figure 4. The hierarchical cluster-
ing is used in PerfExplorer to help the user select a logi-
cal number of clusters. The dendrogram shows visually the
similarity ordering between the threads. Once a number
is decided by the user, the k-means clustering results are
examined to determine cluster grouping and representative

11http://www.llnl.gov/asci/purple/benchmarks/

performance. The virtual topology gives a view of how clus-
ters map to threads and processes. As seen in Figure 4, the
floating point instructions in sPPM have an unusual cluster-
ing. As noted by Ahn and Vetter[1] and reproduced here,
the higher ranking threads seem to execute 3% fewer float-
ing point instructions than lower ranking threads. This is
appears to be true only for the worker threads. A selection
of k ≥ 6 is required to show this relationship in the cluster
results. Further investigation shows that the difference is
primarily in the INTERF method, used to construct the sim-
plest possible monotone parabolae within zones of the grid.
However, when the application is run on MCR, a cluster of
dual-processor machines, the higher ranking threads execute
more floating point instructions in the INTERF method than
the lower ranking threads do, for both worker and master
threads.

4.2 LLNL Application: Miranda
Miranda[3] is a research hydrodynamics code ideal for sim-
ulating Rayleigh-Taylor and Richtmyer-Meshkov instability
growth. It is written in Fortran 95 and uses MPI for commu-
nication between processes. The code uses 10th-order com-
pact (spectral-like) or spectral schemes in all directions to
compute global derivative and filtering operations. The data
is transposed to perform sparse linear (pentadiagonal) solu-
tions and FFTs, which requires mostly synchronous com-
munication in the form of MPI Alltoall on

p

Np x, y com-
municators for global operations, where Np is processors,
and x and y define the problem size. There are some MPI
reductions and broadcasts for statistics. The current in-
put/output model is n → n, that is, each CPU writes and
reads its own restart and graphics data files. The Miranda
application has been ported to the BlueGene/L (BG/L) ma-
chine12 at LLNL, and has been executed in configurations
up to 32K processors. Prior to the experiments on BG/L,
Miranda showed good scalability when tested up to 1728
CPUs, with communication scaling for fixed workload per
CPU. Tau was used to instrument and measure the Miranda
application on BG/L. Experiments were done with 4K, 8K,
16K and 32K processors and the performance profiles were
loaded into the PerfDMF database. Note, this performance
data does not represent the current state of the application
or machine, but shows some interesting knowledge discovery
capability of the PerfExplorer framework.

Figure 5 shows some of the clustering results for the 8K pro-
cessor data. What is immediately apparent is the pattern
of cluster assignment to virtual topology. This is probably
related to the physical design of the BG/L system – there
are 32 processor chips per node board, and 32 node boards
per cabinet. The events that primarily caused the clusters
were the MPI Barrier call and the MPI Alltoall call. In-
terestingly, there were no such patterns in the 16K data,
due to the fact that the 16K run occurred later than the
8K run, and reflected improvements to both the communi-
cation infrastructure and to the code itself. However, both
datasets showed the same gradual change from first to last
processor, showing a relationship between MPI Barrier and
MPI Group translate ranks. Specifically, the Miranda ap-
plication on BG/L has an inverse relationship between the
functions MPI Barrier and MPI Group translate ranks. As

12http://www.llnl.gov/asci/platforms/bluegenel/
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Figure 4: The dendrogram in (a) shows cluster relationship of floating point instructions when running sPPM
on Frost. For clustering with k = 6, the histogram in (b) shows membership counts for each cluster and the
graphic in (c) shows the virtual topology of the 16 processes (columns) and 16 threads (rows). Notice the
worker threads are split into two distinct clusters. (d) shows the average behavior for each cluster. Notice
that the higher ranked worker threads (second bar graph down) execute fewer floating point instructions in
the INTERF() method.

the MPI rank of the process gets larger, the MPI Barrier call
takes more time, and the MPI Group Translate Ranks call
takes less time. This behavior in the application is due to the
MPI communication implementation on the BG/L architec-
ture, and unofficial reports from LLNL are that IBM contin-
ues to improve the performance of the communication archi-
tecture. In the later sets of data, the negative linear relation-
ship between MPI Barrier and MPI Group Translate Ranks

has also disappeared, again probably due to improvements
in the performance of the machine. However, in the more
recent 8K data, subtle relationships still exist in the nearly
uniform data, in the form of alternating bands of 32 pro-
cesses.

Figure 5 (d) shows some performance data from a different
8K processor execution of the Miranda application, after ad-
ditional modifications have been made. What the two iso-
metric views show is the relationships between the four MPI

events. This view is constructed by selecting the four events
in the data which experience the most variance in their re-
spective ranges, weighted by percentage of total execution
time, across processes. Because the Miranda application is
very regular and balanced, the four events selected happen
to be MPI events, and variation in their values is mostly
determined by their physical and logical distance from the
root MPI process. However, there are other patterns, such
as the staircase of eight clusters when examining MPI Reduce

to MPI Group translate ranks reflecting the hardware con-
figuration of eight racks of 1K processors.

4.3 GYRO
GYRO[6] is a physics code that simulates tokamak turbu-
lence by solving the time-dependent, nonlinear gyrokinetic-
Maxwell equations for both ions and electrons. It uses a
five-dimensional grid and advances the system in time us-
ing a second-order, implicit-explicit (IMEX) Runge-Kutta



r s t u v w x y z z y z u y v { | } z ~ y v r � t � � v ~ } s | � w � w | w � � r x t � s | | { | w x � � � � y u y v � � y � ~

� | ~ y v � s ~ � � � � s � � z
w � � � � v w x y z z w v z

{ | } z ~ y v x w } � ~ z v s � � y
� v w � � � � ~ w � � � � � � u � � � v w } � � ~ v s � z | s ~ y � v s � � z � u � � � s v v � y v � � � � � � �   ¡ ¢ � �

r � t £ ¤ ¥ � � y � z � w � s | � z w � y ~ v � x � � y ¦ z w � § � � § ¤ � s v � s � x y y � y � ~ z � u � � ¨ y � } x y � � u � � � | | ~ w s | | � � u � � � v w } � � ~ v s � z | s ~ y � v s � � z s � � � u � � � � � ~

Figure 5: These figures show the relationship between threads of execution when executing Miranda on
BG/L. For clustering on execution time with k = 10, the histogram in (a) shows a relatively small variation
for cluster membership counts, and the graphic in (b) shows the virtual topology of the 8192 processes
organized arbitrarily in 32 rows of 256 processes. The alternating bands of behavior are clearly visible as
the viewer progresses from left to right, bottom to top, from processor 1 to processor 8192. (c) shows the
average behavior for each cluster. Although the clusters are not ordered, with careful viewing it should be
obvious that there are two groups of behavior for MPI Alltoall, and a negative linear relationship between
MPI Group translate ranks and MPI Barrier. (d) shows a 4 Dimensional Scatterplot of Miranda events after
modifications were made to the source code. The events shown were selected because these events have the
most variance within their range, weighted by percentage of total execution, across the 8K processors.

(RK) integrator. The equations are solved in either a local
(fluxtube) or global radial domain. GYRO is the only GKM
code that has both global and electromagnetic operational
capabilities. GYRO has been ported to a variety of modern
platforms, and the data which we have analyzed includes
ports to the Cray X1, SGI Altix, TeraGrid, and the IBM
p690 and SP3.

GYRO is the subject of a PERC [13] tool evaluation effort
underway at Oak Ridge National Laboratory. The scientists
there have executed the application many times on several
machines with different configurations in an effort to per-
form an in-depth analysis of GYRO, and to evaluate current
performance tools. As the Tau project team is participat-
ing in this effort, we have access to the performance data
available to date. This data comes from various sources:
embedded timers, HPMToolkit, MPICL, mpiP, and Tau.
Preliminary comparative analysis by ORNL of the embed-

ded timers was done manually using spreadsheets for data
input and statistical displays. Our interest was to see what
productivity gains could be realized using PerfExplorer.

The PerfDMF parsers give the advantage of importing pro-
file data from multiple sources. Parsers were already avail-
able for HPMToolkit, mpiP, and TAU. For our comparative
analysis study, we decided to focus on the data collected by
the hand-instrumented timers. It was a simple matter to
write a PerfDMF parser for this data. The instrumentation
tracks seven events of interest, two of which are communi-
cation events, and the data is divided into execution phases.
There are three benchmark data sets used (B1, B2, and B3),
each with a different number of time-steps. The B1 bench-
mark runs for 500 time-steps, and outputs performance data
every 50 time-steps, giving ten phases. This data was loaded
into the PerfDMF database as call-path data, modeled af-
ter the new phase-based analysis data structures available
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Figure 6: Relative Efficiency comparisons for various machines and configurations when running the GYRO
application. In (a), there is a noticeable drop in efficiency for the two IBM p690 runs (cheetah), when looking
at total execution time. By comparing the scalability of all events for that particular execution, we see that
the significant cause for the drop is due to poor performance for the Coll tr event, shown in (b). The other
three events which scale poorly are I/O related, and/or do not contribute to a large percentage of the total
execution time. By comparing this event on all machines and configurations, we see that the p690 is the only
machine in the study that has this drop in efficiency for this event, shown in (c). Figure 6(d) is an example
of phased-based performance analysis, showing variability between time-steps in GYRO.

in Tau. Because the data given was aggregate data across
all processors, cluster analysis would be of no use, as the
data would form one cluster (the average behavior). So, we
focused our attention to comparative evaluation across the
combinations of benchmark type, machines, and platform
configurations.

As mentioned above, there are several types of comparison
available in PerfExplorer. The figures in Figure 6 show the
relative efficiency comparison for the B1 benchmark. We
start by comparing the total execution time for the appli-
cation, across all machines and configurations in the study,
using 16 processors as our base case. In Figure 6(a), it is
obvious that the IBM p690 (cheetah) has a sharp dip in ef-
ficiency when going from 16 to 32 processors. PerfExplorer
provides the ability to “drill-down” through the data, for
example, 6(b) shows the relative efficiency by event for only
one configuration of the p690. This view is, in effect, a event

scalability view. The statistically significant dip in efficiency
is caused primarily by the Coll tr event, which performs
transpose communications before and after the main colli-
sion routine. By doing a total execution percentage break-
down (not shown), we learned that the other events which
do not scale well do not contribute significantly to the over-
all runtime of the application. By looking at the data from
another perspective in Figure 6(c), we can view only the
Coll tr event for all machines/configurations in the study,
and see that only the p690 has this large dip in efficiency, for
both configurations tested. In contrast to hand-generated
analysis, it is important to realize that PerfExplorer is per-
forming the analyses interactively with the user. It is cer-
tainly possible to have the production of the graphs seen
here be fully automated through the use of scripting, which
will be implemented. This could, for instance, enable per-
formance regression reports to be generated with little user
intervention. Also, PerfExplorer’s access via PerfDMF to



performance data from multiple tools and perspectives pro-
vides the opportunity to do more integrative analysis.

Unrelated to the previous three figures, Figure 6(d) shows
the breakdown of a single execution by phase (based on
time-steps), and shows the variability in the time to solution
(shown as relative efficiency) for each phase as the number of
processors increase. The phases here are in 50 time-step in-
tervals. One aspect of the data visible is that the variability
appears to increase as the number of processors increases. In
addition, in this particular execution, iteration 6 had some
drop-off in performance, which was found to be a 3x increase
in the amount of time spent in one communication routine
(NL tr) during that phase. This is probably an anomaly due
to an unusual network load.

5. RELATED WORK
The primary inspiration for the data mining aspect of Perf-
Explorer is the research by Ahn and Vetter[1]. Those au-
thors chose to use several multivariate statistical analysis
techniques to analyze parallel performance behavior. The
types of analysis they performed included cluster analysis
and F-ratio, factor analysis, and principal component anal-
ysis. They showed how hardware counters could be used
to analyze the performance of multiprocessor parallel ma-
chines. One of their interesting results is that many hard-
ware counters collect closely correlated, and therefore redun-
dant metrics. They found that data mining techniques were
useful in discovering interesting features in the data. The
demonstrated usefulness of this type of analysis inspired us
to create PerfExplorer. We saw the need for a tool because
this analysis was in an ad-hoc manner. While not all of
the analysis methods described are currently implemented
in PerfExplorer, the primary component (cluster analysis)
and PCA methods available and we implementing the oth-
ers using the capabilities in Weka and/or R.

Another major inspiration for the PerfExplorer project is
the work done by Sherwood et al[16]. The primary goal
of their SimPoint application is to reduce long-running ap-
plications down to tractable simulations. The authors met
that goal by statistically sampling the instruction mix of a
running serial application to determine where the applica-
tion spent its time. The authors define the concept of “basic
block vectors”, and use those concepts to define the behav-
ior of blocks of execution, usually one million instructions
at a time. In a similar way, we used threads of execution
as instruction vectors in our preliminary work. Re-applying
the similarity graphics used in their paper, we were able
to show the differences between threads of execution by on
Manhattan distance calculations. The basic block similar-
ity matrix was the inspiration for our thread of execution
similarity matrix. In addition, this research was one of the
inspirations for adding phase analysis to Tau profile data
collection and analysis, and for adding a phase-based focus
to the comparative analysis.

The Prophesy system[18] uses some statistical analysis meth-
ods to do application performance analysis. Prophesy uses
three types of analysis, curve fitting, parameterization method
and kernel coupling. Because the curve fitting analysis is de-
pendent on input parameters to the application, it is helpful
in exploring application scalability but not in exploring dif-

ferent system configurations. The parameterization method
involves static analysis of small sections of code to deter-
mine a parametric function describing the performance of
that section of code. Kernel coupling is used to model the
interaction between different kernels of code within the ap-
plication. Our work differs from Prophesy in that the anal-
ysis done by Prophesy seeks to develop an accurate, pre-
dictive model for a parallel application, rather than charac-
terize empirical data, detect performance characteristics or
diagnose performance problems.

The PPerfDB[7] and PPerfXchange[4] projects provide tools
for performing comparative analysis on parallel application
profile data. PPerfDB associates circumstantial attributes
with the performance data, and represents each execution
as a hierarchical collection of resources. By selecting a sub-
set of attributes and/or resources, the user is able to se-
lect a subset of performance trials, and simple comparative
analysis is performed on the trials selected. PPerfDB can
compare performance results collected from different tools
(heterogeneous data), by translating the data into a com-
mon data format prior to the comparison. PPerfXchange ex-
tends PPerfDB to support geographically dispersed, hetero-
geneous data stores, implemented using Web Service tech-
nology. Additionally, PPerfXchange supports comparisons
between flat file data and data located in a database through
a common XML protocol.

The LLNL project called PerfTrack aims to further extend
the PPerfDB project to include every variable that can be
reasonably collected about a parallel application execution,
and store the performance data and associated environment
information in a relational database. The PerfTrack tool will
provide a user interface to navigate the performance results
by selecting resource foci, and querying the related data.
When that project is further along, we hope to integrate
our data mining analysis with that application.

Song et al.[17] have developed an algebra for performance
analysis across experiments. The unique feature of their ap-
proach is the closure property. Derived data and raw data
are in the same format, so it is easy to chain together anal-
ysis operations to do comparative analysis between experi-
ments. This way, it is easy to compare executions when do-
ing optimization analysis, or regression testing to check the
performance improvement or degradation of a code change.

HPCToolkit [10] is also a powerful performance analysis tool
that is able to merge profile data from multiple performance
experiments into a database file and perform various statis-
tical and comparative analyses. The HPCView [11] compo-
nent of the toolkit provides a interactive interface that allows
the user to define expressions to compute derived metrics as
functions of the measured data and of previously-computed
derived metrics. The HPCToolkit group is now investigating
clustering analysis and workflow processing.

6. CONCLUSION AND FUTURE WORK
PerfExplorer is a next-generation tool for large-scale paral-
lel performance analysis based on data mining techniques.
Although the application of these techniques to parallel per-
formance data involves a certain degree of sophistication, we
designed PerfExplorer as an extensible framework to exploit



the rich products of data mining research, as they are repre-
sented in accessible libraries and tools. In this way, we can
focus our attention on providing users of PerfExplorer with
easy, intuitive access to data mining capabilities. We feel it
is important to emphasize PerfExplorer is also a framework
for other tool developers. It is extensible in several ways
and we hope it can become a widely used environment that
serves to simplify the complexity of parallel performance
problem solving.

We are pursuing several directions of PerfExplorer research.
Many of the data mining techniques assume certain proper-
ties of the data. It is important to verify that these proper-
ties hold. We intend to add support in PerfExplorer to help
the user understand these assumptions and even to auto-
matically test for properties where possible. As observed in
k-means cluster analysis, some techniques require a choice
of parameters before proceeding. How these parameters are
chosen may depend on prior analysis and certain goodness
criteria. PerfExplorer may be able to provide some assis-
tance in the form of results testing, for instance, to deter-
mine a good “cut” location from hierarchical clustering to
seed k-means. We are looking into other ways to provide
more automation in the data mining, including automated
cluster evaluation in the form of within-cluster variance or
silhouette calculations.

An interesting direction to explore is in the area of depen-
dency modeling. Dependency modeling discovers and de-
scribes dependencies between variables in the data. The
dependencies can be either structural or quantitative, with
specified strengths or weights. Some potential methods to
show dependencies include Bayesian graphs and fuzzy di-
graph graphs. There may be some scalability problems with
probabilistic dependency modeling due to its NP solution
space – each permutation of the data yields a specific prob-
ability. In addition, the continuous numeric data in the
parallel performance data would have to be bracketed into
discrete intervals for this type of analysis.
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