
TAUg: Runtime Global Performance

Data Access Using MPI

Kevin A. Huck, Allen D. Malony, Sameer Shende, and Alan Morris

Performance Research Laboratory
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
{khuck,malony,sameer,amorris}@cs.uoregon.edu

http://www.cs.uoregon.edu/research/tau

Abstract. To enable a scalable parallel application to view its global
performance state, we designed and developed TAUg, a portable run-
time framework layered on the TAU parallel performance system. TAUg
leverages the MPI library to communicate between application processes,
creating an abstraction of a global performance space from which profile
views can be retrieved. We describe the TAUg design and implemen-
tation and show its use on two test benchmarks up to 512 processors.
Overhead evaluation for the use of TAUg is included in our analysis.
Future directions for improvement are discussed.

Keywords: parallel, performance, runtime, MPI, measurement.

1 Introduction

Performance measurement of parallel applications balances the need for fine-
grained performance data (to understand relevant factors important for improve-
ment) against the cost of observation (measurement overhead and its impact on
performance behavior). This balance becomes more delicate as parallel systems
increase in scale, especially if the scalability of the performance measurement
system is poor. In practice, measurements are typically made for post-mortem
analysis [?,1], although some tools provide online monitoring[2] and analysis for
purposes of performance diagnosis [3, 4] and steering [5–8]. For any performance
experiment, the performance measurement system is an intimate part of the
application’s execution and need/cost tradeoffs must take this into account.

Scalable efficiency necessitates that performance measurements be made con-
currently (in parallel threads of execution) without centralized control. The run-
time parallel performance state can be considered to be logically a part of the
application’s global data space, but it must be stored distributively, local to
where the measurements took place, to avoid unnecessary overhead and con-
tention. Measurement tools for post-mortem analysis typically output the final
performance state at the end of program execution. However, online tools require
access the distributed performance state during execution.

2 Kevin A. Huck et al.

threads
MPI process 0 MPI process MPI processk N

MPI
communication

.
. . .

TAUg global profile

TAUg

profile
TAU

Fig. 1. TAUg System Design.

In this paper, we consider the problem of runtime support for application-
level access to global parallel performance data. Our working assumption is that
the importance of online performance data access is decided by the application,
but will depend directly on the efficiency of the solution. It is equally impor-
tant that the solution be as portable as possible, flexible enough to accommo-
date its use with different parallel computation scenarios, and scalable to large
numbers of processes. The main challenges are in defining useful programming
abstractions for coordinated performance data access, and in creating necessary
infrastructure that meets portability and efficiency objectives.

We describe a solution for use with the TAU parallel performance system
called TAUg. The TAUg design targets MPI-based applications (see §2) and
utilizes MPI in its default implementation (see §3) for portability and scalabil-
ity. The initial version of TAUg was tested with ASCI benchmarks sPPM and
Sweep3D and a synthetic load balancing simulation. The results are reported in
§4. Discussion of the TAUg approach and our future goals are discussed in §5.
Related work is in §6, and §7 gives concluding remarks.

2 Design

In our approach to the TAUg system design, we first identified the desired oper-
ational abstraction, and second, considered how best to implement it with MPI.
Figure 1 shows these two perspectives. The bottom part of the figure repre-
sents what TAU produces as a profile for each process. The TAU profile is an
aggregation of individual thread profiles. TAUg provides the abstraction of a
globally-shared performance space, the TAUg global profile. The dashed lines
represent the promotion of each process profile into this space. TAUg uses MPI
to create this global abstraction on behalf of the application.

TAUg 3

2.1 Views and Communicators

In TAU, events are defined for measurement of intervals (e.g., entry and exit
events for subroutines) or atomic operations (e.g., memory allocation events). In
TAUg, the global performance space, representing all events (interval and atomic
events) profiled on all processes and threads, is indexed along two dimensions.
The first dimension is called the TAUg (global) performance view, and represents
a subset of the performance profile data being collected (i.e., a subset of the TAU
profiled events). In our initial implementation, a view can specify only one event,
whose profile gives the performance for that event measured when the event is
active. The other dimension is called the TAUg (global) performance commu-
nicator, and represents a subset of the MPI processes in the application. The
notion of the TAUg communicator is that only those processes within the com-
municator will share TAUg performance views, so as to minimize perturbation
of the application.

2.2 Programming Interface

TAUg is designed to be a simple, lightweight mechanism for sharing TAU per-
formance data between MPI processes. The only prerequisites for using TAUg
are that the application already be using MPI and TAU. The three methods in
the API are designed to be in the same style as MPI methods. These methods
are callable from Fortran, C or C++.

An application programmer uses TAUg by first defining the global perfor-
mance views and communicators. The method TAU REGISTER VIEW is used to
specify a global performance view. This method takes as an input parameter
the name of a TAU profiled event, and has an output parameter of an ID for
the view. TAU REGISTER VIEW need only be called by processes that will use the
view with TAUg communicators they define.

The method TAU REGISTER COMMUNICATOR is used to create a global perfor-
mance communicator. It takes two input parameters; an array of process ranks
in MPI COMM WORLD and the size of the array. The only output parameter is the
newly created communicator ID. Because of MPI requirements when creating
communicators, TAU REGISTER COMMUNICATOR must be called by all processes.
The following code listing shows an example of how the TAU REGISTER VIEW and
TAU REGISTER COMMUNICATOR methods would be used in C to create a global
performance view of the event calc() and a global performance communicator
containing all processes.

int viewID = 0, commID = 0, numprocs = 0;

TAU_REGISTER_VIEW("calc()", &viewID);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

int members[numprocs];

for (int i = 0 ; i < numprocs ; i++) { members[i] = i; }

TAU_REGISTER_COMMUNICATOR(members, numprocs, &commID);

4 Kevin A. Huck et al.

Having created all the global performance views and communicators needed
to access the global application performance, the application programmer calls
the method TAU GET VIEW to retrieve the data. This method takes a view ID and
a communicator ID as input parameters. It also takes a collective communica-
tion type as an input parameter. The idea here is to allow TAU communicators
to pass profile data between themselves in different ways. The supported com-
munication types are TAU ALL TO ONE, TAU ONE TO ALL and TAU ALL TO ALL. If
TAU ALL TO ONE or TAU ONE TO ALL are used, a processor rank in MPI COMM WORLD

will represent the source or sink for the operation1. There are two output param-
eters which specify an array of doubles and the size of the array. TAU GET VIEW

need only be called by the processes which are contained in the specified TAU
global performance communicator. The following code listing shows an example
of how the TAU GET VIEW method would be used in C.

double *loopTime;

int size = 0, myid = 0, sink = 0;

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

TAU_GET_VIEW(viewID, commID, TAU_ALL_TO_ONE, sink,

&loopTime, &size);

if (myid == 0) { /* do something with the result... */ }

In summary, this application code is requesting that all processes send perfor-
mance information for the event calc() to the root process. The root process,
for example, can then choose to modify the application behavior based on the
running total for the specified event.

3 Implementation

TAUg is written in C++, and comprises a public C interface consisting of only
the three static methods described in Section 2.2. The complete interface for the
API is listed here:

void static TAU_REGISTER_VIEW (const char* event_name,

int* viewID);

void static TAU_REGISTER_COMMUNICATOR (int members[],

int size, int* commID);

void static TAU_GET_VIEW (int viewID, int commID,

int type, int sink, double** data, int* outSize);

The TAU REGISTER VIEW method creates a new global performance view struc-
ture, and stores it internally. The new view ID is returned to the calling method.
The TAU REGISTER COMMUNICATOR method creates new MPI group and commu-
nicator objects which contain the input process ranks, assumed to be relevant
in MPI COMM WORLD. It then stores the MPI communicator ID and all the com-
municator parameters internally, and returns the new communicator ID (not to
be confused with the MPI communicator type) to the calling method.

1 If the TAU ALL TO ALL type is specified, the source/sink parameter is ignored.

TAUg 5

The TAU GET VIEW method first looks up the global performance view and
communicator in the internal structures. At the same time, the code converts
the source/sink process rank from MPI COMM WORLD to its rank in the global per-
formance communicator. The method then accesses TAU to get the profile data
for the global performance view. The profile data includes the inclusive and ex-
clusive timer values, number of calls and number of subroutines (events called
from this event). This data is then packaged in an MPI type structure and sent
to the other processes in the global performance communicator using collective
operations. Either MPI Allgather, MPI Gather or MPI Scatter is called, de-
pending on whether the application wants TAU ALL TO ALL, TAU ALL TO ONE or
TAU ONE TO ALL behavior, respectively. In the initial implementation, an array
of only the exclusive timer values is returned to the user as a view result.

4 Experiments

4.1 Application Simulation

TAUg was integrated into a simple simulation program to demonstrate its ef-
fectiveness in dynamically load balancing an MPI application. This simulation
is intended to replicate general situations where factors external to the applica-
tion are affecting performance, whether it be hardware differences or other load
interference on a shared system. In this experiment, the application program
simulates a heterogeneous cluster of n processors, where n/2 of the nodes are
twice as fast as the other n/2 processors.

Initially, each MPI process is designated an equal portion of the work to
execute. After each timestep, the application code queries TAUg to get a global
view of the application performance. Processes which are slower than the aver-
age are given a reduced workload, and the processes which are faster than the
average are given an increased workload. This process is iterated 20 times. The
application was tested with 5 configurations. Initially, an unbalanced version of
the application was tested and compared to a dynamically balanced version. It
soon became apparent that different lengths of performance data “decay” are
necessary to detect when the load has become balanced, so that the faster nodes
are not overburdened simply so that the slower nodes can catch up. Therefore,
three more configurations were tested, which used only the previous 1, 2, and 4
timesteps, respectively. Using the unbalanced application as a baseline for the
32 processor simulation, the dynamically balanced simulation is 15.9% faster,
and the dynamically balanced simulation which only considers the previous 1
timestep is 26.5% faster. Longer running simulations show similar speedup.

This simple example demonstrates that TAUg can be used to implement
the knowledge portion of a load balancing algorithm. In general,load imbalance
is reflected in performance properties (execution time and even more detailed
behavior), but is caused by and associated with application-specific aspects (such
as poor grid partitioning). TAU can be used to measure both performance and
application aspects. TAUg then provides an easy-to-use interface for retrieving
the information in a portable way.

6 Kevin A. Huck et al.

Fig. 2. Comparison of sample execution times from modified and unmodified sPPM,
and fraction of time spent in TAUg. Examining the Y-axis on the right to compare total
runtime measurements, the application is not significantly affected by the addition of
TAUg.

4.2 Overhead and Scalability: sPPM and Sweep3D

The sPPM benchmark[9] solves a 3D gas dynamics problem on a uniform Carte-
sian mesh using a simplified version of the PPM (Piecewise Parabolic Method)
code. We instrumented sPPM with TAU, and TAUg calls were added to get
a global performance view for each of 22 subroutines in the application code,
for each of 8 equal sized communicators. The sPPM benchmark iterates for 20
double timesteps, and at the end of each double timestep, sPPM was modified
to request global performance data for each global performance view / commu-
nicator tuple. 2

We ran sPPM on MCR, a 1,152 node dual P4 2.4-Ghz cluster located at
Lawrence Livermore National Laboratory. Using a weak scaling test of up to 64
processors, TAUg total overhead never exceeds 0.1% of the total runtime, and
the application is not significantly perturbed. Figure 2 shows the comparison of
the modified and unmodified sPPM performance.

ASCI Sweep3D benchmark [10] is a solver for the 3-D, time-independent,
neutron particle transport equation on an orthogonal mesh. Sweep3D was in-
strumented with TAU, and TAUg calls were added to get a global performance
view for one of the methods in the application code and one communicator con-
sisting of all processes. The Sweep3D benchmark iterates for 200 timesteps, and
at the end of each timestep, Sweep3D was modified to request global performance
data for the global performance view / communicator tuple.

2 This resulted in 22 calls to TAU GET VIEW since only one subroutine event can be in
a view in the current version.

TAUg 7

Fig. 3. Fraction of TAUg overhead as measured in Sweep3D in a strong scaling exper-
iment.

We ran Sweep3D on ALC, a 960 node dual P4 2.4-Ghz cluster located at
Lawrence Livermore National Laboratory. During a strong scaling test of up
to 512 processors, TAUg total overhead never exceeded 1.3% of the total run-
time, and the application was not significantly perturbed. Figure 3 shows the
comparison of the modified Sweep3D performance to the TAUg overhead.

5 Discussion and Future Work

There are several issues to discuss with respect to the current TAUg system
as well as areas where we are interested in improving the TAUg design and
implementation. Currently, TAUg limits global access to the exclusive value of
a single event for a single metric. We will add support for specifying multiple
events in a TAUg view and an all tag for easily specifying all events. Similarly,
hardware performance counter information may be useful to many applications
using TAUg, such as floating point operations or cache misses. This information
is currently available in TAUg, but only one metric is available at a time. TAU
supports tracking multiple concurrent counters, and TAUg will be extended to
support this as well. We also will allow TAU GET VIEW to be called with an array
of views.

The TAUg communication patterns cover what we felt were common use
cases. However, they translate into collective MPI operations in TAUg. We be-
lieve there will be value to supporting TAUg send and receive operations, to
allow more pairwise performance exchange, still within a TAU communicator.
This will also allow the opportunity for blocking and non-blocking communica-
tion to be used in TAUg. We will also experiment with one-sided communication
in MPI-2 to reduce the effects of our current collective operation approach.

8 Kevin A. Huck et al.

Presently, TAUg returns only the raw performance view to the application.
We plan to implement TAUg helper functions to compute profile statistics that
are typically offered post-mortem (e.g., mean, min, max, and standard deviation
for a performance metric). One particularly useful function would take two com-
patible view results and calculate their difference. This would help to address a
problem of calculating incremental global performance data from the last time
it was viewed.

6 Related Work

TAUg has similarities to research in online performance analysis and diagno-
sis. Autopilot [5] uses a distributed system of sensors to collect data about an
application’s behavior and actuators to make modifications to application vari-
ables to change its behavior. Peridot [11] extends this concept with a distributed
performance analysis system composed of agents that monitor and evaluate
hierarchically-specified “performance properties” at runtime. The Distributed
Performance Consultant in Paradyn [4], coupled with MRNet, provides a scal-
able diagnosis framework to achieve these goals. Active Harmony [12] takes one
step further to include a component that automatically tunes an application’s
performance by adjusting application parameters.

While TAUg can be used to achieve the same purpose of performance diagno-
sis and online tuning, it focuses as a technology only on the problem of portable
access to global performance data. In this way, its use is more general and can
be applied more robustly on different platforms.

7 Conclusion

Measurement of parallel program performance is commonly done as part of a
performance diagnosis and tuning cycle. However, an application may desire to
query its runtime performance state to make decisions that direct how the com-
putation will proceed. Most performance measurement systems provide little
support for dynamic performance data access, much less for performance data
inspection across all application processes. We developed TAUg as an abstrac-
tion layer for parallel MPI-based applications to retrieve performance views from
a global performance data space. The TAUg infrastructure is built on top of the
TAU performance system which generates performance profiles for each appli-
cation process. TAUg uses MPI collective operations to provide access to the
distributed performance data.

TAUg offers two important benefits to the application developer. First, the
TAUg programming interface defines the TAU communicator and view abstrac-
tions that the developer can use to create instances specific to their runtime
performance query needs. The TAU GET VIEW function will return the portion of
the global performance profiles selected by the communicator and view parame-
ters. As a result, the developer is insulated from the lower level implementation.
Second, the use of MPI in TAUg’s implementation affords significant portability,

TAUg 9

and the scalability of TAUg is only limited by the scalability of the local MPI
implementation. Any parallel systems supporting MPI and TAU are candidates
for use of TAUg.

It is true that TAUg will necessarily influence the application’s operation.
We provide some analysis of the overhead generated by TAUg in our benchmark
tests. However, the impact of TAUg will depend directly on how the application
chooses to use it. This impact is true both of its perturbation of performance
as well as its ability to provide the application with performance knowledge for
runtime optimization.

References

1. KOJAK: Kojak. http://www.fz-jeulick.de/zam/kojak/ (2006)
2. Wismuller, R., Trinitis, J., Ludwig, T.: Ocm – a monitoring system for inter-

operable tools. In: Proceedings 2nd SIGMETRICS Symposium on Parallel and
Distributed Tools (SPDT’98). (1998) 1–9

3. Miller, B., Callaghan, M., Cargille, J., Hollingsworth, J., Irvin, R., Karavanic, K.,
Kunchithapadam, K., Newhall, T.: The Paradyn parallel performance measure-
ment tool. Computer 28(11) (1995) 37–46

4. Roth, P., Miller, B.: On-line automated performance diagnosis on thousands of
processes. In: Proceedings Proc. 11th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. (2006) 69–80

5. Ribler, R., Simitci, H., Reed, D.: The Autopilot performance-directed adaptive
control system. Future Generation Computer Systems 18(1) (2001) 175–187

6. Eisenhauer, G., Schwan, K.: An object-based infrastructure for program monitor-
ing and steering. In: Proceedings 2nd SIGMETRICS Symposium on Parallel and
Distributed Tools (SPDT’98). (1998) 10–20

7. Gu, W., et al.: Falcon: On-line monitoring and steering of large-scale parallel
programs. In: Proceedings of the 5th Symposium of the Frontiers of Massively
Parallel Computing. (1995) 422–429

8. Tapus, C., Chung, I.H., Hollingworth, J.: Active harmony: Towards automated
performance tuning. In: SC ’02: Proceedings of the 2002 ACM/IEEE conference
on Supercomputing. (2002)

9. LLNL: The asci sppm benchmark code.
http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/ (2006)

10. LLNL: The asci sweep3d benchmark.
http://www.llnl.gov/asci/purple/benchmarks/limited/sweep3d/ (2006)

11. Gerndt, M., Schmidt, A., Schulz, M., Wismuller, R.: Performance analysis for
teraflop computers - a distributed automatic approach. In: Euromicro Workshop
on Parallel, Distributed, and Network-based Processing (PDP), Canary Islands,
Spain (2002) 23–30

12. Hollingsworth, J., Tabatabaee, V., Tiwari, A.: Active harmony.
http://www.dyninst.org/harmony/ (2006)

