
Model-Based Relative Performance Diagnosis of

Wavefront Parallel Computations

Li Li, Allen D. Malony, and Kevin Huck

Performance Research Laboratory
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
{lili,malony,khuck}@cs.uoregon.edu

Abstract. Parallel performance diagnosis can be improved with the use
of performance knowledge about parallel computation models. The Her-
cule diagnosis system applies model-based methods to automate perfor-
mance diagnosis processes and explain performance problems from high-
level computation semantics. However, Hercule is limited by a single
experiment view. Here we introduce the concept of relative performance
diagnosis and show how it can be integrated in a model-based diag-
nosis framework. The paper demonstrates the effectiveness of Hercule’s
approach to relative diagnosis of the well-known Sweep3D application
based on a Wavefront model. Relative diagnoses of Sweep3D performance
anomalies in strong and weak scaling cases are given.
Keywords: Performance diagnosis, parallel models, wavefront, relative
analysis.

1 Introduction

In recent years there has been growing interest in automating the process of par-
allel performance analysis, including the generation and running of experiments,
the comparative analysis of performance results, the characterization of per-
formance properties, and the diagnosis of performance problems. Performance
diagnosis is a particularly challenging process to automate because it fundamen-
tally is an intelligent system wherein we capture and apply knowledge about
performance problems, how to detect them (i.e., their symptoms), and why they
exist (i.e., their causes). Problem discovery and hypothesis testing, as guided by
inference-based search, provide the automated reasoning (explanation) part of
diagnosis automation.

In our work, we focus on performance knowledge engineering as the basis for
building a framework to support automated performance diagnosis. The frame-
work’s function would be guided by expert strategies for problem discovery and
for hypothesis testing, strategies that are captured and encoded in the knowl-
edge base. We advocate looking to models of parallel computations as sources of
performance knowledge, which present structural and communication patterns
of a program. Models provide semantically rich descriptions that enable better
interpretation and understanding of performance behavior. Here, performance

knowledge can be engineered based on the model behavior descriptions so that
bottom-up inference of performance causes is effectively supported. A diagnosis
system then uses the performance knowledge for performance bug search and
reasoning.

We developed the Hercule performance diagnosis system [11] to validate how
performance knowledge derived from parallel models provides a sound basis for
automating performance diagnosis processes and can explain performance loss
from high-level computation semantics. This has been shown for several parallel
models to date (e.g., master-worker, divide-and-conquer, and domain decomposi-
tion). However, we also realized that diagnosis of a single execution is incomplete
as a comprehensive diagnosis process. Understanding of performance problems
routinely involves comparative and relative interpretation.

This paper reports our work to improve the Hercule methodology to sup-
port what we will term relative performance diagnosis (in the spirit of relative
debugging [5]). In Section §2, we start with a description of the Hercule frame-
work for diagnosis of the Wavefront model, and then discuss in Section §3 how
Hercule is extended to allow relative execution diagnostic analysis. Our target
application for study is Sweep3D, mainly for reasons that it is so well-known and
understood. We show in Section §4 how Hercule explains certain performance
anomalies in strong- and weak-scaling studies. Section §5 highlights related re-
search and Section §6 concludes with observations.

2 Hercule Automatic Performance Diagnosis Framework

Hercule is a prototype automatic performance diagnosis system that implements
the model-based performance diagnosis approach. Hercule framework is dis-
played in figure 1. The Hercule system operates as an expert system within
a parallel performance measurement and analysis toolkit, in this case, the TAU
[4] performance system. Hercule includes a knowledge base that is composed of
an abstract event library, performance metrics set, and performance factors for
individual parallel models. The knowledge engineering approach that generates
the knowledge base is discussed in [11]. Below, we use the Wavefront model as
a driver example to describe Hercule’s working mechanism.

Wavefront is a two-dimensional variant of a traditional pipeline pattern.
Computation or data is partitioned and distributed on a two-dimensional process
grid where every processor receives data from preceding processors and passes
down data to successive processors in two orthogonal directions. Well-known
pipeline performance problems include sensitivity to load imbalance, processor
idleness when pipeline filling up and emptying, and so on. It is these types of
problems that we want to find.

We use abstract events to describe behavioral and performance characteristics
of the Wavefront model. The abstract event describing a Wavefront process node
is shown in figure 2. An abstract event description includes constituent primitive
events and their format and ordering, a related abstract event list, and associated
performance attributes. Hercule implements the abstract event representation in

2

Hercule

diagnosis results

performance

data

experiment
specifications

Parallel
program

Parallel
models

algorithm /

problems explanations

 s

ys
te

m

knowledge
model

information
implementation

inference engine

m
ea

su
re

m
en

t knowledge base

inference rules

recognizer

metric
evaluator

event

Fig. 1: Hercule performance diag-
nosis framework Fig. 2: An abstract event description of Wavefront

a Java class library which provides a general programmatic means to capture
model behaviors and allows for algorithm and implementation extension.

The event recognizer in Hercule fits event instances into abstract event de-
scriptions as performance data stream flows through it. It then feeds the event
instances into Hercule’s performance metric evaluator, where performance at-
tributes associated with the event instances are calculated. The metric evaluator
also takes in model-specific metric evaluation rules from the knowledge database
so it is able to produce metrics by synthesizing performance attributes of the
related event instances. Thus, the performance metrics reflect model semantics.
A metric named pl handshaking in Wavefront model, for instance, refers to the
performance penalty of waiting preceding processes in the Wavefront to pass
down data. The model-specific metrics help in mapping low level performance
information to a higher level of program abstraction.

Perhaps the most interesting part of Hercule is its cause inferencing sys-
tem. The expert knowledge used to reason about performance symptoms can be
structured as inference trees where the root is the symptom to be diagnosed, the
branch nodes are intermediate observations obtained so far, and the leaf nodes
are high-level performance factors that contribute to the root symptom. An in-
ference tree for diagnosing symptom “low speedup” in Wavefront is presented in
figure 3. An intermediate observation is obtained by evaluating a model-specific
performance metric against the expected value (from performance modeling)
or certain pre-set severity-tolerant threshold. In figure 3, for example, pl comm
means the communication cost associated with pipeline message passing. If it
turns out to be significant comparing to the expected, the inference engine will
continue to search for the node’s child branches. The leaf nodes finally reached
together compose an explanation of the root symptom.

We encode inference trees with production rules. A production rule consists
of one or more performance assertions and performance evidences that must

3

Fig. 3: An inference tree of Wavefront model that diagnoses low-speedup

be satisfied to prove the assertions. Hercule makes use of syntax defined in the
CLIPS [2] expert system building tool to describe production rules, and the
CLIPS inference engine for operation. The inference engine provided in CLIPS is
particularly helpful in performance diagnosis because it can repeatedly fire rules
with original and derived performance information until no more new facts can
be produced, thereby realizing automatic performance experiment generation
and causal reasoning.

3 Hercule Extensions for Relative Performance Diagnosis

Understanding of performance problems routinely involves comparative and rel-
ative interpretation. Performance analysts often need to answer such questions
in scalability analysis of a parallel application: what are most pronounced per-
formance differences between two program executions with difference problem
scales, which program design factors contribute to the differences, and what are
magnitudes of their contributions?

Hercule’s single execution diagnosis can be extended to support what we
term relative performance diagnosis that is intended to answer the questions.
To interpret what was happening at the performance anomalies with certain
problem scale, we pick a performance reference run, in the family of scalability
executions, which has comparatively normal performance and evaluate problem-
atic runs against it. Relative performance diagnosis follows the same inference
processes as presented in model-specific inference trees except for performance
evaluation at branch nodes. Recall that cause inference in the inference trees is
driven by performance evaluation, that is, to compare the model-specific metric
with an expected value (from performance modeling) to decide on an interme-
diate observation. In relative performance diagnosis, we calculate the expected

4

value based on model-specific metrics of the reference run to evaluate problem
behaviors. Examples of relative diagnosis of anomalous Wavefront application
executions will be presented in the next section.

Hercule extensions for supporting relative performance diagnosis manifest in
the interfacing of the metric evaluator and the inference engine. To assert the
performance observation associated with a branch node in the inference tree, the
metric evaluator takes in event instances of two runs to be compared and feeds
the calculated model-specific metrics into the inference engine. The inference
engine sets a performance expectation according to the reference run metric and
evaluates the problematic run against it.

4 Experiment with Sweep3D

In this section, we will demonstrate Hercule’s effectiveness in relative perfor-
mance diagnosis of the ASCI Sweep3D benchmark which uses a Wavefront com-
putational model. Sweep3D [1] is a solver for the 3-D, time-independent, neutron
particle transport equation on an orthogonal mesh. Its parallelism comes from
multiple wavefronts in multiple dimensions, which are partitioned and pipelined
on a distributed memory system. The three-dimensional space is partitioned on
a two-dimensional processor grid, where each processor is assigned one colum-
nar domain. Sweep3D exchanges messages between adjacent processors in the
grid as wavefront propagates diagonally across the 3-D space in eight direc-
tions. Sweep3D is a well-researched parallel benchmark. Although parallelism
overheads in Sweep3D have been minimized, for instance, by evenly distributing
data across a process grid, leaving little room for performance tuning, Hercule
can tell exactly how running time is spent in terms of model semantics, help-
ing understand inherent performance losses of the model under an optimistic
condition. Our performance study with Sweep3D focuses on overall scalability,
looking at how well the application scales as the number of processors is in-
creased (strong scaling) and as total problem size increases with the process
count increase (weak scaling).

We ran our tests on MCR, a linux cluster located at Lawrence Livermore
national Laboratory. MCR has 1,152 nodes, each with two 2.4-GHz Pentium 4
Xeon processors and 4 GB of memory and has peak performance rating of 11.06
Tflop/s. The system interconnection is a customized 1024-port single rail QsNet
network.

4.1 Case I: Diagnose strong scaling performance problems

Figure 4 shows the strong scaling behavior of Sweep3D with problem size 1503,
and angle blocking factor, mmi, equal to 3, k-blocking factor, mk, equal to 10. The
application scales well in general, but at process count 32 the speedup drops and
bounces up when process count increases to 36. We applied Hercule to contrast
performance of run1 (with 32 processors) against run2 (with 36 processors) and
diagnose performance anomaly cause. Hercule uses relative speedup (compared

5

to two-processor run) to evaluate performance since there is no inter-processor
communication in a sequential execution. The results that follow were generated
in a completely automated manner.

comparison diagnosis

Fig. 4: Sweep3D strong scaling with problem size 150x150x150 (mmi=3, mk=10)

Hercule first calculates speedup of run1 (with 32 processors), run2 (with 36
processors) relative to run3 (with 2 processors), and expected speedup of run1
based on run2 performance. It reaches a performance symptom of run1 that will
be further explained.

Hercule diagnosis step 1: find performance symptom

dyna6-166:~/PerfDiagnosis lili$./model_diag WF_speedup.clp 150.32pe.dup 150.36pe.dup 150.2pe.dup
Begin diagnosing ...
==
Speedup of run1 and run2 relative to run3

run1 run2 expected run1
speedup 12.80 15.84 14.08
--
run1 is slower than the expected value 14.08
--
Next we look at the symptom low speedup.
==

Hercule then breaks runtime down into computation and communication,
narrowing performance bug search.

Hercule diagnosis step 2: locate poorly performed functional groups

==
Level 1 experiment -- generate performance data with respect to computation and communication.
--
Relative speedup of functional groups in run1 and run2

run1 run2 expected run 1
computation: 16.035 19.906 17.694
communication: 1.115 1.172 1.042

6

--
computation in run1 is longer than the expected.
--
Next look at performance with respect to pipeline components.
==

As computation time per process stands out, Hercule further distinguishes
pipeline-related computation and others.

Hercule diagnosis step 3: refine locating poorly performed functional groups

==
Level 2 experiment -- generate performance data with respect to pipeline components.
--
Relative speedup of pipeline components in run1 and run2

run1 run2 expected run 1
computation in pipeline: 16.598 20.702 18.402
other computation: 10.452 12.405 11.03
--
computation in pipeline in run1 is slower than the expected most.
--
Next look at computation in pipeline.
==

Since pipeline computation per process in run1 is more expensive than the
expected, Hercule then looks at how well the pipeline computation is distributed
on all processes.

Hercule diagnosis step 4: form performance hypothesis

==
run1 run2 difference

computation in pipeline SDV (us): 236859 97548 139311
(w.r.t. processes)

--
Standard deviation of pipeline computation in run1 is significantly larger than run2, which
implies a load imbalance across processes.
--
Next testify the hypothesis load imbalance.
==

Hercule forms a load imbalance performance hypothesis based on the stan-
dard deviation of pipeline computations on all processes. Hercule testifies the
hypothesis by looking at pipeline model-related parallelism overheads to which
load imbalance possibly contributes most. It calculates and distinguishes per-
formance impact of load imbalance on the overhead categories, and exemplifies
occurrence of load imbalance with process behaviors in some specific computa-
tion step (iteration) and pipeline sweep. This way of explanation provides the
users with both the nature of performance causes and evaluations of performance
impact of the causes.

Hercule diagnosis step 5: testify performance hypothesis by evaluating pipeline
overheads

==
The impact of process load imbalance on performance manifests in pipeline-handshaking and
sweep-direction-change overhead.

7

Passing along data among successive pipeline stages (handshaking) takes 14.9% of pipeline
communication time. Pipeline handshake delay is unevenly distributed across processes.
std dev = 486463.75. process 31 involves the longest pipeline handshake cost.
--
Level 3 experiment for diagnosing handshaking related problems -- collect performance event
trace with respect to process 31
--
Pipeline HS delay is evenly distributed across iterations in the process 31. Next we look at
performance characteristics of iteration 3 which involves the longest pipeline HS.

Pipeline HS delay is evenly distributed across sweep in iteration 3 process 31, Next we look
at sweep 6 which involves the longest pipeline HS.

In iteration 3 sweep 6, computation are unevenly distributed across pipeline stages. For
example, in stage 4 process 4 spends 1964(us) doing computation, while in stage 10 process
31 spends 1590(us) computing.

In general, process 31 is assigned 23.6% less work load than process 4. Such discrepancy
causes process 31 idle for 29.5% of pipeline communication time..
--
When pipeline sweep direction change, processes may be idle waiting for successive pipeline
stages in previous sweep to finish up, and for pipeline to fill up in a new sweep. The sweep
direction changes comprise 34.6% of pipeline communication time. The delay is unevenly
distributed across processes. process 31 involves the longest pipeline direction change cost.
--
Level 3 experiment for diagnosing sweep-direction-change related problems -- collect
performance event trace with respect to process 31
--
Pipeline direction change delay of process 31 is unevenly distributed across iterations. Next
we look at performance of the iteration 10 which involves the longest direction change delay.

In this wavefront program execution, pipeline sweep direction change delay is significant in
process 31, especially in iteration 10. Between sweep 3 and 4, process 31 has been idle for
117980(us). Among the idle time, 85.5% is spent waiting for successive pipeline stages in
sweep 3 to finish up, and 14.7% waiting for pipeline filling up in sweep 4. We compare
performance behaviors in process 31 and next sweep head (process 24) to explain where is
the idle time from.

In sweep 3 process 31 is in pipeline stage 3, next sweep head, process 24, is in stage 10.
Due to the pipeline working mechanism, process 31 has to wait process 24 to finish
computation before next sweep begins. Computation load difference between the two
processes, by 12.8%, contributes 39.9% to the direction change delay.
==
Diagnosing finished...

4.2 Case II: Diagnose weak scaling performance problems

The second experiment with Hercule demonstrates its capability of identifying
and explaining parallelism overhead increases as both problem size and process
count are increased in weak scaling study. Figure 5 shows the weak scaling be-
havior of Sweep3D with fixed problem size 20x20x320. We can see that runtime
increases as more processors are used even though each process’s computation
load is kept the same. Hercule will compare 4-processor and 48-processor run
and report and explain the performance difference. Again, the results that follow
are generated in a completely automated fashion.

Hercule first calculates significance of performance difference and reaches a
performance symptom, higher parallelism overhead.

Hercule diagnosis step 1: find performance symptom

dyna6-166:~/PerfDiagnosis lili$./model_diag WF_overhead.clp weak.48pe.dup weak.4pe.dup

8

comparison diagnosis

Fig. 5: Sweep3D weak scaling with fixed problem size 20x20x320 per processor (mmi=3,
mk=10)

Begin diagnosing ...
==
Runtime of run1 and run2 (in seconds)

run1 run2 difference%
runtime 11.489 9.815 17.055%
--
run1 is 17.055% slower than the run2.
--
Next we look at the symptom parallelism overhead.
==

Hercule then breaks runtime down into computation and communication, lo-
cating the functional group with most pronounced performance difference.

Hercule diagnosis step 2: locate poorly performed functional groups

==
Level 1 experiment -- generate performance data with respect to computation and communication.
--
Runtime of functional groups in run1 and run2 (in seconds)

run1 run2 difference%
computation: 8.886 8.891 -5.624e-4
communication: 2.603 0.924 181.71%
--
communication cost in run1 is significantly higher than run2.
--
Next look at communication performance with respect to pipeline components.
==

Hercule further distinguishes pipeline-related communication and others.

Hercule diagnosis step 3: refine locating poorly performed functional groups

==
Level 2 experiment -- generate performance data with respect to pipeline components.
--
Runtime of pipeline in run1 and run2 (in seconds)

run1 run2 difference%
computation in pipeline: 8.014 8.013 1.25e-4
other computation: 0.872 0.878 -6.83e-3

9

communication in pipeline: 2.275 0.803 183.31%
effective communication in pipeline: 0.943 0.571 65.15%
waiting time in pipeline: 1.332 0.231 476.62%

other communication: 0.328 0.121 171.07%

comm. count in pipeline (count/per process): 12288 12288 0
comm. volume in pipeline (byte/per process): 58982400 58982400 0
--
waiting time in pipeline in run1 is 476.62% higher than run2.
--
Next look at pipeline overheads.
==

Since waiting time in pipeline is significant, Hercule refines model-specific
overhead categories and computes corresponding metrics.

Hercule diagnosis step 4: locate poorly performed pipeline components

==
Level 3 experiment -- generate performance data with respect to pipeline waiting time
--
Runtime of pipeline components in run1 and run2 (in seconds)

run1 run2 difference%
waiting time in pipeline 1.332 0.231 476.62%
pipeline fill-up: 0.161 0.014 1050%
pipeline empty-up: 0.244 0.017 1335.29%
pipeline handshaking: 0.337 0.075 349.33%
pipeline direction change: 0.584 0.125 367.2%

==

There are increases in every pipeline overhead category. We present below
diagnosis results explaining two most pronounced categories, pipeline fill-up and
empty-up.

Hercule diagnosis step 5: diagnose two most pronounced pipeline overheads

==
Diagnosing pipeline fill-up

In run1, pipeline fill-up delay is evenly distributed across iterations. We look at
performance characteristics of the iteration 0, which involves the longest pipeline fill-up.

In iteration 0, the depth of pipeline is 13. The pipeline tail, process 0 is being idle while
the pipeline is filling up by processes in preceding stages. The pipeline fill-up delay
comprises 335103us (20.8%) of process 0’s total waiting time. The computations at preceding
pipeline stages together account for the long waiting time at the process. Reducing
computation load at preceding stages or pipeline depth will decrease filling up time.

In run2, pipeline fill-up delay is evenly distributed across iterations. We look at
performance characteristics of the iteration 1, which involves the longest pipeline fill-up.

In iteration 1, the depth of pipeline is 3. The pipeline tail, process 0 is being idle while
the pipeline is filling up by processes in preceding stages. The pipeline fill-up delay
comprises 28707us (25.5%) of process 0’s total waiting time.
--
Diagnosing pipeline empty-up

In run1, pipeline empty-up delay is evenly distributed across iterations. Next we look at
performance characteristics of the iteration 4, which involves the longest pipeline empty-up.

In iteration 4, the depth of pipeline is 13. The pipeline head, process 0 is being idle while
the pipeline is emptying up by processes in successive stages. The pipeline empty-up
delay comprises 573162us (35.5%) of process 0’s total waiting time. The computations at
successive pipeline stages together account for the long waiting time at the process. Reducing

10

computation load at successive pipeline stages or pipeline depth will decrease empty-up time.

In run2, pipeline empty-up delay is evenly distributed across iterations. We look at
performance characteristics of the iteration 1, which involves the longest pipeline empty-up.

In iteration 1, the depth of pipeline is 3. The pipeline head, process 0 is being idle while
the pipeline is emptying up by processes in successive stages. The pipeline empty-up
delay comprises 34858us (31.0%) of process 0’s total waiting time.
==

As shown in the Hercule results, the increase of pipeline depth in run1 (48-
processor run) is clearly the main cause of its overhead increase. Hercule illus-
trates and interprets performance impact of pipeline depth with the behaviors
of the process of the longest pipeline fill-up and empty. The pipeline depth also
has a performance effect on sweep direction change. Due to limitation of space,
we skip the interpretation of other overhead categories, event though Hercule is
able to explain it equally well.

5 Related Research

Our work draws inspiration from important parallel performance analysis projects
and is one of several that are pursuing automated performance diagnosis. There
are two main aspects of the work to discuss in relation to other research: 1)
knowledge-based diagnosis automation, and 2) multi-experiment comparative
and relative analysis.

The Paradyn [12, 13] and Kappa-PI [6] projects are the closest to our work
on Hercule in terms of knowledge-based problem discovery. Paradyn is a per-
formance analysis system that automatically locates bottlenecks using the W 3

search model. According to the model, searching for a performance problem is
an iterative process of refining the answer to three questions: why is the appli-
cation performing poorly, where is the bottleneck, and when does the problem
occur. This is a powerful methodology for problem search [13, 14] and diagnosis
automation, but to a lesser extent than Hercule, the performance bugs Paradyn
targets are not in direct relation to parallel program design and provide less
explanation of high-level causes. Kappa-Pi is another automatic performance
diagnosis tool that encodes knowledge about commonly-seen performance prob-
lems into deduction rules at various abstraction levels. It explains the problem
found by building an expression of the highest-level deduced fact which includes
the situation found, the importance of such a problem, and the program ele-
ments involved in the problem. Our work builds on the Kappa-Pi objectives by
proposing a systematic approach to extracting knowledge from high-level par-
allel design patterns. It should be noted that the research represented by the
Kojak project [3] also supports performance problem search as guided by event
patterns found in parallel execution traces.

The work by Karavanic [9, 10] on comparative, multi-experiment performance
analysis makes a strong case for applying such capabilities to diagnosing perfor-
mance problems that manifest themselves differentially. The resource hierarchies
and other experiment information allows an exploration of a performance space

11

that can provide semantic context for diagnosis explanation. In a similar spirit,
the performance algebra work by Wolf [15] allows for comparision, integration,
and summarization of performance across multiple experiments. What distin-
guishes this research is its usage of a data model to represent multi-dimensional
performance information, including performance problems detected for each ex-
periment, and the algebraic manipulation of the data to discover new perfor-
mance facts. Multi-experiment performance analysis is best supported by infras-
tructure for maintaining performance information. The work on PerfTrack [8]
and PerfExplorer [7] are important projects in this regard.

6 Conclusions

The use of relative performance diagnosis, where problems are discovered and
explained in relation to other experiments, is important to support in diagno-
sis systems. For model-based diagnosis frameworks such as Hercule, we look to
integrate relative analysis in the knowledge and inference engineering. In this
paper, we report on how the Hercule framework was extended to enable rela-
tive diagnosis by adding an interface from the metric evaluator to the inference
engine to analyze performance from different runs. In addition, decision rules
were developed for problem identification and hypothesis testification. The pa-
per demonstrates the effectiveness of the approach to relative diagnosis of the
well-known Sweep3D application based on a wavefront model. Relative diagnoses
of performance anomalies in strong and weak scaling cases are given.

References

1. The asci sweep3d benchmark. http://www.llnl.gov/asci benchmarks/asci/

limited/sweep3d/.
2. Clips: A tool for building expert systems. http://www.ghg.net/clips/CLIPS.

html.
3. Kojak – kit for objective judgement and knowledge-based detection of performance

bottlenecks. http://www.fz-juelich.de/zam/kojak/.
4. Tau tuning and analysis utilities. http://www.cs.uoregon.edu/research/

paracomp/tau/tautools/.
5. D. Abramson, I. Foster, J. Michalakes, and R. Sosic. Relative debugging: A new

paradigm for debugging scientific applications. The Communications of the Asso-

ciation for Computing Machinery, 39(11):67–77, 1996.
6. A. Espinosa. Automatic Performance Analysis of Parallel Programs. PhD thesis,

Computer Science Department, University Autonoma de Barcelona, Barcelona,
Spain, 2000.

7. K. Huck and A. Malony. Perfexplorer: A performance data mining framework for
large-scale parallel computing. In SC 2005, 2005.

8. K. Karavanic, J. May, K. Mohror, B. Miller, K. Huck, R. Knapp, and B. Pugh.
Integrating database technology with comparison-based parallel performance di-
agnosis: The perftrack performance experiment management tool. In SC 2005,
2005.

12

9. K. Karavanic and B. Miller. Improving online performance diagnosis by the use of
historical. In SC’99, 1999.

10. K. Karavanic and B. Miller. A framework for multi-execution performance tuning.
In On-line Monitoring Systems and Computer Tool Interoperability, pages 61–89.
Nova Science Publishers, Inc., 2004.

11. L. Li and A. Malony. Knowledge engineering for automatic parallel performance
diagnosis. Accepted by Concurrency and Computation: Practice and Experience.

12. B. Miller and et al. The paradyn parallel performance measurement tool. IEEE
Computer, 28(11):37–46, 1995.

13. P. Roth and B. Miller. Deep start: A hybrid strategy for automated performance.
In EuroPar 2002, 2002.

14. P. Roth and B. Miller. On-line automated performance diagnosis on thousands of
processes. In PPoPP 2006, 2006.

15. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An algebra for cross-
experiment performance analysis. In ICPP 2004, 2004.

13

