
Detailed Load Balance Analysis of
Large Scale Parallel Applications

Kevin A. Huck and Jesús Labarta
Barcelona Supercomputing Center

Centro Nacional de Supercomputación
Barcelona, Spain

Email: kevin.huck@bsc.es, jesus.labarta@bsc.es
http://www.bsc.es/

Abstract—Balancing the workload in parallel
applications is a difficult task, even in conventional
cases. Many computing cycles are wasted when the load
is not evenly balanced across processing nodes. Global
load balance analysis may determine that an application
is well balanced, when in fact the application has hidden
inefficiencies. In this paper, we consider the load balance
of parallel applications which present unique challenges
in the analysis process. We have performed trace analysis
and simulation to demonstrate the existence of otherwise
undiscovered performance issues. We also demonstrate
that by collecting dynamic phase profiles, we are able
to approximate the analysis results of trace analysis
and simulation, and more accurately represent the
performance behavior of complex parallel applications
than through flat or callpath profiles alone.

Keywords: parallel performance analysis,
performance tools, data mining, micro load imbalance.

I. INTRODUCTION

The primary goal in parallel computing is to compute
solutions to large problems in less time by harnessing the
power of highly parallel systems. Performance analysis
with respect to single node performance is certainly
key to improving overall system throughput for all
computer systems, parallel or not. Problems such as
memory access patterns and ineffective use of hardware
resources are common in all types of performance
analysis. In parallel applications, problems such as
excessive synchronization, communication overhead and
algorithmic inefficiencies can chip away at the overall
system efficiency. One of the main challenges in
efficiently utilizing these systems is an even distribution
of work across all compute nodes. Certainly, as long
as there has been parallel processing, there has been
measurement of computational load balance. Nearly all
parallel performance analysis tools and methods include

at least some rudimentary method for measuring and
analyzing load balance. Examples of such tools are
Paraver [21], Kojak [18], SCALASCA [25], Vampir [4]
and TAU [23].

One drawback to many of the tools mentioned above
is that the load balance measured represents a global
load balance measurement. That is, if the load balance
is consistent throughout the time that the application
is running, over all timesteps, then the problem can
be easily identified and measured. This is particularly
true for performance profiling tools, which aggregate all
measurements for a given region of code over all calls to
that region on that processor. If there is a large variance
per call in the amount of time spent in that region of code
on that processor, then that time is aggregated away to
an average time spent in that region on that processor
for all calls.

Trace analysis tools are better suited for measuring
time variant load balance issues in applications. In
fact, Casas et al. [6] have introduced a method for
computing the micro load balance in an application.
The minor drawback to their method is the amount of
manual steps required to compute the micro load balance
measurement. Once the trace is collected and analyzed,
it must then be used to generate a simulated execution
of the application with an ideal network configuration
(infinite bandwidth and zero latency) in order to measure
the ideal iteration time, which is a key term in computing
the micro load balance. Gamblin et al. [12] present
a framework for scalable collection of trace data for
the purposes of load balance analysis, however the
analysis presented is limited to visual examination
of wave representations of the data, not quantitative
measurement. Because it is a trace, the data collection
method does retain event ordering information.

Another problem to consider is that the



aforementioned tools all assume that the application
is a Single Instruction, Multiple Data application
(SIMD). When presented with a Multiple Instruction,
Multiple Data (MIMD) application, current methods
fail unless the performance data for each sub-task is
separated before performing the load balance analysis.
Otherwise, the analysis is meaningless, as the processes
are essentially running different programs.

Tuning and Analysis Utilities (TAU) includes support
for phase-based profiles [20]. In a dynamic phase profile,
one or more region of code can collect a distinct flat
or callpath profile for each invocation of that region.
Each invocation is given a unique identifier in the
measurement library, and the identifiers also provide a
mechanism for retaining some event ordering properties.
Our goal in this work was to use the phase profiles as a
lower-overhead, smaller footprint measurement system,
and apply the computation of the micro load balance
metrics in an automated system, requiring as few manual
steps as possible. Our motivation for this automation
is to include the analysis as part of an expert system
performance analysis tool, such as PerfExplorer [16]
from TAU or HPCST [8] from IBM. Quantifying the
global and micro load balance for an application is a
first step in automated analysis and evaluation of load
balance problems. In addition, PerfExplorer includes
mechanisms for clustering the performance data before
analysis, providing a solution for MIMD applications.
We have tested this measurement technique on three
parallel applications, and in two cases, measurably
improved the performance of the application through
code changes or parameter selection.

The remainder of this paper is outlined as follows.
An overview of the micro load balance computation is
outlined in Section II. The method for computing the
micro load balance using phase profiles is described
in Section III. Experimental results are outlined in
Section IV. Evaluation of our method and conclusions
are described in Section V.

II. MICRO LOAD BALANCE

As mentioned in Section I, the formula for computing
the global and micro load balance is from by Casas et
al. [6]. Figure 1 shows a simple global load balance
example. Time T is defined as the total time spent in
the measured region of code. Time Tp is defined as the
non-MPI time for that region of code on process p, where
p ∈ P , the set of all processes. The efficiency for process
p is defined as

effp = Tp/T (1)

Fig. 1. Global load balance for a simple code region. The
blue regions represent time spent in computation, the olive regions
represent time spent waiting for synchronization, and the red regions
represent actual collective communication time. Added together, the
olive and red regions represent time spent in MPI.

The communication efficiency for this region of code is
defined as

CommEff = max(effp) (2)

The global load balance for this region of code is defined
as

LB = avg(effp)/max(effp)

= avg(Tp)/max(Tp) (3)

The load balance term should be familiar, as it is
a commonly used measurement of load balance -
the average efficiency across all processes over the
maximum efficiency across all processes.

In order to define the micro load imbalance, or µLB,
the communication efficiency term, CommEff , can be
expanded into two terms, the micro load balance

µLB = max(Tp)/Tideal (4)

and the real communication efficiency, or

Transfer = Tideal/T (5)

max(Tp) is defined as the maximum across all
processors of the summed time spent in computation for
all iterations. Tideal is defined as the ideal execution time
for the region of code, assuming all communication is
instantaneous, with zero latency and infinite bandwidth.
Therefore, the final computation efficiency for this region
of code is defined as

η = LB × µLB × Transfer (6)

In the original work, the decomposition of the
Communication Efficiency term requires the collection
and analysis of a performance trace, and simulated
execution of the trace with an ideal network to compute
the Tideal term. The simulation is performed with
Dimemas [19], a application simulation tool.

Because phase profiles provide a sub-profile for each
iteration of the loop of interest, then we can estimate



Fig. 2. Micro load balance components for an iterative code region. The blue regions represent time spent in computation, the olive regions
represent time spent waiting for synchronization, and the red regions represent actual collective communication time. Tideal is the sum of
the darker blue regions.

Tideal as the sum of all max(tp) for each iteration.
This is not to be confused with max(Tp), the maximum
among processes of the sum of all iterations. Put another
way, max(Tp) represents the one process that did the
most computation in the whole execution, and Tideal

represents the sum of all the longest running processes
from each iteration. Examining Figure 2, max(Tp) is
the time spent computing by process 0, and Tideal =
t2,1 + t0,2 + t1,3 (time computing by process 2 in the first
iteration, process 0 in the second iteration, and process
1 in the third iteration).

We say that this is an estimation, because the
computation of Tideal is likely to be overly optimistic;
because each sub-profile lacks any event ordering
information, it is impossible to maintain synchronization
between processes except at the outer phase boundary
and any other collective operations during the iteration.
This error is highly correlated with the amount
of point-to-point communication per iteration. A
conservative upper bound on the error in each iteration
of the loop when computing Tideal is the sum of all
point-to-point communication performed by the process
with the longest computation time for that iteration. The
total error is the sum of the error from each iteration.
In our examples, the estimation of Tideal did not exceed
5.61%.

However, the error in computing Tideal is minimized
and in some cases eliminated if the region being
measured has a small enough resolution, as we shall
show in the inner loop analysis of Section IV-A. The
phase profile approach also has the added benefit of
only computing the load balance for the main iteration,
ignoring initialization and termination when applications
are commonly serialized because the root process usually
performs most of the work.

III. ANALYSIS FRAMEWORK

As mentioned in the introduction, we wanted to
examine whether the automated computation of these
load balance metrics was possible with phase profile
data. The original work was performed collecting
performance traces, analyzing them with Paraver,
generating a Dimemas trace from the original trace,
simulating the application with Dimemas, and evaluating
the simulated performance trace with Paraver.

The phase profile performance analysis tool we used
is PerfExplorer [16], a parallel performance data mining
framework with automated scripting support. The script
interface includes an API for performing common data
manipulation tasks for parallel performance profiles,
including clustering common profile behavior, splitting
trials, and computing statistics. The micro load balance
computation scripts were written in Python using this
framework.

In order to directly compare the measurement results
using the two methods, we wrote a simple Paraver trace
to TAU profile conversion utility. This utility allows us
to specify one or more instrumented user functions or
regions that should be interpreted as phases, and generate
a TAU phase profile accordingly. This way, the same
performance data from the same experiment is used in
the computation for both methods.

For each application in our experiments, we first
profiled the application with TAU or gprof [14] in
order to determine the most time consuming regions
in the application. Using the PerfExplorer framework,
we constructed a script for loading the profile and
selecting the top 10 functions with respect to both
inclusive and exclusive time. We excluded lightweight
functions that were called more than 1000 times, in
order prevent excessive measurement overhead. We then
constructed a source to source compilation wrapper that
instruments the code using the TAU Instrumentor [13].



The instrumentation was from the Extrae API, the trace
measurement library for Paraver. In addition to the most
time consuming functions, we also instrumented the
main iteration loops in the applications. In the CPMD
case, we collected phase profiles directly using TAU
instrumentation.

After the traces were collected, the micro load
balances were computed using the equations defined in
Section II, including generating and analyzing Dimemas
traces in order to compute Tideal. Using the trace to
profile conversion utility, we converted the collected
traces to phase profiles, and computed the load balances
using the PerfExplorer scripts.

IV. ANALYSIS EXAMPLES

In order to test our method for computing global
and micro load balance using phase based profiles,
we examined the performance of three parallel
applications that are commonly used at the Barcelona
Supercomputing Center (BSC): CPMD, GADGET and
GROMACS. These applications are also members of
the core benchmarks for the Partnership for Advanced
Computing in Europe (PRACE) [22].

In all cases, the applications were executed on
MareNostrum, the supercomputing cluster at BSC. Some
experiments were also executed on Jugene, a large-scale
supercomputer at the Jülich Supercomputing Center.

MareNostrum [2] is an IBM cluster with 2560
processing nodes connected with both Myrinet
interconnect and Gigabit Ethernet. Each node is a
JS21 Blade with four PPC970PM 2.3 GHz processors
and 8 GB of main memory. The total system has
10240 processors, 20 TB of main memory, and a peak
performance of 94.21 Teraflops.

Jugene [17] is a 72 rack IBM BlueGene/P cluster.
Each rack has 32 nodecards, and each nodecard has
32 compute nodes (73728 nodes total). Each compute
node contains four 850 MHz PowerPC 450 processors
and 2 GB of main memory. The total system has
294912 compute cores, 144 TB of main memory, and
a peak performance of 1 Petaflop. The compute nodes
are connected with two networks, a three-dimensional
torus for the compute nodes and a global tree collective
network.

A. Gadget

GADGET [24] is a freely available code
for cosmological N-body / Smoothed Particle
Hydrodynamics (SPH) simulations on massively parallel
computers with distributed memory. GADGET uses

an explicit communication model that is implemented
with MPI. GADGET implements a parallel TreePM [1]
algorithm for efficient and accurate processing of the
forces between particles in the system. The TreePM
algorithm divides the forces into long and short range
components. The long range forces are computed with
an efficient Particle Mesh (PM) algorithm, in which
the computation of the forces are performed in Fourier
space. However, the force resolution of the Particle
Mesh method is poor, so the short range forces are
computed with a version of the Barnes & Hut [3] tree
method, with boundary conditions added.

The benchmark configuration and input data we used
to execute GADGET is from the PRACE benchmarks.
The configuration simulates 65536000 particles for only
3 timesteps, and the PM grid is configured to have 1024
cells. The application was executed on MareNostrum and
on Jugene. Our goal was to perform detailed load balance
analysis of the GADGET application.

1) Micro Load Imbalances for Inner Loops: When
examining the global load balance of the iterative
computations in GADGET, it appears that the application
is fairly well balanced. The load balance metrics for
the executions are shown in Table I. A comparison of
the phase analysis method to the Paraver/Dimemas is in
Table II. In addition, the micro load balance looks very
good, as at the end of each timestep, the processes are
well synchronized. However, in our measurements, the
second most time consuming function is MPI Sendrecv.
In fact, during the long range force computation, there
are four loops where pairs of MPI Sendrecv are called.
When examining these loops in isolation, we discovered
a severe load imbalance is caused by out-of-order
communication. As shown in Figure 3(a), during these
MPI Sendrecv loops, some processes are waiting a long
time for their first communication. This pattern repeats
itself during the second half of the iterations.

The code executed in these loops was performing
a butterfly pattern, performing pairwise communication
with seemingly every other process. After examining
the code and the runtime behavior in the trace data we
collected, we soon realized that for the 32 processor
case, each processor only performed 24 MPI Sendrecv
calls, and essentially performed a “continue” the other
eight iterations. By reordering the loop for half of the
processes, we were able to execute the “continue” calls
for each process all at the same time, and eliminate
roughly 1.4 seconds per execution of this loop, per
timestep, as shown in Figure 3(b). As this loop is
executed four times each timestep, that is an anticipated



Processes 32 64 128
T 466.68 229.84 139.48
max(Ti) 361.41 169.19 78.29
avg(Ti) 312.82 154.17 76.38
commEff 0.774 0.736 0.561
LB 0.866 0.911 0.976
Tideal 361.41 172.95 78.52
µLB 1.0 0.978 0.997
Transfer 0.774 0.752 0.563
η 0.670 0.671 0.548

TABLE I
LOAD BALANCE METRICS FOR GADGET. ABSOLUTE TIMES ARE

IN SECONDS.

Paraver/ Perf-
Dimemas Explorer Error

T 467.14 466.68 0.10%
max(Ti) 361.89 361.41 0.13%
avg(Ti) 314.76 312.82 0.61%
Tideal 382.87 361.41 5.61%
commEff 0.775 0.774 0.04%
LB 0.870 0.866 0.48%
µLB 0.945 1.000 -5.80%
Transfer 0.820 0.774 5.51%
η 0.674 0.670 0.52%

TABLE II
ACCURACY OF LOAD BALANCE COMPUTATION, Tideal

ESTIMATION, AND MICRO LOAD BALANCE COMPUTATION FOR A
32 PROCESSOR RUN OF GADGET ON MARENOSTRUM.

savings of 5.6 seconds per timestep, or 3.9%. The
load balance comparison for both the original and the
modified loop is shown in Table IV.

2) Large Scale imbalance: FFTW: When executing
this configuration on Jugene with with more than 1024
processors, we discovered some interesting behavior with
respect to load imbalance. In this case, the application is
showing poor global load balance. During each iteration,
only half of the processes have useful work to do for
one region of the long range force computation. As
configured for this benchmark, FFTW [11] is used to
perform the FFT operations. Figure 4 shows a Paraver
trace that reveals the load imbalance. The lower ranked
processes perform more work than the higher ranked
processes, which are waiting in MPI.

The cause for this imbalance is due to a configuration
setting. The long range forces are computed in
Fourier space, which requires a transformation of

Version Original Modified
T 105.78 123.77
max(Ti) 93.23 104.25
avg(Ti) 87.18 100.22
Tideal 94.82 104.84
commEff 0.881 0.842
LB 0.935 0.961
µLB 0.983 0.994
Transfer 0.896 0.847
η 0.824 0.810

TABLE III
ANALYSIS OF LOAD BALANCE FOR THE ORIGINAL AND

RECONFIGURED ITERATIONS FOR THE 2048 PROCESSOR
EXECUTION OF GADGET ON JUGENE.

particle coordinates to and from Fourier space. The
PMGRID parameter defines the number of cells in
the grid for the particle-mesh (PM) method, used to
compute the long-range forces. According to the FFTW
documentation 1, when using a slab decomposition, each
process gets a subset of the number of rows of the data,
and as a consequence, you cannot take advantage of
more processors than you have rows. This benchmark
is configured to only decompose the space into 1024
slabs for FFTW. That means there are more processors
than slabs, which means there are unused processors for
the transformation.

Table III shows the load balance metrics for the 2048
processor run when using the increased grid resolution.
Changing the grid size re-balances the application, but
at a significant initialization and computation cost. In
addition to the increased time computing per timestep,
the pm init periodic() method goes from an average
time of 23.006 seconds per process (46.012 seconds
for processors that actually work) to 361.22 seconds
per process. This time reflects the excess overhead in
initializing the particle grid when doubling the size of
the grid in all dimensions. In this case, the imbalance is
preferable to the increased computation time overall.

B. GROMACS

GROMACS [15] is a software package to perform
molecular dynamics. It simulates the Newtonian
equations of motion for systems with hundreds to
millions of particles. It is primarily designed for
biochemical molecules like proteins, lipids and nucleic
acids that have a lot of complicated bonded interactions,

1http://www.fftw.org/fftw2 doc/fftw 4.html#SEC58



(a) Original behavior. (b) Modified behavior, after loop reordering.

Fig. 3. Inner MPI Sendrecv loop behavior as seen in a Paraver trace of GADGET for 32 processes on MareNostrum. The time scale is
reduced from 5.88 seconds on the original to 4.51 seconds for the modified loop.

Version Inner Original Inner Modified
T 5.881 4.507
max(Ti) 0.576 0.335
avg(Ti) 0.336 0.321
Tideal 1.735 1.068
commEff 0.098 0.074
LB 0.583 0.958
µLB 0.332 0.313
Transfer 0.295 0.237
η 0.057 0.071

TABLE IV
ANALYSIS OF INNER LOOP PERFORMANCE FOR THE ORIGINAL AND REORDERED LOOPS.

Fig. 4. Paraver view of 2048 processor run of GADGET on Jügene. The darker areas represent computation bursts. The FFT transfers on
only half of the processes are clearly visible.

but since GROMACS is well suited for calculating
non-bonded interactions it is also used in for research
on non-biological systems, such as polymers.

As mentioned in Section I, computational simulations
are typically designed as an SIMD application, where
all processes execute the same algorithm on different
partitions of the overall data set. By recognizing
that some sub-tasks in the current implementation are
independent and can be computed in parallel with the
main force computation, the authors of GROMACS have
designed it to optionally compute in an MIMD mode.
In this mode, a subset of the processes are dedicated
Particle Mesh Ewald [9] (PME) nodes, while the

remainder are used to compute direct space interactions
and integration. This MIMD configuration presents a
challenge for load balance analysis, as the compute
nodes are intentionally not computing the same code, and
from a naı̈ve global perspective are not load balanced.
In this case, conventional load balancing is meaningless
without first partitioning the performance data into PME
and non-PME nodes.

In the benchmark configuration, 145732 atoms are
simulated over 1000 timesteps on MareNostrum. There
are several configuration parameters that affect the
runtime performance of GROMACS, such as the use
of domain or particle decomposition, the dimensionality



of the domain decomposition, the number of dedicated
PME nodes. For these parameters, the application uses a
heuristic to determine the default values to use. However,
these values are not necessarily the optimal values for
the given architecture and dataset. For our example, we
used 32 processors, and the application chose to use 12
dedicated PME nodes, and the remaining 20 nodes were
domain decomposed as a 4× 5× 1 grid.

In order to perform the load balance analysis on
the 12 PME nodes and 20 non-PME nodes separately,
we constructed a PerfExplorer script that first clusters
the performance data into 2 natural clusters using the
DBSCAN [10] algorithm, then extracts each iteration of
the main computational phase, and then computes the
load balance and micro load balance. The load balance
metrics are shown in Table V, using both methods.

Figure 5(a) shows a cut of a Paraver trace of
GROMACS, representing 10 iterations. Every tenth
iteration requires extra processing overhead, so those
iterations are longer than the others. Only the non-PME
processes are shown in this view. As can be seen
in the figure, the load is poorly balanced, despite
the attempts by the application to evenly distribute
the computational load. Working under the assumption
that the problem decomposition was at fault, particle
decomposition was tried, and the performance was
worse. The decomposition in GROMACS is constrained
by the relationships between particles, and so evenly
balanced particle decomposition is not always possible.
Trying different 2D and 3D decompositions did not
improve the performance, however a 1D decomposition
did improve the performance, as shown in Table V
and Figure 5(c) As this benchmark executes for 1000
iterations, the overall runtime for the application is
reduced from 79.52 seconds to 58.64 seconds, a savings
of over 26%.

C. CPMD

The CPMD [5] application is a plane
wave/pseudopotential implementation of Density
Functional Theory, particularly designed for ab-initio
molecular dynamics. CPMD is a very regular
application, with frequent synchronization. In the
benchmark configuration, 20 iterations of the main
computation loop are computed. During the main
computation loops, only two MPI functions are used:
MPI Alltoall and MPI Allreduce, both of which are
collective operations. Therefore, CPMD is frequently
globally synchronized. The load balance metrics for a

32 processor run of CPMD are shown in Table VII, and
a profile view of one timestep is shown in Figure 6.

According to the CPMD manual 2, the most important
bottleneck in the distributed memory parallelization
of CPMD is the load-balancing problem in the FFT.
Like the FFTW implementation in GADGET, the real
space grids in CPMD are only distributed over the
first dimension (i.e. slabs). The size of the grid is
configurable, and in our benchmark input file the grid
dimensions are 128 × 128 × 128. Because this limits
the scalability of the parallel implementation, CPMD
also has the option to parallelize not only across data
but also across tasks. CPMD has a TASKGROUPS
option, which potentially adds additional computational
overhead but reduces the communication overhead,
effectively reducing the runtime.

To test the effect of the TASKGROUPS parameter,
we ran CPMD on MareNostrum with 256 processors,
and the 128 × 128 × 128 real space grid. The test ran
for 20 iterations, and we instrumented the main loop
as a TAU dynamic phase. We executed CPMD with
no taskgroups, 2, 4, 8 and 16 taskgroups. By adding
the use of taskgroups we saw a slight decrease in the
amount of computing overhead, but a more significantly,
a large reduction in communication overhead. However,
with more taskgroups, the computing overhead grows
and eventually catches up with the reduction in
communication overhead, which also is increasing with
the number of taskgroups. The load balance and
efficiency metrics are shown in Table VI. Included with
the load balance metrics are the average time (per
iteration) taken for each iteration, and the average time
spent only in computation and only in communication.
As emphasized in the table, the run with 2 taskgroups
had the shortest runtime, and yet the worst load balance,
and second lowest efficiency. If we were to select
the configuration with the highest efficiency and best
load balance, we would select the configuration with
16 taskgroups – but our performance with respect to
time would be no better than the configuration with
the worst efficiency and load balance. The efficiency
and load balance metrics are misleading in this case,
because increasing the number of taskgroups only adds
to processing overhead, which is misinterpreted as
productive computation.

2http://www.cpmd.org/cpmd on line manual.html



4× 5× 1 Decomposition 20× 1× 1 Decomposition
Metric Paraver/Dimemas PerfExplorer Error Paraver/Dimemas PerfExplorer Error
T 0.749 0.740 1.25% 0.525 0.504 3.95%
max(Ti) 0.700 0.699 0.13% 0.452 0.448 0.94%
avg(Ti) 0.364 0.363 0.27% 0.372 0.368 0.86%
Tideal 0.708 0.699 1.25% 0.466 0.448 3.84%
commEff 0.934 0.945 -1.13% 0.861 0.888 -3.13%
LB 0.520 0.519 0.14% 0.822 0.823 -0.09%
µLB 0.989 1.000 -1.14% 0.971 1.000 -3.02%
Transfer 0.945 0.945 0.00% 0.887 0.888 -0.11%
η 0.486 0.491 -0.99% 0.708 0.731 -3.21%

TABLE V
ANALYSIS OF LOAD BALANCE FOR 10 ORIGINAL AND RECONFIGURED ITERATIONS OF GROMACS.

(a) 4x5x1 load balance behavior, non-PME nodes. Black regions are time spent in MPI.

(b) 20x1x1 load balance behavior, non-PME nodes. Black regions are time spent in MPI.

(c) 20x1x1 load balance behavior - PME nodes. Black regions are time spent in MPI.

Fig. 5. The load balance behavior for 10 iterations of the GROMACS application executed on MareNostrum. By changing from the 4×5×1
2D decomposition to a 20× 1× 1 1D decomposition, the load balance and runtime for the application improved. The time scale is reduced
from 0.749 seconds on the original to 0.525 seconds for the modified loops. The PME nodes are well balanced, and shown for comparison.



Taskgroups None 2 4 8 16
T 33.775 18.579 23.815 26.840 32.917
max(Ti) 6.432 5.678 11.103 12.862 18.083
avg(Ti) 5.586 4.620 9.875 12.251 17.117
Tideal 7.377 6.150 11.562 13.715 18.844
commEff 0.165 0.249 0.415 0.456 0.520
LB 0.868 0.814 0.889 0.953 0.947
µLB 0.872 0.923 0.960 0.938 0.960
Transfer 0.218 0.331 0.485 0.511 0.572
η 0.165 0.249 0.415 0.456 0.520
Total Time per Iteration 1.690 0.930 1.190 1.340 1.650
Time computing per Iteration 0.280 0.230 0.490 0.610 0.860
Time communicating per Iteration 1.410 0.700 0.700 0.730 0.790

TABLE VI
PARAMETER STUDY OF CPMD, VARYING THE NUMBER OF TASKGROUPS FOR 256 PROCESSORS ON MARENOSTRUM.

Paraver/ Perf-
Dimemas Explorer Error

T 83.71 83.68 0.03%
max(Ti) 64.87 64.91 -0.07%
avg(Ti) 63.56 63.61 -0.07%
Tideal 62.94 64.92 -3.14%
commEff 0.775 0.774 0.07%
LB 0.980 0.980 0.00%
µLB 1.031 1.000 2.98%
Transfer 0.752 0.776 -3.17%
η 0.759 0.760 -0.10%

TABLE VII
ACCURACY OF LOAD BALANCE COMPUTATION, Tideal

ESTIMATION, AND MICRO LOAD BALANCE COMPUTATION FOR A
32 PROCESSOR RUN OF CPMD ON MARENOSTRUM.

Fig. 6. Paraprof view of 1 major iteration of CPMD with 32
processors on MareNostrum.

V. CONCLUDING REMARKS

In this paper we have described a method for
computing the load balance and micro load balance
metrics for parallel codes using phase based profiles. Our
goal in evaluating this method was to compare it with
an existing method for computing micro load imbalance,
which requires collecting a trace of the application,
simulation of the trace using an ideal network, and
manual analysis of the trace and the simulation. With
phase profiles, the data can be automatically analyzed
using performance analysis scripts in PerfExplorer. In
our tests, the accuracy of the estimation of Tideal

is within 6%. In iterations with high ratios of point
to point synchronous communication, such as in the
GADGET case, our method is overly optimistic with
how small Tideal can be. In regions with higher ratios of
collective communications, such as CPMD, our method
is pessimistic with respect to Tideal. Using PerfExplorer
also allows us to post process the data in other automated
ways, such as with clustering MIMD performance data
prior to load balance analysis.

However, our method requires instrumentation of, or
at least identification during post-processing of, the main
iteration loop or the inner loop of interest. If the code
is instrumented for detailed measurement anyway, this is
not a burden, but if the code cannot be instrumented or is
not instrumented for some reason, this would be a critical
problem. However, If the phase profile is generated by
post-processing of a trace, there are methods that can
identify iteration boundaries [7]. These techniques could
be implemented for automatic detection of the iterations.
In our future work, we hope to investigate integrating this



method into the post process analysis of trace data. The
trace itself could be read by PerfExplorer directly as part
of this analysis.

Finally, our experiments with GADGET and CPMD
have also demonstrated that load balance is one of
many parameters to consider when optimizing large
scale parallel applications. Tuning for load balance does
not necessarily improve performance with respect to
time. However, with respect to true computational load,
the more balanced the decomposition is, the better the
application will perform.

REFERENCES

[1] BAGLA, J. TreePM: A code for cosmological n-body
simulations. Journal of Astrophysics and Astronomy, 23 (2002),
185–196.

[2] BARCELONA SUPERCOMPUTING CENTER. Marenostrum
supercomputer. http://www.bsc.es, 2010.

[3] BARNES, J., AND HUT, P. Tree. Nature 324, 446 (1986).
[4] BRUNST, H., KRANZLMÜLLER, D., AND NAGEL, W. E. Tools

for scalable parallel program analysis - Vampir NG and DeWiz.
Distributed and Parallel Systems, Cluster and Grid Computing
777 (2004).

[5] CAR, R., AND PARRINELLO, M. Unified approach for
molecular dynamics and density-functional theory. Phys. Rev.
Lett. 55, 22 (Nov 1985), 2471–2474.

[6] CASAS, M., BADIA, R., AND LABARTA, J. Automatic analysis
of speedup of MPI applications. In ICS ’08: Proceedings of the
22nd annual international conference on Supercomputing (New
York, NY, USA, 2008), ACM, pp. 349–358.

[7] CASAS, M., BADIA, R. M., AND LABARTA, J. Automatic
phase detection of MPI applications. In In: Proceedings of the
14th Conference on Parallel Computing (ParCo 2007) (2007).

[8] CONG, G., CHUNG, I.-H., WEN, H., KLEPACKI, D.,
MURATA, H., NEGISHI, Y., AND MORIYAMA, T. A holistic
approach towards automated performance analysis and tuning.
In Euro-Par 2009 (2009), vol. Volume 5704/2009, Springer
Berlin / Heidelberg, pp. 33–44.

[9] ESSMANN, U., PERERA, L., , BERKOWITZ, M. L., DARDEN,
T., LEE, H., AND PEDERSEN, L. G. A smooth particle mesh
Ewald method. J Chem Phys 103, 19 (1996).

[10] ESTER, M., PETER KRIEGEL, H., S, J., AND XU, X. A
density-based algorithm for discovering clusters in large spatial
databases with noise. AAAI Press, pp. 226–231.

[11] FRIGO, M., AND JOHNSON, S. G. FFTW: An adaptive software
architecture for the FFT. IEEE, pp. 1381–1384.

[12] GAMBLIN, T., DE SUPINSKI, B. R., SCHULZ, M., FOWLER,
R., AND REED, D. A. Scalable load-balance measurement for
SPMD codes. In SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (Piscataway, NJ, USA, 2008),
IEEE Press, pp. 1–12.

[13] GEIMER, M., SHENDE, S., MALONY, A., AND WOLF,
F. A generic and configurable source-code instrumentation
component. In Proc. of the International Conference on
Computational Science (ICCS) (Baton Rouge, LA, USA, May
2009), G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada,
J. Dongarra, and P. M. A. Sloot, Eds., vol. 5545 of Lecture
Notes in Computer Science, Springer, pp. 696–705.

[14] GRAHAM, S., KESSLER, P., AND MCKUSICK, M. Gprof:
A call graph execution profiler. In Proceedings of the 1982
SIGPLAN symposium on Compiler construction (1982), ACM
Press, pp. 120–126.

[15] HESS, B., KUTZNER, C., VAN DER SPOEL, D., AND
LINDAHL, E. GROMACS 4: Algorithms for highly efficient,
load-balanced, and scalable molecular simulation. In Journal of
Chemical Theory and Computation (2008), vol. 4, pp. 435–447.

[16] HUCK, K. A., MALONY, A. D., SHENDE, S., AND MORRIS,
A. Knowledge support and automation for performance analysis
with PerfExplorer 2.0. Scientific Programming, special issue
on Large-Scale Programming Tools and Environments 16, 2-3
(2008), 123–134.

[17] JÜLICH SUPERCOMPUTING CENTER. Jugene supercomputer.
http://www.fz-juelich.de/jsc/jugene, 2010.

[18] KOJAK. Kojak. http://www.fz-jeulick.de/zam/kojak/, 2006.
[19] LABARTA, J., GIRONA, S., PILLET, V., CORTES, T., AND

GREGORIS, L. DiP: A parallel program development
environment. In Euro-Par 1996 (2009).

[20] MALONY, A. D., SHENDE, S. S., AND MORRIS, A. Phase
based parallel performance profiling. In In Proceedings of the
PARCO 2005 conference (2005), vol. 33, pp. 203–210.

[21] PILLET, V., PILLET, V., LABARTA, J., CORTES, T., CORTES,
T., GIRONA, S., GIRONA, S., AND COMPUTADORS, D. D. D.
Paraver: A tool to visualize and analyze parallel code. In In
WoTUG-18 (1995), pp. 17–31.

[22] PRACE. Partnership for advanced computing in europe (prace).
http://www.prace-project.eu/, 2010.

[23] SHENDE, S., AND MALONY, A. D. The TAU parallel
performance system. The International Journal of High
Performance Computing Applications 20, 2 (Summer 2006),
287–331.

[24] SPRINGEL, V. The cosmological simulation code GADGET-2.
Mon. Not. R. Astron. Soc., 364 (2005), 1105–1134.

[25] WOLF, F., WYLIE, B., ÁBRAHÁM, E., BECKER, D., FRINGS,
W., FÜRLINGER, K., GEIMER, M., HERMANNS, M., MOHR,
B., MOORE, S., PFEIFER, M., AND SZEBENYI, Z. Usage of
the SCALASCA toolset for scalable performance analysis of
large-scale parallel applications. In Proc. of the 2nd HLRS
Parallel Tools Workshop (July 2008), Springer, pp. 157–167.


