
Turning Software into a Service 

Turning Software into a Service 
 

Mark Turner, David Budgen, Pearl Brereton 
Keele University,  

Staffordshire,  
ST5-5BG 

m.turner@cs.keele.ac.uk 

1.  Introduction 
In 1999 the Pennine Group (http://www.service-oriented.com), a consortium of software engineering researchers 
from the University of Durham, Keele University and UMIST, put forward the view that the future of software 
lay not in developing new architectural styles based upon ‘constructional’ forms, such as objects or components, 
but in taking a radically different view of the way that its functionality was delivered to the user (Brereton, 
1999).  In subsequent papers we have explored this concept further and have illustrated it by means of a number 
of small-scale experiments (Bennett et al., 2001).  This idea, which we termed Software as a Service (SaaS), is 
one of a demand-led software market in which services are assembled and provided as and when needed to 
address a particular requirement.  In this paper we illustrate how we believe the SaaS vision compares with 
current thinking about software development and delivery and discuss whether the currently available 
technologies are sufficient to support our ideas.  In particular, we examine the initiatives in the Web services and 
electronic business communication communities and develop a stack framework through which to compare a 
number of available protocols.  We then go on to examine the gaps that this exposes in the current Web services 
protocols, and in so doing highlight where further research is needed in order to effectively realise the SaaS 
vision. 

1.1 The Service Concept 
The basic long-term vision of SaaS is centred around separating software possession and ownership from its use.  
The Pennine Group believe that by delivering the functionality of software as a set of services that can be 
configured and bound at the time of delivery, many of the present limitations constraining its use, deployment 
and evolution can be overcome.  Such a model would open up new markets, both for relatively small-scale 
providers of specialist services as well as for larger organisations that provide more general services.  In addition, 
service provision may include the dynamic creation and development of entirely new services that make use of 
existing ones. 
 
One feature of this approach is that as a business and its context change, so the set of services that it uses will 
evolve without any user intervention.  Also, note that the key ‘know-how’ involved is not one of who provides 
services, necessary though that knowledge is, but more one of knowing what service is required at any particular 
point and negotiating suitable terms for its use.  Selecting and binding the means of providing an appropriate 
service can therefore be performed dynamically on demand (ultra-late binding). 

1.2 What distinguishes SaaS from other ‘Service forms’? 
Despite advances in the technologies of programming languages and development environments, the basic 
paradigm used for constructing and maintaining software has altered very little since the 1960’s.  Software is still 
largely constructed by employing some variant of the edit-compile-link cycle to generate an executable ‘binary 
image’ from a source that is described using some form of procedural programming language.  Although the web 
may have widened our interpretation of what ‘software’ is, the practices used to develop and implement a web 
site are not so very different from those traditionally employed for constructing software, and are just as error-
prone! 
 
To achieve the above vision, the Pennine Group is developing a radically different paradigm.  Our view is that 
the role of software is to deliver a service and that by shifting the focus to describing and delivering that service 
rather than providing software, we can move away from the constraints imposed by the ‘traditional’ models of 
software construction, use and ownership.  Hence our service-based model is one in which one or more services 
are configured to meet a specific set of requirements at a point in time, executed and disengaged (Brereton et al., 
1999) - a vision of instant service that is consistent with the widely accepted definition: 

 
“an act or performance offered by one party to another.  Although the process may be tied to a 
physical product, the performance is essentially intangible and does not normally result in 
ownership of any of the factors of production” (Lovelock et al., 1996) 

 Page -1- 



Turning Software into a Service 

  
    Figure 1 Current Service Model                  Figure 2 Proposed Service Model 

 
Supplier’s Software 
Application Service 

Service Transport Layer 
(using such forms as .NET 

or J2EE.) 

Service Layer (applications 
 created ‘on demand’  

from smaller services) 

Service Technology Layer 

Service Transport Layer 

Figure 1 shows an abstract interpretation of what is widely meant by a ‘service model’ in the current literature1.  
In this, a fixed set of applications sit on top of a Service Transport Layer that makes use of such technologies 
as Microsoft’s .NET or Sun’s J2EE platform, along with XML based enveloping and message formats such as 
SOAP (http://www.w3.org/TR/SOAP/).  Figure 2 shows our vision of what a ‘service model’ could be, if a 
further Service Technology Layer is inserted above the Transport layer.  The model of Figure 1 is essentially a 
supply-led one, concerned with supporting applications which can only provide a pre-determined range of 
services from a remote server; while that of Figure 2 is a demand-led one, that will enable applications to be 
constructed from smaller ‘component services’ and bound dynamically as needed.  This will need to be 
supported by high bandwidth networking of information, which we expect will be provided and enhanced further 
through the emerging Grid technologies. 
 

2.  The Service Technology Layer 
The key to the quite radical difference between the ideas represented by Figures 1 and 2 lies in the functionality 
that results from combining the facilities provided by the Service Technology Layer with those from the 
component services that make up an application.  In this section we further examine the role of this layer, and 
identify the functions that it needs to provide in order to operate as a true SaaS environment. 
 
Although we have used the term Service Technology Layer, we should note that the role that we assign to it is 
one that involves a wide interpretation of the term ‘technology’.  Indeed, it employs software technology to 
support a set of concepts that are more closely related to business and supply models than to technological ones.  
Within our model, we have identified the following as being key service-oriented functions. 
 
Service description is needed as a basis for matching client needs to appropriate and available services.  
Essentially, the service description provides the means of mapping between the provider’s description of their 
offerings and the client’s description of their needs.  The form used should accommodate description of 
functionality, interfaces and non-functional characteristics/constraints, such as quality of service and cost.  It 
should also describe the parameters within which both the service provider and client are willing to negotiate.   
 
Service discovery encompasses the method by which clients will locate appropriate services, according to their 
requirements and selection criteria. It is the process by which a client identifies those potential service providers 
whose offerings meet their functional needs and who are prepared to negotiate within some acceptable bounds.  
Discovery may involve the recursive use of other services, including brokers, and will result in a list of candidate 
services and providers.   
 
Service negotiation involves the interaction between a client and one or more of the service providers identified 
through the discovery process or already known to the client.  It has the aim of agreeing the terms and conditions 
for the supply of a service.   
 
Service delivery is comprised of three steps: invocation, provision and suspension.  Invocation is the ‘calling 
for’ step where the client requests the provider to supply the specified service within the agreed terms and 
conditions.  For this step to be valid, the service provider must supply the agreed service in a manner, and within 
the time frame, agreed in the contract of supply, which is the provision step.  Finally, where the bounds of the 

                                                 
1 As an example of this, the Financial Times of 1 May 2002 devoted an 8-page supplement to this concept, which is really 
little more than a return to the old ‘bureau’ concept, but delivering fixed services on-line instead of off-line! 

 Page -2- 



Turning Software into a Service 

provision are not specified in the contract, or when the bounds are reached, the suspension step establishes the 
point at which the client no longer requires the supply of a service. 
 
Service composition in its most direct form is driven by the ‘know-how’ (expressed in terms of rules) that 
enables a service provider to compose its service from lower level services.  However, such knowledge is only 
sufficient for constructing those services for which rules already exist.  A longer-term research goal is to devise a 
suitable mechanism for creating new forms of service on demand.  Nothing in our model prevents this, but 
creating the means of automatically providing entirely new services will clearly only be practical once the other 
elements of the service technology layer have been fully developed. 

3.  Current Service-related Protocols 
As we previously observed, the concept of a ‘service model’ is widely adopted in the current literature to 
describe Web service technologies such as Microsoft’s .NET platform.  Whilst the Web services paradigm is 
fairly consistent with our vision of SaaS, we feel that some further developments are needed before a true 
service-oriented marketplace is feasible.  In this section we examine some current Web services initiatives and 
propose a stack framework that illustrates the functions that each provides and how we believe each of the 
languages or protocols2 interrelate.  We then discuss how this stack framework maps onto the requirements of 
our Service Technology Layer. 
 
Since the introduction of Web services, three XML based protocols have become de-facto standards.  In fact, 
they have become so widespread that the term Web services has become synonymous with these three protocols. 
They are:  SOAP, or Simple Object Access Protocol, providing a message format for communicating with and 
invoking Web services; WSDL, or Web Service Description Language (http://www.w3.org/TR/wsdl.html), 
describing how to access them; and UDDI, or Universal Description, Discovery and Integration 
(http://www.uddi.org), providing a registry that clients can use to discover available services.   
 
These three protocols are adequate for simple Web services requiring remote procedure call style 
communication.  For more complex Web services, perhaps being composed of a number of other services, other 
XML-based protocols have been developed to provide functions at higher or intermediate layers in the stack.  
One of the problems in developing complex Web services is that there is no universally accepted protocol that 
provides all of the functionality required at each layer.  To add to the confusion, there is no overall definition of 
the actual layers that are required in the stack.  The numerous standards organisations and companies involved all 
have different visions of the layers and protocols making up the Web services architecture.  IBM produced one of 
the original definitions of a stack in their Web Services Conceptual Architecture document (Kreger, 2001).  This 
included the three de-facto standards mentioned previously, along with a ‘Service Flow’ layer that incorporated 
IBM’s Web Services Flow Language (WSFL) (Leymann, 2001).  However, the latter has now been combined 
with Microsoft’s XLANG protocol to produce a new set of protocols termed the Business Process Execution 
Language for Web Services (BPEL4WS) (http://www-106.ibm.com/developerworks/webservices/library/ws-
bpel/).  The W3C Web Service Architecture group are also working on a version of their own stack to standardise 
the required layers (Champion et al., 2002), again placing particular emphasis on the three basic protocols.  Very 
few of the available stacks include any detail on the Semantic Web protocols or the more business-oriented 
Electronic Business XML (ebXML) (http://www.ebxml.org).  As a result, it is unclear as to which technologies 
to use at each level and even which of those available are compatible.  To this end, we propose an updated Web 
Services stack framework that attempts to place the initiatives available at the time of writing in some form of 
context.  This is illustrated in Figure 3. 

 

                                                 
2 The terms ‘language’ and ‘protocol’ can, in the vast majority of cases, be used interchangeably when referring to XML-
based Web services initiatives.  From this point on, we will use the term ‘protocol’ for conciseness.    

 Page -3- 



Turning Software into a Service 

Figure 3 Proposed Web Services Stack Framework 
(Please see separate PDF file, Figure3.pdf) 

 
The stack framework shown in Figure 3 consists of a number of OSI-type layers, with each level using the 
services of the levels below it.  The layers are: 
 

• Network.  This layer consists of the underlying transport protocol.   
• XML-based messaging.  This layer encompasses the use of XML as a message format to communicate 

documents and procedure calls.  SOAP, for example, can be used with any of the underlying transport 
protocols in the Network layer.  This de-coupling of messaging from physical transport protocol means 
that messages can concentrate on describing the service semantics. 

• Service Description.  This is concerned with the functional description of a Web service, in terms of its 
interface and implementation.  It is this layer, and those above it, that we will concentrate on throughout 
the remainder of this paper. 

• Non-functional description.  Protocols at this layer describe a service in terms of its less technical 
features, such as quality of service, cost, geographic location, number of retries, and legal factors. 

• Conversations.  In this context, the term conversation refers to the external view of messages being 
received by and sent from a Web service.  This layer therefore describes the correct sequence of 
messages (or documents) to be exchanged with a Web service. 

• Choreography.  All of the previous layers have largely been concerned with describing a single Web 
service, whereas the choreography layer describes how the methods (or Operations in WSDL 
terminology) of several Web services can be coordinated to provide an overall outcome.  For example, 
protocols in this layer would specify the order in which the methods of each Web service would need to 
be invoked. 

• Transactions.  This layer includes protocols that facilitate the monitoring of transactions between Web 
services.  When services are themselves composed from other services, there are numerous points of 
failure.  The transactions layer would describe how to achieve this composition in an atomic way, so 
that, for example, the whole process either completes successfully or is rolled back.   

• Business Process/Workflow.  Protocols in this layer describe how to actually compose a higher-level 
service from a number of other Web services, through descriptions of the control and data flows 
involved in the process.  

• Contracts.  This layer outlines the format of machine-readable contracts that are necessary to automate 
service-based electronic business.  The contract would outline the terms and conditions of the 
transaction and finalise any negotiable parameters, such as cost and acceptable time to delivery. 

• Discovery.  This layer allows providers to publish details of their Web services so that clients can then 
search and discover any that meet their need.  

 
We also separate our stack into three vertical sections. The first we have termed ‘WSDL-based’ and includes 
those protocols that use or extend WSDL in some way.  Secondly we include those protocols that have their roots 
in the semantic Web: the Resource Description Framework (RDF) (http://www.w3.org/RDF/) and the DARPA 
Agent Markup Language for Services (DAML-S) (DAML Services Coalition, 2002).  Examining Figure 3, it can 
be seen that in our stack WSDL crosses the boundary into the ‘Semantic based’ section.  This is not because 
WSDL is in any way semantic based, but because DAML-S builds upon WSDL for its Service Grounding 
specification.  Finally, the ebXML specifications are included in our stack.  ebXML, although independent of 
Web services, offers much of the same functionality as the other sections. 
  
There are also a number of protocols relating to security within the Web services paradigm, including 
enhancements added to SOAP to provide secure messaging capabilities, such as that defined by WS-Security 
(http://www-106.ibm.com/developerworks/library/ws-secure/).  We do not include security in our current model, 
as we aim solely to concentrate on the areas identified in Section 2. 

4. Realising the Service Technology Layer 
As can be seen from Figure 3, in our view there are a number of significant gaps in the current Web services 
stack.  In the rest of this section we examine how the protocols at each layer can contribute to the five key 
service-oriented requirements of our Service Technology Layer.  In doing so, we identify what needs to be 
addressed in the current Web services model in order to begin implementing the ideas inherent in SaaS.  
 
 
 
 
 

 Page -4- 



Turning Software into a Service 

Service Description 
The main problem with current description methods is that whilst they provide the technical information required 
for a client to invoke a service, they lack the ability to describe semantically the function that the service 
provides.  They also lack descriptions of the negotiable aspects of service delivery.  This is true of the de-facto 
standard description language in the Web services world, WSDL, and also for ebXML’s Collaboration 
Protocol Profile (CPP) specification.  The latter, whilst including more details about the service provider and 
error handling scenarios, is still based largely around the technical aspects of the transaction.  In the ‘WSDL-
based’ section of the stack framework shown in Figure 3, the only protocol designed to describe the non-
functional, negotiable elements of Web services is IBM’s Web Services Endpoint Language (WSEL) 
(Leymann, 2001).  However, this has yet to be developed beyond the status of work-in-progress.  
 
DAML-S is the only description method available that is designed specifically to allow service providers to 
describe the functional and non-functional aspects of their services, including details of what they actually do.  
The Service Profile aspect of the specification allows the client to describe their requirements and the service 
provider to describe their capabilities, including non-functional parameters, in a semantic rich ontology-based 
format.  However, whilst closest to our requirements, at the time of writing DAML-S is not in a final release and 
as such is not widely supported. 
 
Service Discovery 
UDDI is the de-facto standard for discovery in the Web services environment.  The key problem for our purpose 
is that UDDI does not allow for semantic descriptions.  Therefore, searching is limited to keywords, such as the 
name of the service provider or service itself, the location of the service, or the business classification.  Whilst 
the ebXML registry specification (http://www.ebxml.org/specs/ebrs2.pdf) offers richer searching capabilities in 
the form of SQL and XML filter queries, it lacks the ability to allow semantic searching.  Therefore, neither of 
the available registry specifications allows a client to search for a service based on its functionality, thus limiting 
the dynamic discovery capabilities of the current model.  
 
The DAML-S Service Profile ontology allows clients to make requests for services and enables providers to 
describe their services semantically on the basis of the functionality they provide.  As the language is based 
around ontologies, it should therefore be possible to use the inferential capabilities of the language to match 
requests to service descriptions.  However, this requires a registry that is capable of performing true semantic 
matching, which UDDI currently fails to do.  To this end, research has been conducted into how to extend UDDI 
with DAML-S, utilising an algorithm from previous research that enabled the matching of requests to 
advertisements according to their semantics (Paolucci et al., 2002). 
 
Service Negotiation 
The SaaS model requires that when a suitable service is discovered, the client and provider will need to negotiate 
the terms and conditions automatically for the delivery of that service.  While a number of the protocols 
throughout the stack framework include descriptions of negotiable parameters (including ebXML’s Collaboration 
Protocol Profile, DAML-S and WSEL), none allow for fully automated negotiation.  
 
Electronic contracts are also needed to seal any negotiations that take place.  Figure 3 illustrates that, amongst 
the current approaches, only ebXML includes electronic contracts.  The Collaboration Protocol Agreement 
(CPA) document is designed primarily to define the common protocols and capabilities of only two parties.  It is 
formed from the intersection of the two party’s Collaboration Protocol Profile documents and defines, in XML 
format, such properties as the duration of the contract and the agreed security features of the transactions.  
Information on how to formulate a CPA is available (ebXML Trading-Partners Team, 2001) but this is intended 
to be a manual process.  
 
Service Delivery 
Our model identifies three steps that are of prime importance to service delivery: invocation, provision and 
suspension.  The basic invocation and provision of a Web service are well covered by the current technologies.  
However, the ability to monitor whether the service is supplied within the agreed terms and conditions, and the 
ability to suspend the provision if necessary are not.  For these to be viable there would need to be an electronic 
contract and only ebXML includes this feature.  Services can use ebXML’s CPA document to monitor the 
transactions and terminate the process if this contract is broken.  However, in relation to our model it does not 
detail any legal or non-functional parameters, such as cost or quality of service.  
 
A number of other protocols in the stack, in particular the Web Services Choreography Interface (WSCI) 
(www.sun.com/software/xml/developers/wsci/wsci-spec-10.pdf) and the Web Services Endpoint Language, also 
include elements that touch upon the idea of service monitoring and suspension. WSCI allows the developer to 
specify how their service will react in exceptional circumstances, and both WSCI and WSEL allow timeout 

 Page -5- 



Turning Software into a Service 

periods to be detailed.  Thus, these elements could be used to monitor the transaction at a basic level. 
 
Service Composition 
Achieving the automatic composition of Web services will require suitable protocols to be available at the 
conversations, choreography, workflow and transactions layers.  As can be seen in Figure 3, there are several 
combinations of protocols available at each of these layers within the ‘WSDL-based’ section.  The conversations 
layer is covered by both HP’s Web Services Conversation Language (WSCL) (http://www.w3.org/TR/wscl10/) 
and IBM’s recent Conversation-Support for Web Services specification (CS-WS) (Hanson, Nandi, Kumaran, 
2002).  Choreography is used to link each of the collaborating Web services together and is covered by the WS-
Coordination protocol, as well as WSCI.   
 
The monitoring and handling of long-running business transactions is covered by both the Business Transaction 
Protocol (BTP) (http://www.oasis-open.org /committees/business-transactions/documents/specification/2002-06-
03.BTP_cttee_spec_1.0.pdf) and WS-Transaction.  To model the actual control and data flows within the 
composition, BPEL4WS or the Business Process Modeling Language (BPML) 
(http://www.bpmi.org/bpml.esp) can be used.  BPEL4WS is looking likely to become the most widely adopted 
and is distinguishable from others in the layer through the inclusion of both an abstract XML description and an 
executable language.  The actual BPEL4WS specification also encompasses the WS-Coordination and WS-
Transaction protocols, thus ensuring compatibility between the three layers.  
 
The ebXML alternative is provided by the Business Process Specification Schema (BPSS) specification.  When 
combined with the compatible BPML and BTP specifications, it can also describe, respectively, the internal 
details of workflows and long running transactions.  However, the BPSS is only designed to model the 
transaction between two parties as oppose to a complex Web services composition.   
 
DAML-S covers many of the compositional layers with the Service Profile and Service Model specifications.  At 
the time of writing, the specification has only reached version 0.7 and there is still more to be implemented 
before a full release, in particular features are needed to support long running transactions.  It is envisaged that a 
future specification will include a ‘Process Control’ model that will describe a process in terms of its state, 
allowing for automated monitoring.    

5.  Conclusions 
This paper has elaborated on our vision of a radically new approach to using software, where the notion of 
software ‘ownership’ is discarded in favour of service acquisition, and examined whether the vision can be 
achieved using currently-available Web services protocols.  We have described the basic components of the 
vision, and have argued that even though the underpinning technologies necessary for realising the vision are 
largely in place there are still a number of areas that will need further research before the ideas can be fully 
implemented.  We have illustrated this through use of a comparative stack (Figure 3) that highlights the 
significant gaps.   
 
The gaps we have identified in the current Web services technologies will, along with the ongoing research into 
the inter-disciplinary and market driven aspects, provide areas of future research for The Pennine Group.   
The first area we identified concerned the lack of flexible, semantic based searching in the current discovery 
models.  In our model, clients and other services need to be able to discover services dynamically on the basis of 
their capabilities and bind to them at run-time.  The current service registries do not fully allow for this.  The 
DAML-S language is designed to allow capability matching but at the time of writing it is not in a final release 
and is not supported directly by either the UDDI or ebXML registry models.   
 
Secondly, once a service has been discovered, the terms and conditions of a subsequent transaction will need to 
be negotiated.  Again this process should occur automatically at run-time.  However, current Web services 
protocols do not include support for automatic negotiation, especially for more complex issues such as legal 
clauses.  This problem is exaggerated further by the fact that the current protocols place very little emphasis on 
the contextual aspects of a transaction, such as cost or quality of service.  This means that many of the negotiable 
elements are not described and so it is not possible for a client to choose a service on the basis of its non-
functional elements, or to choose a service and then enter the negotiation process if the current terms are 
unsatisfactory in some way.   
 
Finally, although there are many technologies available that provide support for service composition, they require 
that the developer knows, at design time, the details of the services that are to be used.  In the SaaS model, 
services should be dynamically composable at the time of need, through binding of a number of other, lower-
level, services.  Indeed, a client should be able to describe the sequence of tasks to be performed, and a true 

 Page -6- 



Turning Software into a Service 

service-oriented model would automatically compose a new higher-level service from this description.  This 
would be achieved through searching for, and dynamically binding to, ‘lower-level’ services that perform each 
task.   
 
From the above we therefore conclude that, while many of the protocols necessary to achieve ‘true’ service 
provision are either available or under development, there are still significant gaps.  Perhaps not surprisingly, 
these are concerned with the less ‘technical’ aspects of service delivery and so represent research challenges that 
have strong interdisciplinary elements. 
 

References 
Bennett KH, Munro M, Gold N, Layzell PJ, Budgen D & Brereton OP (2001) An Architectural Model for  

Service-Based Software with Ultra-Rapid Evolution.  In Proceedings of ICSM’01, Florence, November  
2001, IEEE Computer Society Press, 292-300 

Brereton OP, Budgen D, Bennett KH, Munro M, Layzell PJ, Macaulay L, Griffiths D & Stannett C (1999) The  
Future of Software, Comm. ACM, 42(12), 78-84 

Brereton OP & Budgen D (2000) Component-Based Systems: A Classification of Issues, IEEE Computer,  
33(11), 54-62 

Champion, M, Ferris, C, Newcomer, E. & Orchard, D (2002), Web Services Architecture – Editors’ Copy  
[Online], Available:http://www.w3.org/2002/ws/arch/2/08/wd-wsa-arch-20020821.html [2002, Oct. 15] 

DAML Services Coalition (2002), DAML-S: Web services Description for the Semantic Web, In: Proceedings of  
the 1st International Semantic Web Conference (ISWC) 

ebXML Trading-Partners Team (2001), Collaboration-Protocol Profile and Agreement Specification Version 1.0  
[Online], Available: http://www.ebxml.org/specs/ebCCP.pdf [2002, Sept. 12] 

Hanson, J.E, Nandi, P & Kumaran, S (2002), Conversation Support for Business Process Integration,  
In:  Proceedings of the 6th IEEE International Enterprise Distributed Object Computing Conference  
EDOC 2002-09-17 

Kreger, H (2001), Web Services Conceptual Architecture (WSCA 1.0) [Online],  
Available: http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf [2002, Oct. 15] 

Leymann, F (2001), Web Services Flow Language (WSFL) 1.0, [Online],  
Available: http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf [2002, Sept 2] 

Lovelock C, Vandermerwe S, & Lewis B (1996) Services Marketing, Prentice Hall Europe 
Paolucci, M, Kawamura, T, Payne, T.R, & Sycara, K (2002), Importing the Semantic Web in UDDI,  

Forthcoming in Proceedings of Web Services, E-business and Semantic Web Workshop 
 

 Page -7- 



Turning Software into a Service 

 Page -8- 

(SIDEBAR) An example scenario to illustrate the concept of Software as a Service 
The following scenario offers a simple illustration of the ideas inherent in Software as a Service, set within the 
context of a much larger example. 

Alice has set up a company that offers services to people wishing to purchase property abroad.  
She currently provides two services, one that provides information about available properties, and a 
second that handles actual negotiation and purchase. 

Alice’s purchasing service uses other services to handle such tasks as translation, legal and 
financial negotiations, financing, and currency transfer. So provision of her service involves 
specifying the terms, conditions and form of service provision, together with the ‘rules’ describing 
how other services will be employed to provide this (the ‘know-how’ element of her service).  A 
complete scenario that describes this would be much too long, but a small fragment (concerning 
legal documents) might look like the following: 

Alice’s purchasing service urgently needs to have a legal document translated from 
Spanish to English. 
• It seeks a translation service and, after negotiation on the terms and conditions, it 

selects the cheapest from the four available (scribe). 
• scribe (which is a broker, able to evaluate services, but not actually providing them) 

seeks a Spanish translation service that is geared to handling “legal” documents and 
from the three on offer, it selects the one that offers an immediate service (es-trans), 
based upon previous history of use and satisfactory delivery. 

• es-trans provides the service that Alice’s service requires. 
 
In order to further explain the SaaS vision, we now relate this example back to the five key service-oriented 
functions of our Service Technology Layer.  Firstly, in terms of service description, Alice would need to be able 
to describe her general requirement to have a document translated, and more specific details including the fact 
that it is a legal document, and the languages involved.  It also encompasses the way that a service provider such 
as scribe or es-trans can describe the services that they can supply (either directly, or through use of other 
providers) and the parameters within which they are willing to negotiate a service contract. 
There are two instances of service discovery in this example.  The first is Alice seeking the translation service, 
and the second is the scribe broker seeking a service that can deliver in the required time. Likewise, two stages of 
negotiation occur in the example.  Alice’s service will negotiate with scribe (but because she has a frequent need 
for translation services in general, this negotiation may be also conducted on a periodic basis, resulting in a 
longer-term contract between Alice’s services and scribe, in which case the immediate negotiation will be purely 
concerned with service parameters).  Scribe may then negotiate on a much shorter-term basis with es-trans and 
other possible providers, with this negotiation being conducted on a ‘per-document’ basis. 
 
Service delivery in this example is fairly clear-cut.  It occurs when es-trans receives the original document and 
returns the translation.  However, if this is not achieved within the specified timeframe (determined by the form 
in which Alice’s service may have defined ‘urgently’ in this case), then either Alice’s service or scribe may 
choose to invoke the suspension step and renegotiate with another provider. 
 
Finally, a form of service composition occurs when scribe employs its `know-how’ about translation services and 
specialist forms of translation (such as a legal document) in order to seek a set of suitable translation services and 
open negotiation with them.  A longer-term research goal is to be able to create entirely new services as oppose 
to predetermined ones.  Our example does not contain an illustration of this form of composition, although we 
could easily extend it slightly to do so as follows.  If Alice’s need were to change, so that it was not only for 
translation of a legal document, but also for the registration of that document in some way, then there would be a 
need to extend the existing service rules to encompass such an option.  (While this may not be an entirely new 
service, we envisage that many new services will consist of extensions and revisions to existing forms.) 

 



Fi
gu

re
 3

 -
W

eb
 S

er
vi

ce
s 

St
ac

k 
Fr

am
ew

or
k

eb
XM

L 
R

eg
is

tri
es

eb
XM

L 
C

PA

U
D

D
I

D
is

co
ve

ry

C
on

tra
ct

s

BP
M

L

eb
XM

L 
BP

SS

BT
P

N
et

w
or

k
H

TT
P,

 F
TP

, S
M

TP
, e

tc
SO

AP

W
SD

L

XM
L-

ba
se

d 
m

es
sa

gi
ng

Se
rv

ic
e 

D
es

cr
ip

tio
n

eb
XM

L 
C

PP

Bu
si

ne
ss

 P
ro

ce
ss

/ W
or

kf
lo

w

R
D

F

D
AM

L-
S 

Se
rv

ic
e 

G
ro

un
di

ng

W
SE

L
N

on
-fu

nc
tio

na
l 

de
sc

rip
tio

n

BP
EL

4W
S

D
AM

L-
S 

Se
rv

ic
e 

Pr
of

ile

W
SC

I

BP
M

L

C
ho

re
og

ra
ph

y
Tr

an
sa

ct
io

ns
W

S-
Tr

an
sa

ct
io

n

D
AM

L-
S 

Se
rv

ic
e 

M
od

el

BT
P

W
S-

C
oo

rd
in

at
io

n
D

AM
L-

S 
Se

rv
ic

e 
M

od
el

C
on

ve
rs

at
io

ns
C

S-
W

S
W

SC
L

eb
XM

L 
M

es
sa

gi
ng

eb
XM

L
W

SD
L-

ba
se

d
Se

m
an

tic
 

ba
se

d


	Turning Software into a Service
	1.  Introduction
	1.1 The Service Concept
	1.2 What distinguishes SaaS from other ‘Service f

	2.  The Service Technology Layer
	3.  Current Service-related Protocols
	4. Realising the Service Technology Layer
	5.  Conclusions
	References
	(SIDEBAR) An example scenario to illustrate the concept of Software as a Service

	010_Figure3.pdf
	Figure 3 - Web Services Stack Framework


