
Tutorial on Advanced Design Patterns in Event Processing
Adrian Paschke

Freie Universität Berlin

Koenigin-Luisen-Str. 24/26,

Germany

paschke AT inf.fu-berlin.de

Paul Vincent

Tibco Software Inc., UK

Business Optimization

Business Rules & CEP

pvincent@tibco.com

Alex Alves

Oracle Corp.

alex.alves@oracle.com

Catherine Moxey

IBM, UK

catherine_moxey@uk.ibm.com

ABSTRACT

We introduce a reference architecture for event processing, as

defined by the EPTS reference architecture (RA) working group.

An event processing reference architecture allows users to quickly

create event processing solutions that adhere to known

stakeholder requirements and architectural qualities. The focus in

this paper is on the EPTS reference architecture description of the

functional view which is supported by a mapping of its functions

into design patterns as means to derive and prove these

architectural descriptions to be usable solutions for recurring best

practice implementations in common CEP languages.

Categories and Subject Descriptors

D.2.11 [Software Architectures]

General Terms

Design, Standardization, Languages.

Keywords

Complex Event Processing, Design Patterns, Reference

Architecture

1. INTRODUCTION
Event Processing (EP) is considered an increasingly “mainstream”

view in IT and is realized in different vendor products and

solutions. These incorporate various software technologies that

provide an event-oriented view of systems, providing continuous

and stateful views of incoming events. The use of multiple

software techniques in high performance stateful event processing

has resulted in associated specialized software and system

architectures. Potential adopters (stakeholders) need a reference to

understand suppliers’ architectures (reference architecture) and

best practice solutions to recurring problems (design patterns).

To this end the Event Processing Technical Society (EPTS) set up

a Reference Architecture group to provide a common Reference

Architecture for event processing (EP). The goal is to define

product- and system-independent abstractions and stakeholder

views on current EP architectures, architectural practices, and

design patterns.

A Reference Architecture predefines customizable abstract frames

of reference for specific stakeholder concerns and application

domains. It aids reuse of successful EP architectures for

frequently occurring EP design problems. The description is base

on a Reference Model that defines the terminology and

components in Event Processing architectures.

The EPTS Reference Architecture (EPTS-RA) Working Group

has developed a general Reference Architecture that supports

multiple stakeholders with their specific views, interest and

concerns. The functional view describes the functions of event

processing (EP) / complex event processing (CEP) operations. [2]

[6] This includes design and administration as well as runtime

considerations.

The development of the reference architecture is closely aligned

with the description of best practice CEP design patterns as means

to derive and prove these architectural descriptions to be usable

solutions for recurring CEP problems. [7][8] For the purposes of

this tutorial we focus on the functions of the runtime aspect of

EP/CEP, and drill down into some of them as design patterns [9]

for some typical commercial and/or open source EP/CEP tools.

This Tutorial extends the work taught in last year’s Event Patterns

tutorial (Architectural and Functional Design Patterns for Event

Processing at DEBS 2011 [9]). The tutorial is based on the EPTS

Reference Architecture (version 1) with additional design patterns

for Event Processing from a top-down (Reference Architecture)

and bottom-up (sample code from popular event processing tools)

perspective, based on the 4 levels of Event Processing Functions

are classified loosely as Event Preparation, Event Analysis,

Complex Event Detection and Event Reaction types.

This tutorial paper is structured as follows. In section 2 we

introduce the underlying methodology and terminology for the

reference architecture description. In section 3 we describe the

EPTS Reference Architecture with two of its views – the logical

view and the functional view. In section 4 we map these functions

to design patterns. We conclude this paper in section 5 with a

summary of the tutorial content and an outlook on future work of

the EPTS-RA working group.

2. TERMINOLOGY AND METHODOLOGY
The EPTS Reference Architecture description follows the

ISO/IEC 42010:2007 standard methodology for architectural

descriptions of software intensive systems. [1] This methodology

defines an architectural description as a collection of

documentations of the architecture addressing different views on

the system for different stakeholders.

The six important terminological elements are:

Architecture

The fundamental organization of a system embodied in its

components, their relationships to each other, and to the

environment, and the principles guiding ist design and evolution.

Architectural Description

A collection of products that document the architecture.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To

copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

DEBS ’12, July 16–20, 2012, Berlin, Germany.

Copyright 2012 ACM 978-1-4503-1315-5...$15.00.

324

System

A collection of components organized to accomplish a specific

function or set of functions.

System Stakeholder

A system stakeholder is an individual, team, or organization (or

classes thereof) with interests in, or concerns relative to, a system.

View

A representation of the whole system from the perspective of a

related set of concerns.

Viewpoint

A specification of the conventions for constructing and using a

view - a pattern or template which to develop individual views by

establishing the purposes and audience for a view and the

techniques for its creation and analysis.

Furthermore, we distinguish between reference architecture and

its underlying reference model:

Reference Architecture

A reference architecture models the abstract architectural

elements in the domain independent of the technologies,

protocols, and products that are used to implement the domain.

Reference Model

A reference model describes the important concepts and

relationships in the domain focusing on what distinguishes the

elements of the domain.

For further information on the underlying conceptual reference

model and reference methodology we refer to [2]. For the

terminology of event processing concepts and components used in

the EPTS RA description we also refer to the EPTS Glossary. [3]

3. REFERENCE ARCHITECTURE

DESCRIPTION
The EPTS RA group have combined "architectural diagrams"

(representing product and system specific architecture

information) from multiple sources - including vendors with

customers using their technologies in everyday use - to derive

some common architectural definitions. [6] Some of these input

architectures are based on implemented system architectures while

others are a generic representation of possible specific

architectures.

For the EPTS Reference Architecture description we have

currently defined two views – a functional view and a logical view

– which address typical stakeholders such as the business analyst,

the IT operations manager, the software architect / designer.

Figure 1: Reference Architecture Viewpoints

In the following two main views on the reference architecture will

be introduced: logical and functional architectures.

3.1 Logical View

The Logical View (of the Event Processing Reference

Architecture) (see figure 2) describes the logical layout of Event

Processing Agents (EPAs) [3] in an Event Processing Network

(EPN) [3].

Figure 2: Logical View on EPTS Reference Architecture

It is important to note that the Logical View is an abstraction and

not defined to some strict definition of EPA in terms of a concrete

software technology which is used: the EPN represented in a

logical view could itself form an "agent" in some higher level

EPN. Conversely, an EPA in a Logical View could be defined as

a subsidiary EPN. The Logical View is therefore an abstract view,

and has the goal of describing the logical layout of EPAs relative

to each other as well as to any specific event-handling network or

distribution mechanism, from some perspective of interest (system

or subsystem).

As a "view" of an EPN, the Logical View can itself be used in

various contexts. Two typical uses or contexts are:

Business Logical View When a business analyst is viewing the

overall event processing application, it is useful for them to

understand the inputs, outputs and roles of the various EPAs.

325

Therefore an "overview" of the application as a "business logical

view" may be useful.

Example: a business logical view may show the event flow from

some sources through some EPAs and on through to management

dashboards. This may be of interest because certain EPAs may be

under the jurisdiction of different departments in the business.

Comparison: the business logical view may be compared to a

high level process diagram or value chain, as a sequence of

activities (in this case EPAs).

Operations Logical View When an IT Operations Manager is

viewing the overall EPN, it is useful for them to understand the

numbers of operating EPAs and their associated performance

characteristics. Therefore an "operational overview" of the system

as an "operations logical view" may be useful.

Example: an operations logical view may show active and

inactive EPAs, and their associated operational Key Performance

Indicators (KPIs), allowing operations staff to monitor the overall

load on EPAs and thence deduce any operator actions (such as

increase available resources for some EPA).

Comparison: the operations logical view is equivalent to systems

monitoring dashboards and executive systems that are in

widespread use in IT

The logical view of an EPN and associated EPAs can also be

considered as a model, or diagram, of an overall Event Driven

Architecture (or EDA).

3.2 Functional View

The Functional View of the EP Reference Architecture focuses on

the functions that can be required within an event processing

system – the functions that can be spread across the EPAs in the

EPN. The following explanation references the Functional View

shown in figure 3.

Figure 3: Functional View on EPTS Reference Architecture

In addition to run time functions (when events are produced,

processed and consumed) there are associated design time

functions (including such things as definitions of events and

patterns of events to be detected), and also administration

functions (including security administration and ensuring qualities

of service for the system). In the figure, the design time and

administration functions are shown to either side of the run time

functions. This functional view is primarily focussed on

automated event processing operations, but it would also be

possible for some or all of the functions to be manual operations.

In the following we will describe the functions. For a compact

overview see the appendix.

3.2.1 Design Time

At design time, the events and event-based rules relevant to the

particular event processing system are identified. Raw events,

simple events, and derived events can be defined, along with the

patterns of events that are significant to the system and rules

which define how the derived (or complex) events arise from the

emitted root events. Modeling is a design-time activity in which

the expected or possible behaviours of events in the system, and

how the events are to be handled, are modelled. The actions to be

taken (event reactions) when events or patterns of events are

observed are also defined. Design time functions also provide a

means to query on the event definitions, patterns, regular

expressions etc., and offer scope for improvements to the way the

system responds to events.

3.2.2 Run Time

At the most basic level -as was shown in the Logical View- at run

time, raw events are produced by an event producer or emitter,

some event processing is carried out resulting in derived events

which are ultimately consumed by an event consumer or sink.

Events can be emitted into the system by event producers which

might be devices such as sensors, monitors or probes, or elements

of a system such as business processes, services, or applications.

Events can be made available for event processing by such means

as publication of events into a communication system, or retrieval

of events from an event detection system. After processing, events

are can be consumed by actuators, by dashboards which display

events as they occur to some user community (ranging from IT

system operators to business analysts), by business processes,

applications or services which are driven as a result of the events,

or other external reaction to the events produced by the event

processing system. For the purposes of the reference architecture,

event consumers are regarded as downstream consumers of events

generated in event processing. but event processing can itself be

regarded as an event consumer, and event consumers can in turn

act as producers of events.

The layout of the run time portion of the figure shows that

between event production and event consumption, a number of

event processing functions might be carried out, depicted as Event

Preparation, Event Analysis, Complex Event Detection and Event

Reaction. However, none or all of these might be involved, some

might be carried out more than once (represented by the "0.."

cardinality on each), and the ordering of the functions is not

mandated (although there is some degree of logical ordering).

Within each of the functions there are multiple subfunctions, of

which representative samples are shown.

 Identification – An important step to perform before the

analysis of events is to detect situations where events

reference the same named entities (e.g., products, locations,

persons, etc.) in different ways. In order for the subsequent

steps of event processing (i.e., filtering, enrichment,

correlation, etc.) to be accurate, we need a mechanism that

will tag all these references with the same identifier. The

above functionality can be achieved through the use of the

326

Entity Name System (ENS) [4] [5], which is a scalable

infrastructure for assigning and managing unique, global

identifiers for named entities.

 Preparation - Typically, the first processing is likely to be

some form of selection from the events that have been

received. The events may be Filtered on information in the

event payload or in metadata, such that some subset is

selected for further processing. Event adaption can convert

events from an external format into some other format

suitable for further processing, or for consumption. Events

could also be Enriched by adding additional information to

them from other data sources or from other events.

 Analysis - some form of computation might be carried out

on events. Examples include: Identification of events, and

potential removal of duplicates; Transformation of events,

which normally acts on the event payload, and might

convert the event to a different format, or normalize the

event; Analytic techniques, which can include predictive

capabilities such as trend computations; Tracking of events

passing through the system, in terms of their location and

time attributes; Scoring and Rating of events by computing

values of events and their associated data, and Classification

by identifying event types and associations.

 Detection - this processing covers aspects of deriving

different ("complex" or derived) events from individual

events, where multiple events might be Aggregated or

Consolidated into a smaller number of events. Functions

include Consolidation, in which additional event data can be

added into complex events, Composition in which new

events are created based on preceding events, and

Aggregation, where information across multiple events is

combined to provide summarized data. A key aspect to

event detection is Pattern Matching, which enables new

events to be derived by detecting a particular pattern of

events, often across time, and event Correlation which

allows related events to be correlated.

 Reaction - Event Reaction is identifying actions to be taken

as a result of events, usually events arising from previous

processing. This can include Assessment of a change in

situation that should be acted upon and Routing of events to

appropriate destination(s). Event reaction can also involve

advanced capabilities such as Prediction of future events or

behaviours, using machine learning or predictive analytics,

application of business rules to make decisions based on the

events, and even the Discovery of new event types, event

patterns and analyses.

Note that the box within which all these event processing

functions appear does not represent any deployment

configuration. For example, filtering of events down to a subset,

or transformation of raw events, could occur at the event producer

rather than being carried out within an event bus. It would also be

possible for the processing, or aspects of it, to be federated across

a number of event processing systems. Coming back round the

figure to event consumption, it is possible for there to be further

event selection on the complex events that have been detected.

Furthermore, any of the functions could be implemented as

internal components or as external services.

Administration

Administrative functions involve monitoring the correct behaviour

of the event processing run time system, ensuring adequate

performance and availability, controlling resource utilization for

performance and other means, making updates to the system, and

managing the security of the system. The security considerations

can range from securing access to design-time definitions and

models, controlling deployment of aspects of the run time

function, and securing the production and consumption of events.

4. MAPPING FUNCTION TO EVENT

PROCESSING PATTERNS
In this section we will map the functions from the Reference

Architecture into event processing (design) pattern. We use the

following template for the description of the Event Processing

Patterns

• Name & Alternative Names

• Classification versus other references

– EPTS RA and other references e.g. “EP in Action” book

[10]

• Description

– Role, and Business Rule type specification / requirement

• Structure

– EPTS Glossary terms

• Implementations

4.1 Identification Pattern

Identification: incoming data, events identified relative to prior

events and event types

• e.g. recognizing an event from data (event entity

recognition, event extraction) and identifying the event

to be of a particular event entity type

• e.g. associating a SMS event with particular mobile

phone account

Alternative Names

Event Lookup, Event Entity Recognition, Event Extraction

Classification

• EPTS Reference Architecture: “Incoming events will need to

be identified relative to prior events and event types, such as

associating events with particular sources or sensors or

recognizing / extracting events from data relative to event

type information (event type systems, event ontologies)"

Description

• Role / Explanation

Associating an event with some existing entity (data or past event,

event type)

• Associated Business Rule Specification

A selection (to be enforced during the processing of events):

327

All <data, event entities> whose <attribute(s)> matches the

<attribute(s)> of <some other event or data or type>

is related by

<relationship> to that

<some other event or

data or type>.

Structure

EPTS Glossary comparison

• Event type (event class, event definition, or event schema)

– A class of event objects.

– Event types should be defined within some type

definition system ... will usually specify certain

predefined data (attributes), examples of which might

be: A unique event identifier used to reference the

event

Implementations

see tutorial slides [11]

4.2 Selection Pattern

Selection: particular events selected for further analysis or pattern

matching

• e.g. Selecting the n’th event as a part of a sampling

function

• e.g. Selecting events related to some existing event to

allow enrichment of that existing event

Alternative Names

Event Query (see also Event Identification, Filtering, Monitoring)

Classification

• EPTS Reference Architecture: “During event preparation,

particular events may be selected for further analysis.

Different parts of event processing may require different

selections of events. See also event filtering and event

selectors in monitoring. "

EPIA: Filter

Description

• Role / Explanation

Selecting or locating an event due to some criteria or rules

• Associated Business Rule Specification

A selection (to be enforced during the processing of events):

All <event entities> whose <attribute1> matches the

<attribute2> of <some other event or data>

is selected for

<processing>.

Structure

EPTS Glossary comparison

• Event type (event class, event definition, or event schema)

– A class of event objects.

– Event types should be defined within some type

definition system ... will usually specify certain

predefined data (attributes), examples of which

might be a unique event identifier used to reference

the event

Implementation

see tutorial slides [11]

4.3 Filter Pattern

Filter: filter out all events that have some property in their

payload / data

• e.g. customer purchases: filter out those with values < $100

Classification

• EPTS Reference Architecture: "During event preparation, a

stream or list of events may be filtered on some payload or

metadata information such that some subset is selected for

further processing."

• EPIA: Filter (EPA or Event Processing Agent) performs

filtering only and has no matching or derivation steps, so it

does not transform the input event.

Description

• Role / Explanation

Comparing some property of the event (an attribute or metadata)

with some other value (from some other event, or data)

• Associated Business Rule Specification

As a constraint: a selection (to be enforced during the processing

of events):

All <event entities>

that have

<filter expression>

must have <some

status>.

Structure

EPTS Glossary comparison

A filter pattern can relate to several terms in the EPTS Glossary

• can be specified in an event pattern (A template containing

event templates, relational operators and variables...)

• .. by an event pattern constraint (A Boolean condition that

must be satisfied by the events observed in a system...)

• .. as part of an event processing rule (A prescribed method

for processing events.)

• .. or as part of event stream processing (Computing on inputs

that are event streams.)

Implementations

see tutorial slides [9]

4.4 Enrichment Pattern

Enrichment: add some information based on prior events

• e.g. customer purchase: add the customer history to the

purchase event

• e.g. enrich the event with semantic background

knowledge

328

Alternative Names

Event Annotation, Semantic Event

Classification

• EPTS Reference Architecture: "During event preparation,

events may be "enriched" through knowledge gained through

previous events or data (including semantic background

knowledge)."

• EPIA: Enrich (EPA): a translate EPA that takes a single

input event, uses it to query data from a global state element,

and creates a derived event which includes the attributes

from the original event, possibly with modified values...

Description

• Role / Explanation

Updating some attribute or metadata of the event with some other

values, possibly computed, from some other event or data

• Associated Business Rule Specification

A selection (to be enforced during the processing of events):

All <event entities>

that are also

<enriched data

expression>

must have <some

status>.

Structure

EPTS Glossary comparison

• Enrichment can be specified in an event pattern (pattern

definition containing additional meta data, semantic

knowledge)

• .. as part of an event processing rule (A method for enriching

events during processing, e.g., by analysing the meta data

and querying external data sources or inferencing semantic

knowledge bases)

• .. or as part of event stream processing (additional

information to event stream data, e.g. by querying external

data sources)

Implementations

see tutorial slides [9]

4.5 Monitoring Pattern

Monitoring: particular event channels are monitored to identify

events of interest

– e.g. Selecting a particular channel and event selector in

some middleware subscription

Alternative Names

Event Subscribe; (see also Event Selection)

Classification

• EPTS Reference Architecture: "During event preparation,

particular types of events may be monitored for selection for

further processing. This may utilise specific mechanisms

external to the event processing such as exploiting event

production features."

• EPIA: Filter

Description

• Role / Explanation

– Directing an external agent to select events

– Applying some monitor function over some event

channel

• Associated Business Rule Specification

A monitor (of an event source):

All <event entities> whose <attribute1> matches the

<attribute2> of <some monitoring criteria>

is selected for

<processing>.

Structure

EPTS Glossary comparison

• Publish-and-subscribe (pub-sub)

– A method of communication in which messages are

delivered according to subscriptions .

– Note 1. Subscriptions define which messages should

flow to which consumers.

– Note 2. Event processing applications may use

publish-and - subscribe communication for delivering

events. However, publish - and - subscribe is not

definitional to event processing – other communication

styles may be used.

• Subscriber

– An agent that submits a subscription for publish- and –

subscribe communication.

Implementations

see tutorial slides [11]

4.6 Consolidation Pattern

Consolidation: combine disparate events together into a main or

primary event

– e.g. multiple events occur to indicate a complex event;

the complex event is given a new consolidate identity as

derived primary event or main event

– e.g. abstraction of events into a situation which is

initiated or terminated by the (derived complex) event

as effect of the detection and consolidation of the

complex event, e.g. the complex event “plane take-off”

has the effect initiating the situation “flying”

Alternative Names

Event Reinforcement from subevents, Event / Situation Reasoning

Classification

• EPTS Reference Architecture: "During complex event

detection, combining events together into a "main" or

"primary" event. Similar to event aggregation", but with a

new explicit derived event from the aggregated/composed

events (the consolidated derived event might not contain all

events from which it was derived); A special interpretation

329

abstraction of the effect of a (derived) event is a situation

which is initiated or terminated by events.

• EPIA: Aggregate (EPA): "a transformation EPA that takes as

input a collection of events and creates a single derived event

by applying a function over the input events."

Description

• Role / Explanation

– Consolidation is used to describe several events

supporting the creation of a single composite event,

generally where component events together provide

evidence.

– For example: a “conflict” event (with situation effect “in

conflict) is considered to take place when both a “conflict

declaration” occurs and an “act of violence” occurs.

• Associated Business Rule Specification

A consolidation (to be enforced during event processing):

The <collection of events> supporting <event> that are <related

by some relationship

constraint>.

Structure

EPTS Glossary comparison

• The term consolidated event is sometimes used for some

forms of composite or derived event.

• Composite event: a derived, complex event

– is created by combining base events using a

specific set of event constructors such as

disjunction, conjunction, sequence, etc.

– always includes the base (member) events from

which it is derived.

• Derived event (/synthesized event): an event that is generated

as a result of applying a method or process to one or more

other events.

Implementation

See tutorial slides [11]

4.7 Composition

Composition: composing new complex events from existing,

possibly source, events

– e.g. deduce a complex event from a history of past

events

Alternative Names

Event Creation from subevents

Classification

• EPTS Reference Architecture: "Composite event …is created

by combining base events using a specific set of event

constructors (disjunction, conjunction, sequence, etc) + …

always includes the base (member) events from which it is

derived.”

• EPIA: Aggregate (EPA): a transformation EPA that takes as

input a collection of events and creates a single derived event

by applying a function over the input events.

Description

• Role / Explanation

– Composition is used to describe combining multiple

events into a composite event, generally where the

component events justify the existence of the complex

event.

– For example: a telephone call event is considered to take

place when a call end event occurs after a call start

event.

• Associated Business Rule Specification

A composition (to be enforced during event processing):

The <collection> of <event entities> that

are <related by

some relationship

constraint>.

Structure

EPTS Glossary comparison

• The term consolidated event is sometimes used for some

forms of composite or derived event.

• Composite event: a derived, complex event

– is created by combining base events using a

specific set of event constructors such as

disjunction, conjunction, sequence, etc.

– always includes the base (member) events from

which it is derived.

• Derived event (/synthesized event): an event that is generated

as a result of applying a method or process to one or more

other events.

Implementations

see tutorial slides [11]

4.8 Aggregation Pattern

Aggregation: add some information based on prior events

– e.g. customer purchase history: track the sum total of

order values for a customer

Alternative Names

Event Summarization, Composite Event, Complex Event

Classification

• EPTS Reference Architecture: "During complex event

detection, combining events to provide new or useful

information, such as trend information and event statistics.

Similar to event consolidation "

• EPIA: Aggregate (EPA): a transformation EPA that takes as

input a collection of events and creates a single derived event

by applying a function over the input events.

Description

• Role / Explanation

Aggregation is used to describe several events as a single

composite event, generally summarizing a metric of a set of

component events.

330

For example: generate a (composite) event that contains the

medium price of a stock over a 10 minute stream of events.

• Associated Business Rule Specification

A summarisation (to be enforced during event processing):

The <aggregation fn> of <event entities> that

are <selection constraint>

must have

<some constraint>.

Structure

EPTS Glossary comparison

• The term aggregate event is sometimes used for some forms

of composite or derived event.

• Composite event: a derived, complex event

– is created by combining base events using a

specific set of event constructors such as

disjunction, conjunction, sequence, etc.

– always includes the base (member) events from

which it is derived.

• Derived event (/synthesized event): an event that is generated

as a result of applying a method or process to one or more

other events.

Implementations

see tutorial slides [9]

4.9 Assessment Pattern

Assessment: evaluate the event for inclusion in some

process, collection, classification or complex event

– e.g. assess a cash withdrawal event for signs of it being

a fraud event

Alternative Names

Event Classification

Classification

• EPTS Reference Architecture: Event assessment is the process

by which an event is assessed for inclusion in some process,

incorporation in some other event, etc.

• EPIA: no direct analogy, possibly maps to translate Translate

(EPA): a stateless Transformation EPA that takes a single

event as its input, and generates a single derived event which

is a function of the input event, using a derivation formula

Description

• Role / Explanation

– Assessment is used to describe the process of evaluating

an event for the purposes of inclusion in some process,

collection or classification.

– For example: assess a parcel scan event to check whether

it is classed as “in order” or “out of order” relative to

some presumed parcel process

• Associated Business Rule Specification

A constraint (to be enforced during event processing):

The <event> that satisfies <assessment constraint>achieves a

<boolean result>

Structure

EPTS Glossary comparison

• Constraint (also event pattern constraint): A Boolean

condition that must be satisfied by the events observed in a

system.

• Event sink (event consumer) is an entity that receives events.

– Examples:

• Software module

• Database

• Dashboard

• Person

Implementations

see tutorial slides [11]

4.10 Routing Pattern

Routing: based on the type pass the event on to the appropriate

service

– e.g. customer purchase event: pass on to a provisioning

service based on the type of product / product

classification

Alternative Names

Event Summarization, Composite event, Complex event

Classification

• EPTS Reference Architecture: "During event reaction, event

routing is the process by which an event is redirected to

some process, computation element, or other event sink. "

• EPIA: no direct analogy, possibly maps to split / compose /

project - Project (EPA): a translate EPA that takes an input

event and creates a single derived event containing a subset

of the attributes of the input event.

Description

• Role / Explanation

Routing is used to describe the process of adding one or more new

destinations to an event.

For example: route an input event to the appropriate specialist

agent for that event type.

• Associated Business Rule Specification

A constraint (to be enforced during event processing):

The <event> that satisfies <selection constraint>

must be assigned to

<destination>.

Structure

EPTS Glossary comparison

• Routing (a process on events) is not defined, but is related to

associating an event to an event sink.

331

• Event sink (event consumer) is an entity that receives events.

Implementations

see tutorial slides [9]

Additional patterns such as patterns for event reactions, e.g., event

prediction, event analytics, learning events, are addressed in the

tutorial [11] .

5. CONCLUSION AND FUTURE WORK
In this paper we have described the methodology and approach

for the EPTS Reference Architecture. We have introduced two

views – the logical and the functional view - and have focused on

the functional Reference Architecture description. We have

described several Event Processing Design Patterns for the

functions of the Reference Architecture in order to support

developers and tools. In future work we will evolve the event

patterns to other types of pattern descriptions, as defined in the

categorization model for CEP pattern. [7]

6. APPENDIX
This appendix gives a compact description of the functions

defined in the functional view on the EPTS Reference

Architecture.

6.1 Design Time Functions

Covers the definition, modeling, improvement /maintenance of the

artifacts used in event processing:

• event definitions, including event metadata and

payloads,

• event and event object organisations and structures,

• event processing transformations / queries / rules /

procedures / flows / states / decisions /

expressions (although these can sometimes be

considered as administrative updates in some situations)

6.2 Administrative concepts of monitoring

and control

This may involve

• starting and stopping the application and event

processing elements, including application monitors

• providing and updating security levels to event inputs

and outputs (also can design-time)

• management of high availability and reliability

resources, such as hot standby processes

• resource utilisation monitoring of the event processing

components

• process updates, such as how-swapping of event

processing definitions to newer versions.

6.3 Runtime Functions

Event Production: the source of events for event processing.

• Event Publication: As a part of event production, events

may be published onto a communication mechanism (eg

event bus) for use by event consumers (including

participants in event processing). This is analogous to a

"push" system for obtaining events.

• Event Retrieval: As a part of event production, events

may be explicitly retrieved from some detection system.

This is analogous to a "pull" system for obtaining

events.

Event Consumption: the process of using events from event

publication and processing. Event processing itself can be an

event consumer, although for the purposes of the reference

architecture, event consumers are meant to indicate downstream

consumers of events generated in event processing.

• Dashboard: a type of event consumer that displays

events as they occur to some user community.

• Applications: a type of event consumer if it consumes

events for its own processes.

• External Reaction: caused through some event

consumption, as the result of some hardware or software

process.

Event Preparation: the process of preparing the event and

associated payload and metadata for further stages of event

processing.

• Entity Identification: Incoming events will need to be

identified relative to prior events and event types, such

as associating events with particular sources or sensors

or recognizing / extracting events from data relative to

event type information (event type systems, event

ontologies).

• Event Selection: particular events may be selected for

further analysis. Different parts of event processing may

require different selections of events. See also event

filtering and event monitoring.

• Event Filtering: a stream or list of events may be

filtered on some payload or metadata information such

that some subset is selected for further processing.

• Event Monitoring: particular types of events may be

monitored for selection for further processing. This may

utilise specific mechanisms external to the event

processing such as exploiting event production features.

• Event Enrichment: events may be "enriched" through

knowledge gained through previous events or data

(including semantic background knowledge).

Event Analysis: the process of analysing suitably prepared events

and their payloads and metadata for useful information.

332

• Event Analytics: the use of statistical methods to derive

additional information about an event or set of events.

• Event Transforms: processes carried out on event

payloads or data, either related to event preparation,

analysis or processing.

• Event Tracking: where events related to some entity

are used to identify state changes in that entity.

• Event Scoring: the process by which events are ranked

using a score, usually as a part of a statistical analysis of

a set of events. See also Event Analytics

• Event Rating: where events are compared to others to

associate some importance or other, possibly relative,

measurement to the event.

• Event Classification: where events are associated with

some known or to be learned classification scheme for

use in downstream processing. See also Event

Identification

Complex Event Detection: the process by which event analysis

results in the creation of new event information, or the update of

existing complex events.

• Event Consolidation: combining disparate events

together into a "main" or "primary" event (which may

not contain its base (member) events from which it was

derived). See also event aggregation.

• Event Composition: composing new, complex events

from existing, possibly source, events.

• Event Aggregation: combining events to provide new

or useful information, such as trend information and

event statistics. Similar to event consolidation, but

always includes its base (member) events.

Event Reaction: the process subsequent to event analysis and

complex event detection to handle the results of analysis and

detection.

• Event Assessment: the process by which an event is

assessed for inclusion in some process, incorporation in

some other event, etc.

• Event Routing: the process by which an event is

redirected to some process, computation element, or

other event sink.

• Event Prediction: where the reaction to some event

processing is that some new event is predicted to occur.

• Event Discovery: where the reaction to some event

processing is the disclosure of a new, typically complex,

event type.

• Note that event prediction is predicting some

future event, usually of a known type, whereas

event discovery is the uncovering of a new

event type. See also event-based learning.

• Event-based Learning: the reaction to some event

processing that uses new event information to add to

some, typically statistical-based, understanding of

events.

Note that event-based learning is a specialisation of

general machine learning and predictive analytics.

7. ABOUT THE EPTS REFERENCE

ARCHITECTURE WORKING GROUP

The Event Processing Technical Society Reference Architecture

Working Group started March, 2009. It currently has 18 members

and is co-chaired by Adrian Paschke (RuleML) and Paul Vincent

(TIBCO). Since July 09 it is merged with the EPTS Metamodel

Working Group under a joint charter. Its scope is:

 Define architecture patterns that are compatible with EPTS

members’ Event Processing solutions and products.

 Define terminology and components regarding Event

Processing in accordance with EPTS

 Identify and utilize best practices and methods for technical

architecture descriptions and interchange

 Liaise with relevant standards bodies for EP metamodels

and reference architectures

8. ACKNOWLEDGMENTS
This work has been conducted within the scope of the Event

Processing Technical Society Reference Architecture working

group.

9. REFERENCES
[1] ISO/IEC 42010:2007 Standard

http://www.iso.org/iso/catalogue_detail.htm?csnumber=459

91, accessed June 2009.

[2] Paschke, A. and Vincent, P.: A reference architecture for

Event Processing. In Proceedings of the Third ACM

International Conference on Distributed Event-Based

Systems (DEBS '09). ACM, Nashville, USA, 2009

[3] David Luckham, Roy Schulte: EPTS Glossary Version 2,

Event Processing Technical Society, 2010

[4] Heiko Stoermer, Themis Palpanas, George Giannakopoulos.

The Entity Name System: Enabling the Web of Entities.

International Workshop on Data Engineering meets the

Semantic Web (DESWeb), in conjunction with the IEEE

International Conference on Data Engineering (ICDE),

Long Beach, CA, USA, March 2010

[5] Zoltan Miklos, Nicolas Bonvin, Paolo Bouquet, Michele

Catasta, Daniele Cordioli, Peter Fankhauser, Julien Gaugaz,

Ekaterini Ioannou, Hristo Koshutanski, Antonio Mana,

Claudia Niederee, Themis Palpanas, Heiko Stoermer. From

Web Data to Entities and Back. International Conference on

Advanced Information Systems Engineering (CAiSE),

Hammamet, Tunisia, June 2010

[6] Paschke, A., Vincent, P., Moxey, C., Alves, A., Palpanas, T.:

Event Processing Architectures, Fourth ACM International

Conference on Distributed Event-Based Systems (DEBS '10).

ACM, Cambridge, UK, 2010.

333

http://www.slideshare.net/isvana/debs2010-tutorial-on-epts-

reference-architecture-v11c, accessed Feb 2011

[7] Paschke, A.: Design Patterns for Complex Event Processing,

2nd International Conference on Distributed Event-Based

Systems (DEBS'08), Rome, Italy, 2008.

[8] Opher E.: Tutorial Event Processing Architecture and

Pattern, 2nd International Conference on Distributed Event-

Based Systems (DEBS'08), Rome, Italy, 2008.

http://www.slideshare.net/opher.etzion/tutorial-in-debs-

2008-presentation, accessed June 2009

[9] Paul Vincent, Alexandre Alves, Catherine Moxey, Adrian

Paschke: Architectural and functional design patterns for

event processing, Fith ACM International Conference on

Distributed Event-Based Systems (DEBS '11). ACM, New

York, USA, 2011. http://www.slideshare.net/isvana/epts-

debs2011-event-processing-reference-architecture-and-

patterns-tutorial-v1-2, accessed April 2012

[10] Opher Etzion, Peter Niblett: Event Processing in Action.

Manning Publications Company 2010: I-XXIV, 1-360

[11] Adrian Paschke, Paul Vincent, Alexandre Alves, Catherine

Moxey: Tutorial on Advanced Design Patterns in Event

Processing, 6th ACM International Conference on

Distributed Event-Based Systems (DEBS '12). ACM, Berlin,

Germany, 2012

334

	1. INTRODUCTION
	2. TERMINOLOGY AND METHODOLOGY
	3. REFERENCE ARCHITECTURE DESCRIPTION
	3.1 Logical View
	3.2 Functional View
	3.2.1 Design Time
	3.2.2 Run Time

	4. MAPPING FUNCTION TO EVENT PROCESSING PATTERNS
	4.1 Identification Pattern
	4.2 Selection Pattern
	4.3 Filter Pattern
	4.4 Enrichment Pattern
	4.5 Monitoring Pattern
	4.6 Consolidation Pattern
	4.7 Composition
	4.8 Aggregation Pattern
	4.9 Assessment Pattern
	4.10 Routing Pattern

	5. CONCLUSION AND FUTURE WORK
	6. APPENDIX
	6.1 Design Time Functions
	6.2 Administrative concepts of monitoring and control
	6.3 Runtime Functions

	7. ABOUT THE EPTS REFERENCE ARCHITECTURE WORKING GROUP
	8. ACKNOWLEDGMENTS
	9. REFERENCES

