GLEAN: A Computer-Based Tool for Rapid GOMS Model
Usability Evaluation of User Interface Designs

David E. Kieras Scott D. Wood
kieras@eecs.umich.edu swood@eecs.umich.edu
(313) 763-6739

Kasem Abotel
kna@engin.umich.edu

Anthony Hor nof
hornof @umich.edu

Artificial Intelligence Laboratory
Electrical Engineering & Computer Science Department
University of Michigan
1101 Beal Avenue, Ann Arbor, Michigan 48109-2110

ABSTRACT

Engineering models of human performance permit some
aspects of usability of interface designs to be predicted from
an analysisof thetask, and thus can replace to some extent
expensive user testing data. The best developed such tools
are GOM S models, which have been shown to be accurate
and effective in predicting usability of the procedural
aspects of interface designs. This paper describes a
computer-based tool, GLEAN, that generates quantitative
predictions from a supplied GOMS model and a set of
benchmark tasks. GLEAN is demonstrated to reproduce the
results of a case study of GOMS model application with
considerable time savings over both manual modeling as
well as empirical testing.

KEYWORDS
User-Interface Software and Technology: Usability,
usability evaluation, user models, GOMS models

INTRODUCTION

Engineering Models for Usable Interface Design

The standard accepted technique for developing a usable
system, empirical user testing, is based on iterative testing
and design revision using actual usersto test the system and
help identify usability problems. It iswidely agreed that this
approach, inherited from Human Factors, does indeed work
when carefully applied [7]. However, Card, Moran, &
Newell [4] have argued, and many HCI researchers have
agreed (e.g. [2]), that empirical user testing is too slow and
expensive for modern software development practice,
especially when difficult-to-get domain experts are the
target user group. One response has been the development
of "discount” or "inspection” methods for assessing the
usability of an interface design quickly and at low cost [17].
However, another response, which has been evolving since

To appear in Proceedings of UIST'95

the seminal Card, Moran, and Newell work, is the concept
of engineering models for usability. Engineering modelsfor
usability are analogous to the models used in other
engineering disciplines in that they produce quantitative
predictions of how well humans will be able to perform
tasks with a proposed design. Such predictionscan be used
as a surrogate for actual empirical user data, making it
possibleto iterate through design revisionsand evaluations
much more rapidly. Furthermore, unlike purely empirical
assessments, an engineering model for an interface design
can capture the essence of the design in an inspectable
representation, making it easier to reuse successful design
insightsin the future.

The overall scheme for using engineering models in the user
interface design processis asfollows: Following an initial
task analysis and proposed first interface design, the
interface designer would then use an engineering model to
find the applicable usability problems in the interface.
However, because there are other aspects of usability that
are poorly understood, some form of user testingis still
required to ensurea quality result. Only after dealing with
design problems revealed by the engineering model would
the designer then go on to user testing. If the user testing
reveals a serious problem, the design might have to be
fundamentally revised, but again the engineering models
will help refine the redesign quickly. Thus the slow and
expensive process of user testing is reserved for those
aspects of usability that can only be addressed at this time
by empirical trials. If engineering models can be fully
developed into computer-based tools, then the designer's
creativity and development resources can be more fully
devoted to more challenging design problems, such as
entirely new concepts or approaches to the problem at hand.

The GOMS Model

The major extant form of engineering model for interface
designis the GOMS model, first proposed by Card, Moran,
and Newell. John & Kieras [8] list many successful
applications of GOMS to practical design problems. A
GOMS model is a descriptionof the knowledge that a user
must have in order to carry out tasks on adevice or system;

it isa representation of the "how to do it" knowledge that is
required by a system in order to get the intended tasks
accomplished. The acronym GOMS stands for Goals,
Operators, Methods, and Selection Rules. Briefly, aGOMS
model consists of descriptions of the Methods needed to
accomplish specified Goals. The Methods are a series of
steps consisting of Operators that the user performs. A
Method may call for sub-Goalsto be accomplished, so the
Methods have a hierarchical structure. If thereismore than
one Method to accomplish a Goal, then Selection Rules
choose the appropriate Method depending on the context.
Describing the Goals, Operators, Methods, and Selection
Rules for a set of tasksin aformal way constitutes doing a
GOMS analysis, or constructing a GOM S model.

Research summarized by John& Kieras[8] hasresultedin a
family of GOMS models and techniquesfor predicting key
aspects of usability of an interface. In particular, execution
time can be predicted by simulating the execution of the
methodsrequired to performthe task. Thetimetolearn how
to operate the interface can be predicted from the length of
the methods and transfer of training from the number of
methods or method stepspreviously learned. Oneimportant
feature of these GOMS modelsis that the "how to do it"
knowledge is described in a form that can actually be
executed — the analyst, or an appropriately programmed
computer, can go through the GOM S description, executing
the described actions, and actualy carry out the task.

The type of GOMS model used in the work reported hereis
known as theNGOM SL methodology [8, 9, 10] and is based
on the cognitive modeling of human-computer interaction
by Kierasand Polson[1, 13]. NGOMSL is an acronym for
Natural GOMS Language, which is a structured natural
language used to represent the user's methods and selection
rules. This paper introduces GOMSL, (GOMS L anguage),
which is a formalized, machine-executable form of
NGOMSL. The NGOMSL type of GOMS model has an
explicit representation of the user's methods, which are
assumed to be strictly sequential and hierarchical in form,
and is useful for many desktop computing applications (see
[8] for more discussion).

Figure 1 providesa small example in GOMSL of a set of
methods for doing file moving and deleting on the
Macintosh. Each method accomplishesits goal by either
calling submethods to accomplish subgoals, or executing
primitive ("keystroke-level") actions such as pressing the
mouse button. Other low-level operators, suchas Step 1 in
the drag method represent how the user examinesthe screen
to find an object and then remembers its location as the
destination for a mouse point operation. Note how the
underlying simplicity and consistency of the Macintosh
methods is apparent from this small example — a single
general method is used for two different user goals.

Met hod for goal:

Step 1. Acconplish goal:
(destination).

Step 2. Return with goal

Move (file) to (destination).
Drag (file) to

acconpl i shed.
Met hod for goal:

Step 1. Acconplish goal:
Step 2. Return with goal

Delete (file).
Drag (file) to ('trash').
acconpl i shed.

Met hod for goal: Drag (source) to (destination).

Step 1. Find object whose |abel is source and
store its |l ocation under source position.

Step 2. Decide: If hand is not at nouse then home
to nouse.

Step 3. Point to source position.

Step 4. Hold down npuse button.

Step 5. Find object whose |abel is destination and
store its location under destination position.
Step 6. Point to destination position.

Step 7. Rel ease nouse button.
Step 8. Delete source position,
posi tion.

Step 9. Return with goal

del ete destination

acconpl i shed.

Fig. 1. An example GOMS model: Methods for moving
and deleting files in the Macintosh Finder interface,
written in the GOMSL notation used in GLEAN. The
nove and del et e methods are called with arguments
fil e anddestination which are tags for file or folder
names in working memory, and then they call the dr ag
submethod. The fi nd operator searches the screen for
an object and stores its location in working memory.
The poi nt operator then uses this working memory
information. See text for further explanation.

Strengths and Limitations of GOMS Models

It is important to be clear on what GOMS models can and
cannot do (see [8] for more discussion). First, in order to
apply the GOMS technique, the designer (or interface
analyst, hereafter just referred to as the designer) must
conduct a task analysis to identify what goalsthe user will
be trying to accomplish. Thedesigner can then expressin a
GOM S model how the user can accomplish these goals with
the system being designed. Thus, GOM S modeling does not
replace the most critical process in designing a usable
system, that of understanding the user's situation, working
context, and goals. Approaches to this stage of interface
design have been presented in sources such [7, 15].

Second, GOMS models can predict the procedural aspects
of usability; these concern the amount, consistency, and
efficiency of the proceduresthat users must follow. Since
the usability of many systems depends heavily on the
simplicity and efficiency of the procedures, the narrowly
focused GOMS model has considerable value in guiding
interface design. The reason why GOMS models can
predict these aspects of usability is that the methods for
accomplishing user goals tend to be tightly constrained by
the design of the interface, making it possible to construct a
GOMS model given just the interface design, prior to any
prototyping or user testing.

Third, there are other important aspects of usability that are
not related to the proceduresentailed by the interfacedesign.
These concern both lowest-level perceptual issues like the

legibility of typefaces on CRTSs, and also very high-level
issues such as the user's conceptual knowledge of the
system, e.g., whether the user has an appropriate "mental
model" [11], or the extent to which the system fits
appropriately into an organization [see 8]. Thelowest-level
issues are dealt with well by standard human factors
methodol ogy, while understanding the higher-level concerns
is currently amatter of practitioner wisdom and the higher-
level task analysis techniques [15]. Considerably more
research is needed on the higher-level aspects of usahility,
and tools for dealing with the corresponding design issues
are far off. For these reasons, great attention must still be
given to the task analysis, and some user testingwill still be
required to ensure a high-quality user interface.

Fourth, the development of the GOM Smaodeling techniques
has involved validating the analysis against empirical data,
as is also done in this paper. However, once the technique
has been validated and the relevant parametersestimated, no
empirical data collection or validation should be needed to
apply aGOMS analysis during practical system design.

Fifth, there has been a widespread belief that constructing
and using GOMS models is too time-consuming to be
practical (e.g., [16]). However, the many cases surveyed by
John & Kieras [8] make clear that members of the GOMS
family have been applied in many practical situations and
were often very time- and cost-effective. A substantial
problem is that the calculations required to derive the
predictions are tedious and mechanical. Eliminating this
problem is the target of the work reported here.

Goals of this Work

Our goal is to develop afamily of computer-based tools that
will allow interface designers or analysts to easily develop
and rapidly apply GOMS model techniques and extensions
to them. The work reported hereis part of the MUSETTE
project (Model-based USability Evaluation Tool and
Technique Ensemble). The first MUSETTE tool is called
GLEAN, for GOMS Language Evaluation and ANalysis.
The GLEAN user (the interface designer), will develop a
GOMS model for an existing or proposed interface.
GLEAN will then calculate estimated procedure learning
time and execution time for a set of benchmark tasks, and
will supply additional information to help identify problems
in the interface design.

As atest of the accuracy and functionality of GLEAN, we
applied it to a user interface analysis and design case
reported by Gong [5], who used GOMS analysisto identify
usability problemsin a software product, and to evaluate the
improvement in the interface produced by correcting these
problems. Gong then also conducted a formal empirical
usability study to collect measures of actual usability. We
attempted to reproduce Gong's models and predicted
usability results with GLEAN.

In the remainder of this paper, we first describe the design
goals for GLEAN and the current form of GLEAN. Then
we describethe application of GLEAN to Gong's study and
the accuracy of the usability predictions.

DESCRIPTION OF GLEAN

Design Goals

A first and fundamental design goal is that GLEAN must
automate the tedious calculations required to generate
usability predictions from a GOMS model. A prototype
version of GLEAN, developed by Scott Wood [18],
demonstrated that thiswas feasible. Part of thisgoal is that
the designer should obtainthe results of the GOMS analysis
inauseful and intelligible form.

A second design goal isthat it must be easy, fast, and simple
for the designer to supply the inputs to GLEAN with
relatively little training. Note that task analysisis required
to determine what goal s the user istrying to accomplish, and
at least the top-level methods that map the user goalsto the
facilities available in the interface. So using GOMS
methodology will always require a designer who is trained
to perform appropriate task analysis. Also, it is reasonable
that the designer have as much training as currently seemsto
be necessary to get startedin GOMS analysis(e.g. a one-day
short course; see [8]), but there should be very little learning
required to use the GOM S tool itself.

A third design goal is that the GOMS model notation in
GLEAN should be readable and comprehensible with little
or no training. Thatis, a designer using GLEAN should be
able to show an actual model to someone unfamiliar with
GOMS, and this other person must be ableto grasp the gist
of the model with only a small amount of explanation. If
so, adesigner will be ableto explain, display, and justify the
results of the analysis to other parties (e.g. project
management) without a serious language barrier. Hencewe
have tried to preserve the English-likeflavor of NGOMSL
in the formalized GOMSL notation. The gamble isthat this
English-like GOMSL might be harder to write than amore
compact notation, but almost anybody should be ableto read
it with only a little explanation. The example shown in
Figure 1illustrates this goal.

A final design goal was to simplify the development and
standardization of GOMS modelsby supporting the reuse of
GOMS methods. In many cases, the modeled interface is
being developed for a standard interface paradigm or
platform, such as the Macintosh or Windows. Many of the
interface methodsare in fact supposed to be standardfor the
platform and these standard methods should be availablein
alibrary.

Structure of GLEAN

Figure 2 shows the structure of GLEAN. In essence,
GLEAN isafacility for simulating the interaction between a
simulated user who interacts with a simulated device (the

Benchmark Specifications

Task Instance
Descriptions

Benchmark Task 1
Benchmark Task 2
Benchmark Task 3

User State

Working Memory

User Simulation

GOMS
Model

Application-Specific
Methods

Interface Paradigm
Method Library

Device
Behavior
Description

Effector States

————7 Static Usability Metrics
Learning Time, Consistency

—— Dynamic Usability Metrics
Execution time, Workload profile

GOMSL
Evaluator-
Interpreter

Device State

Visible (screen)

Device
Behavior
Interpreter

Device Simulation

Fig. 2. Structure of GLEAN. The designer supplies benchmark tasks, a GOMS model, and a description of interface
behavior. GLEAN simulates the user-device interaction and generates usability metrics.

interface) to executea set of specified benchmark tasks. To
set up the simulation, the designer supplies three
representations contained in simple text files and expressed
in a defined notation. The Task Instance Descriptions
specify the benchmark tasks. The user's procedural
knowledgeis represented with the GOMS model expressed
in the GOMSL notation. The behavior of the simulated
interface is specified by the Device Behavior Description,
which specifies the objectsin the interface (e.g. icons on the
screen) interms of abstract properties, such as their location
and appearance, and their behaviors in response to user
input.

The GOMSL Evaluator/Interpreter generatesstatic measures
of usability from the GOMS model, such as the predicted
procedure learning time. It also generates dynamic
measures by executing the methods to accomplish each of
the specified benchmark tasks. During this execution, the
GOMS methods modify the user state, such as the contents
of working memory, and execute operators that represent
interactions with the device, such as locating an icon on the
screen or pointing with the mouse. The Device Behavior
Interpreter supplies information about the state of the
device, such as the current location of a specified icon, or
updates the state of the device, such as changing the cursor
location in response to mouse movement operators.

The main purpose of the simulated device is to
automatically generate the feedback required by the GOMS
model; for example, if the GOMS model needsto drag an
icon from one place to another, the device simulation

supplies the current location of the object and the mouse
cursor, and the new locations, along with the information
that the destination icon has become reverse-video. Such a
facility makesit much easier to debug and run the GOMS
models. However, to permit writing and partially testing a
GOMS model quickly, GLEAN permitsthe designer to run
a GOM S model without a specified simulated device.

Thus, to predict the usability of a proposed design with
GLEAN, the designer performs the following steps: (1)
chooses and represents the benchmark tasks; (2) writes the
GOMS model entailed by the user interface design; (3)
describes the behavior of the interface at the abstract level
required to provide any necessary feedback for the methods;
(4) debugs the model by running it with GLEAN and
correctingany errors; (5) obtains the predictionsof usability
by running GLEAN on the final model; (6) examines the
usability predictions, the execution time profile, and the
structure of the GOMS methods to identify problems in the
interface design and suggest solutions; and (7) modifiesthe
GOMS model and device description to reflect the changes
in the interface design, conducts anew evaluation, and uses
the results to drive further design.

GOMS Model Representation

The GOMS model is expressed in the GOMSL notation and
consistsof aset of application-specific methods, alibrary of
general methods for the interface paradigm (platform), and a
list of of additional required user knowledge in the form of
associationsin long-term memory (LTM), such as under
which menu a particular command may be found. Due to

limitations of space, a detailed presentation of the syntax
and semantics of GOMSL is not possible, but examination
of the examples should clarify most of the properties of
GOMSL.

The representation of the user's working memory (WM)
requires discussion. A key requirement for an executable
GOMS model is the ability to explicitly represent how the
user isassumed to store and retrieveitemsin WM. Our goal
in designing this aspect of GOMSL was to enable methods
to be written in a simple stylein which these WM operations
would not be obtrusive or clumsy. Thus, the user's working
memory (WM) is assumed to be a simple list of properties
(tags) and associated values. A st or e operator can store a
value in working memory under a specified tag, and any
operator canretrievea WM item by referring to the tag as an
argument. When the information is no longer needed, a
del et e operator will delete the tag and value. For
example, in the drag method shown in Figure 1, the
location of an object on the screen is stored under a tag
which is then used as an argument for a poi nt operator,
and then finally discarded.

Information is passed from a method to a submethod
through WM; as shown in the Figure 1 example, a
parenthesized tag, or "pseudo-argument,"” in a goal
description specifies which value in the current WM
contents is to be copied under a new tag for a submethod.
This approach allows submethods to be encapsulated to
some extent, analogously to conventional programming
languages, and thus enabling the use of method libraries.
However, there are several difficult issues about the
psychological and programming implications of this
representation that we have not fully resolved; WM tags are
used similarly to variables in ordinary programming
languages, but are fundamentally different. Since GOMSL
is intended to represent human procedural knowledge and
human limitations and abilities; it can not be a full-fledged
programming language that supports facilities such as
locally scoped variables and recursion. On the other hand,
the way GLEAN represents WM may be puzzling to the
intended audience; we will haveto gain further experience
and feedback.

Benchmark Task Description

The Task Instance Description describes a set of specific
task instances to be used to predict executiontimes. These
descriptions are supposed to be as independent of the
interface design as possible, containing only declarative
information about the parameters and requirements of the
task. Anexampletask representation from the Gong study
described below is shown in Figure 3 and illustrates some
important features. A task description is a set of objects,
each of which can have property-value pairs that specify
task parametersor subtasks. Our goal isto allow arbitrary
mixtures of task information whose organization is

Top | evel goal is Use the 3DSSPP.

Task: Use the 3DSSPP.

Task sequence is Specify anthroponmetry, Specify
the action at the hands, Specify the force at the
hands, Predict by hand | ocations.

Task: Specify anthroponetry.
Gender is Male.
Hei ght &\éi ght is 50th %l e.
Task: Specify the action at the hands.
Action is Lift Up.
Task: Specify the force at the hands.
Force sequence is Right Magnitude, Left Magnitude.
Nunber val ues are 13, 16.

Fig. 3. An example task instance description.

hierarchical, sequential, or unordered. In many task
domains, an instance of a task contains task parameters or
subtasks that are unordered and always available; that is,
they have meaning independent of other parts of the task,
the order in which they appear in the description, or the
order of use during task performance. However, task
instances also can contain ordered subtasks or parameters,
which may have to be performed or used either in some
arbitrary order or an order determined by the structure of the
task or the task methods. Our task instance description
notation allows us to define such sequences and associate
them with different portions of the task.

The Device Behavior Description and Interpreter

The Device Behavior Interpreter appliesthe device behavior
description to simulate at an abstract level of detail the
behavior of the device during task execution. This
description is an abstract representation of the device states
and transitions, and what feedback is suppliedto the GOMS
method from the device; no actual implementation of device
functionality is required. For example, a GOMSL fi nd
operator being executed will result in a query about the
current location of an icon on the device's screen; the device
simulator will supply the location to the user simulation,
where it will be placed in the working memory partition of
the user state. Then a GOMSL poi nt operator could be
executed to move the cursor to that location. The device
simulator would receive the point command, and update the
current location of the cursor in the device state. If theicon
is subsequently dragged, then its location would also be
updated.

This approach of simulating the abstract behavior of the
device was followed in the original Kieras and Polson
modeling work with a specialized transition-network
representation of the device behavior [1, 12, 13]. Our
current description notationis intended to be much easier to
use, being similar in syntax to GOMSL. The Device
Behavior Description includes the objects in the interface
their properties, and their behavior in response to user input.
For example, for the Macintosh, the device description
would contain an object for the trash can icon, its location,
and appearance, and how the appearance changes when the
user acts on the trash can; for example, it reverse-videos

when another object is dragged onto it. In this notation, the
behavior is described by a procedure for each user operator
that describes how the device state should change. Using
this representation, we have developed a simulation of many
Macintosh interface behaviors. The adequacy of this
facility, and its possible future development, are discussed
more in the conclusion.

GOMSL Evaluator/Interpreter

When GLEAN first loads a model, the GOMSL
Evaluator/Interpreter calculates estimated learning times.
When the model is run, the state of the simulated user is
updated during execution; for example, the contents of
working memory change and the hands move from place to
place. The user state can be interrogated by the methods, for
example, to determine whether the hand needs to be moved
from the keyboard to the mouse. At the designer's option, a
full trace of each method step can be displayed, along with
the current contents of the simulated user's working memory
and the current state of the device simulation. The fina
output is a detailed profile showing the frequency, average
time, and total execution time of each operator and each
method. This profiling facility helps the designer to
determine the source of any differencesin task execution
time when comparing interface designs.

GLEAN calculates execution time predictions by following
the recommendationsin Kieras [9, 10] and Gong [5, 6]. For
example, each GOMSL step requires0.1 s, each keystroke,
0.28 s. Gong [5] found that the 1.1 s mouse pointing time
recommended by Card, Moran, & Newell [4], which was
based ontext editing activity, isactually quiteinaccurate for
GUI interfaces, because mouse movements are often made
to large or close targets, such as activating windows,
clicking on buttons, and so forth. GLEAN maintains the
current position of the mouse cursor, and so can use Fitts
Law [4] to calculate the time required to move the cursor to
atarget object whose size is specified.

GLEAN calculates predicted procedure learning time
following the formulasrecommended by Kieras[9, 10] and
Gong [5, 6]. GLEAN tallies the total number of method
steps to be learned, taking account of which methods the
designer has designated as already known to the user. For
example, atypical Macintosh user should already know the
basic Macintosh methods such as dragging and selecting, so
the learning time for a new Macintosh application should
not include the time for these methods. Thus the designer
can indicate that single methods, or al of the methodsin a
file (e.g. the Macintosh basic methods library), are already
learned. In addition, GLEAN calculates arefined transfer of
training predictor [1,9] involving identifying identical steps
in methods with similar goals. Finaly, the time to
memorize LTM associationsis included in the learningtime
as well, based on the number of chunks specified by the
designer.

However, at the time of this writing, the learning time
predictions are problematic and require recalibration. Since
the time to learn the procedures depends on the number of
steps in the methods, the learning time predictions are
sensitive to the "programming style" used in writing the
methods. The style rulesand model structure suggestionsin
the NGOMSL methodology [9, 10] are rather loose and
informal comparedto GOMSL. NGOMSL was intended to
be suitable for easy construction and manual application,
while GOMSL is machine-executable and much more
tightly specified, especially with respect to WM usage and
task instance definitions. Consequently, we will have to
develop some new and more rigorous style rules for certain
aspects of GOMS model structure and representation, and
recalibrate the learning time prediction formulas
accordingly. Thiswork isin progress.

In the meantime, note that the number of method steps
determines theamount of "cognitive overhead," but does not
affect which or how many keystroke-level operators are
executed. Since the cognitive overhead contributesonly a
little to the predicted execution time, GLEAN's execution
time predictions are relatively unaffected by programming
style differences.

A final feature of interest is that the designer can define
special operatorsto represent special-case types of user
activity, and can override the default time val ues associated
with operators. Thus, following Gong's recommendations,
in the results reported below, the experienced users are
assumed to overlap many mental operations (e.g. | ocat e,
veri fy) with the accompanying physical actions, and so
these operators were set to zero time.

Technical Notes

GLEAN is currently implemented in Common Lisp/CLOS
and normally runs under Macintosh Common Lisp with a
rudimentary menu interface. Our current effort isto keep
the tool as platform-independent as possible, so the
Macintosh interface is purely a convenience. Future
versions are expected in be in C++ and use the Amulet
interface toolkit.

An important design featureis that all of the notations used
in GLEAN for the GOMS model, device description, and
task instance description, are parsed by a translator that
converts the representationsinto a set of internal objects
used by evaluation and simulation functions in GLEAN.
Thus details of the notation syntax can be modified
independently of the evaluation and simulator facilities and
it is possible to support multiple notations if desired. A
second noteworthy design featureis that the task instances,
contents of LTM, and the device state, are representedin a
uniform object-property-value structure, which simplifies
the definition of GOMSL operators and the notations.

DEMONSTRATION OF GLEAN: REPRODUCING THE
GONG RESULTS

As a test of the accuracy and usability of GLEAN, we
applied it to a user interface analysis and design case study
conducted by Richard Gong [5, 6], who used GOMS
analysisto identify usability problemsin a software product,
and to evaluate the improvement in the interface produced
by correcting these problems. Gong then also conducted a
formal empirical usability study to collect measures of
actual usability which he used to verify and correct the
GOM Sprediction methodology. We attempted to reproduce
Gong's models and predicted usability results with GLEAN.

Summary of Gong's Study

Gong applied the GOM S model methodology described in
[9] to the design of a full-sized Macintosh computer
software application. This application isa CAD system for
the ergonomic design of factory workstations; it alows an
ergonomics analyst to determine whether a particular job
(e.g. installing automobile batteries on an assembly line)
will pose a risk of injury to the worker. The original
interface was constructed according to standard rulesfor the
platform. The main display is illustrated in Figure 4.
Conventional usability evaluation of this interface was
difficult because the user base consists of a small expert
population not readily availablefor full-scale usability tests,
and an informal user survey produced only information
about missing functionality or violations of expectations,
rather than difficultiesin learning or use.

Working independently, Gong constructed a GOMS model
in NGOMSL of this original interface, and following the
procedures in [9], evaluated it both qualitatively and
quantitatively. Theresults of the GOMS evaluationwas far
more detailed and specific than the user survey results.
Gong discovered a variety of problems in the interface
procedures that were predicted to produce longer learning
time and slower execution time than necessary. He
redesigned the interface in response to these problems; the
main display of the revised version is shown in Figure 5.
Note that the revised display appears to be considerably

" & fie Edit Yask Seitings Dptions Raalysis

Inverse Kinematics Method

3DSSPP™ © U. of Mich.
Select a joint to manipulate:

Left Right

Hand
Elbow

more cluttered than the original, which violates one of the
most widely-followed traditional usability guidelines.

Despite the more cluttered display, Gong found that the
guantitative predictions from the GOMS analysis indicated
that therevised interface would be 46% faster to learn and
40% faster to use. In aformal empirical comparison of the
two versions, these predicted improvements were accurate
within 10%, which is clearly accurate enough for
engineering design purposes.

For validation purposes, Gong predicted and collected the
task times for the two interfacesfor a series of seven tasks,
each described on a sheet of paper showing the
biomechanical datainput. The user hadto obtainthe desired
result from the system. Gong actually worked in terms of
executiontimes for a very stable subset of the completetask,
which he termed "form fill-in,” in which the user sets
buttons and dialog fields to the proper values for the task.
While this is a relatively simple type of interface activity,
nonethelessit is heavily involved in many current interfaces.

GLEAN Models for Gong's Interfaces

In our replication of Gong's analysis, we recoded his
informal NGOMSL into GLEAN's GOMSL for the two
interfaces. Our models included just the methods required
for Gong's "form fill-in" part of thetask. We constructed a
set of methods for the application- and interface-specific
portions of each of the two interfaces, and a second set of
methods for the generic interface procedures for the
platform. Following Gong, these generic methods were
constructed in two forms: A lower-limit form assumed that
the user used accelerator keys whenever possible, while an
upper-limit form represented the user always pointing and
clicking with the mouse. Actual users would be expected to
use some mixture of the two forms. In addition to the
methods, we represented each of Gong's seven benchmark
tasks using our task instance description notation. The
models were tested to ensure that they generated the correct
sequence of user actions for each benchmark task.

" & File Edit Task Settings

| {[Right Hand Selected

L]

Height & Weight
(O 5th %ile
) 50th %ile
@ 95th %ile
O Specific

Height (Inches)
Weight (pounds)

Gender:

® Male
O Female

3DSSPP™
@ The University of Michigan

Ankle

Hips
Torso (Flexion)

Torso (Twisting) == Forces at Hands ==

Magnitude (Pounds):

Torso (Side Bend|

Left Right

GO

Fig. 4. The main display from Gong's original interface.

Hand Location Analyst: DEMO
Task Name: New Task

Action: Lift Up

Hand Location (Inches):

5

Left Right
Horizontal
Lo][]

(O Supine (Palms Up)
@ Semi-Prone
O Prone (Palms Down)

Update || |

N Gender: Male
Analysis

Height: 74 inches
Weight: 217 pounds

Updat
figuras

Lateral
Forces at Hands

Dertical fon:
Action: Direction (Deg.):
@ Lift Up

Horiz. Uert.
(O Press Down

OPull In might: [0
OPushAway 1oq; [0 |

O Specific

Magnitude
(Pounds):

Right:
Left:

Fig. 5. The main display from Gong's revised interface.

Space limitations prevent illustrating the models in any
detail. In summary, both interface models had the same
task-domain-specifictop level methods for cycling through
the subtasks, and shared the same upper- and lower-limit
libraries of generic methods. To illustrate the difference
between the two interfaces, Figure 6 shows one of the
interface-specific methods for the original interface, which
requires opening a dialog box with a menu access, and
Figure 7 shows the corresponding method in the revised
interface, which requires only activating an on-screen
window. The revised interface involves methods that are
shorter and faster to execute.

Met hod for goal: Specify the force at the hands.

Step 1. Acconplish goal: Make sure the dialog
(' Forces at Hands') is visible.

Step 2. Acconplish goal: Specify the field
sequence ('Force') to contain the val ue sequence
(' Nunber')

Step 3. Acconplish goal:
(' Forces at Hands').

Step 4. Return with goal

Di smi ss the dial og
acconpl i shed.

LTMitem Forces at Hands.
Access Menu is Task Settings.
Command key is F.

Chunks is 3.

Fig. 6. Example interface-specific method for the
original interface, and the accompanying definition of
command key and menu LTM associations. The fields
to be filled in are in a dialog box that must be called up
and dismissed. The LTM item is used by the method in
Figure 8 to call up the dialog.

Met hod for goal: Specify the force at the hands.
Step 1. Acconplish goal: Make sure the w ndow
(' Forces at Hands') is the active w ndow.
Step 2. Acconplish goal: Specify the field sequence
("Force') to contain the val ue sequence
(" Nunber').

Step 3. Return with goal acconplished.

Fig. 7. Example interface-specific method for the
revised interface. The fields to be filled in by the method
are in an on-screen window.

Figure 8 gives some examples of the lower-limit generic
library methods for performing lower-level interactions on
the Macintosh platform. Both models used these libraries
for the lowest level methods.

In addition to the method differences, the two models also
differed in the number of Long-Term Memory associations
required to specify which menu to open or command key to
strike to invoke specific commands. These associations
specifies with the methods, as shown in Figure 6, and are
retrieved by the Retri eve from LTM operatorsin the
library methods shown in Figure 8.

The two interfaces did not differ much in how many
methods were required, but did differ in which generic
methods were invoked, how long the interface-specific
methods were, and how many LTM items wererequired to

Met hod for goal:
is visible.
Step

Make sure the dial og (new dial og)

1. Decide: |f appearance of new dialog is
visible then Return with goal acconplished.

Step 2. Retrieve from LTM command key of new di al og
and store under key.

Step 3. Acconplish goal:
(key). _

Step 4. Return with goal

Press the command key
acconpl i shed.

Met hod for goal :
key) .

Step 1. Decide: If hand is not at keyboard then
Home to keyboard.

Step 2. Keystroke ' Command' .

Step 3. Keystroke target key.

Step 4. Return with goal acconplished.

Press the comuand key (target

Fig. 8. Example lower limit methods from the generic
method library. A command key associated in the user's
LTM with the desired dialog is used to open the dialog.

specify the parameters for generic command-issuing
methods. The revised interface had more of the controls
visibleon the screen at al times, sofewer LTM associations
were required, and the methods would be shorter to learn
and faster to execute, since it would not be necessary to
open and dismiss as many dialog boxes. This contrast can
be seen by examining Figures 6 and 7.

Accuracy of Predicted Times

As discussed above, the learning time predictions are in
need of recalibration due to the differencesin notation and
programming style between Gong's informal NGOMSL
models and our formalized GOMSL ones. GLEAN's
predicted learning time for each interface is significantly
larger than what Gong observed; but the predicted
improvement between the original and revised interfacesis
roughly correct, but is too small: Gong observed a 46%
improvement in learning time, while GLEAN predicts a
31% improvement. Work to better characterize the relevant
modeling rules and to recalibrate the learning time
predictionsis underway.

Figure 9 shows the observed task execution times measured
by Gongfor the original and revised interfacesfor each of
the seven tasks and the predicted times produced by
GLEAN. Following Gong's suggestion, the predicted times
were produced by averaging the predicted execution times
produced by the upper- and lower-limit models. The
difference between tasks and the two interfacesis predicted
very accurately by GLEAN; the absolute error of prediction
ranges from 1% to 16%, and averages 8%. Examining the
execution time profile produced by GLEAN for the two
interfaces shows that, as Gong described, the revised
interface user is faster because the original interface user
spends more time calling up and dismissing dialogs using
menu accesses and retrieving items from LTM. Clearly,
theseresultsindicate that GOMS models using GLEAN are
capable of making useful and accurate predictionsof task
execution time.

Original Observed
Original Predicted
Revised Observed

100 S) .
Revised Predicted

75+

504

25]

Task Execution Time (s)

0 1 2 3 4 5 6 7
Task

Fig. 9. Observed and predicted task execution times.
The revised interface is faster than the original
interface; the predicted values (small open shapes with
dashed lines) average within 8% of the observed times
(large solid shapes with solid lines).

Projection of Effort Savings due to GLEAN

Gong [5, 6] kept recordsof the amount of effort required to
construct and apply the GOMS model; here we consider
how the effort might have be decreased if GLEAN had been
available for Gong's use.

Figure 10 shows a summary of the distribution of effort
reported by Gong in developing the interfaces. Interface
development includes all design drafting and interface
coding; user assessment includes both a user survey and
formal usability test; and the manual GOMS activity is the
11 daysthat Gong reported being spent on (1) creating the

100 4

Aggregated Days

Interfacle Dev. User a{ssess. ManuaIIGOMS GLEANIGOMS

Aggregated Activity

Fig. 10. Effort requirements reported by Gong for
performing each type of activity, along with projected
requirement if GLEAN had been used for the GOMS
calculations.

the GOMS model, (2) generating the predictions, and (3)
interpreting the modeling results. Of these 11 days, Gong
(personal communication) spent about 4-5 days generating
the predictionsby first creatingthe action trace for each task
by hand and listing the operator sequences, and then setting
up and checking spreadsheets, and finally obtaining the
predictions. This work GLEAN does within seconds; the
resulting projected time savings are included in the GLEAN
GOMS activity in Figure 10. This projection does not
include any additional timethat might be required to express
the models in the formal GOMSL as opposed to the
relatively free-form NGOMSL used by Gong; notethat the
work to express a GOMS model more formally might well
be repaid by greater ease in ensuring that the model is
correct and complete.

Furthermore, if more than one revision with additional
interface changes had been performed, the savings would
have been substantially more, both with using GLEAN, and
withusing GOMS. The time to modify the GOMS model
would probably be very small for most interfacerevisions,
and the time to recalculate the results with GLEAN would
be almost zero, but manually would still probably take a few
days. In contrast, the user assessment timefor even asmall
interface variation would probably be doubled because an
entirely new complete user test would likely be required,
with little savings from the previous user test.

CONCLUSIONS AND FUTURE WORK

Our reproduction of Gong's study makes a strong case, along
with the others summarized by John & Kieras [8], that
GOMS modeling is an efficient usability evauation
technique, especially when augmented with automated tools
such as GLEAN.

Further work on developing GLEAN needs to focus on
several issues. In theimmediate future, we plan to construct
a variety of models using GLEAN, and then apply GLEAN
to an actual interface being designed by a software
development project. This activity will help check for
adequate generality, scope, and ease of use of GOMSL and
the task instance language, and to clarify the requirements
for the device representation. In addition, we expect to gain
a better understanding of the kinds of output that the tool
should produce, such as more specific execution profiles.
Finally, of course, we need to obtain feedback from
representative software developers and interface designers
on the ease of learning and using both GOMSL and the
GLEAN tool itself.

In the longer term, we plan to incorporate results from
research in progress such as [14] for estimating the time
required for visual search and possibly identifying portions
of the interface where user errors are especialy likely.

The device simulator portion of GLEAN is problematic.
Developing an accurate and complete GOMS model

requires testing the model against the proposed interface;
having the proposed interface represented as a simulated
device greatly assists this testing. However, the more
elaborate and complete the device description and
simulation becomes, the more it becomes a duplication of
the actual interface implementation, and the less the
justification for having a separate facility for device
description and simulationin GLEAN. Coupling GLEAN
to a suitable interface development environment would
avoid this duplication.

An additional relationship between interface
implementations and GLEAN is that there is some
resemblance between the content of a GOMS model and
some representation of an interface itself, as should be
evident from the Figure 1 example above. GOMSL is
defined so that when writtenin a certain style, important
psychological aspectsof the interface are captured, whichis
not a goal of current UIMS efforts for representing
interfaces. But to some extent, each could be constructed
from the other, as was demonstrated by Byrne, Wood,
Sukaviriya, Foley, and Kieras [3] using UIDE and the
prototype GLEAN. If so, constructing an elaborate device
simulation just to assist the GOMS evaluation would be
wasteful; it should be possible to take advantage of the
redundancy between GOMS models and interface
representations to even further reduce the time required to
develop a usableinterface.

ACKNOWLEDGEMENT

This work was supported by the Advanced Research
Projects Agency under order number B328, monitored by
NCCOSC under contract number N66001-94-C-6036.

REFERENCES

1. Bovair, S, Kieras, D. E., & Polson, P. G. (1990). The
acquisition and performance of text editing skill: A
cognitive complexity analysis. Human-Computer
Interaction, 5, 1-48.

2. Butler, K. A., Bennett, J., Polson, P., and Karat, J.
(1989). Report on the workshop on analytical models:
Predicting the complexity of human-computer interaction.
SIGCHI Bulletin, 20(4), pp. 63-79.

3. Byrne, M.D., Wood, S.D, Sukaviriya, P., Foley, J.D, and
Kieras, D.E. (1994). Automating Interface Evaluation. In
Proceedings of CHI, 1994, Boston, MA, USA, April 24-28,
1994). New York: ACM, pp. 232-237.

4. Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

5. Gong, R. (1993). Validating and refining the GOMS
model methodology for software user interface design and
evaluation. PhD dissertation, University of Michigan, 1993.

6. Gong, R., & Kieras, D. (1994). A Validation of the
GOMS Model Methodology in the Development of a
Specialized, Commercial Software Application. In
Proceedings of CHI, 1994, Boston, MA, USA, April 24-28,
1994). New York: ACM, pp. 351-357.

7. Gould, J. D. (1988). How to design usable systems. In
M. Helander (Ed.), Handbook of human-computer
interaction. Amsterdam: North-Holland. 757-789.

8. John, B. E. & Kieras, D. E. (1994) The GOMS family of
analysis techniques: Tools for design and evaluation.
Carnegie Mellon University School of Computer Science
Technical Report No. CMU-CS-94-181. Also appears as
the Human-Computer Interaction Institute Technical Report
No. CMU-HCII-94-106.

9. Kieras, D. E. (1988). Towards a practical GOM S model
methodology for user interface design. In M. Helander
(Ed.), Handbook of Human—Computer Interaction (pp.
135-158). Amsterdam: North—-Holland Elsevier.

10. Kieras, D. (1994). GOMS Modelingof User Interfaces
using NGOMSL. Tutorial Notes, CHI'94 Conference on
Human Factors in Computer Systems, Boston, MA, April
24-28, 1994.

11. Kieras, D. E., & Bovair, S.(1984). Therole of amental
model in learningto operateadevice. Cognitive Science, 8,
255-273.

12. Kieras, D.E., & Polson, P. (1983). A generalized
transition network representation for interactive systems. In
Proceedings of CHI '83 Human Factors in Computing
Systems (Boston, Dec. 13-15, 1983), ACM, New York, 103-
106.

13. Kieras, D. E., & Polson, P. G. (1985). An approach to
the formal analysis of user complexity. International
Journal of Man-Machine Sudies, 22, 365-394.

14. Kieras, D., Wood, S., & Meyer, D. (1995). Predictive
Engineering Models Using the EPIC Architecture for a
High-Performance Task. In Proceedings of CHI'95 Human
Factorsin Computing Systems (Denver, May 7-11, 1995),
New York: ACM.

15. Kirwan, B., & Ainsworth, L. K. (1992). Aguideto
task analysis. London: Taylor and Francis.

16. Lewis, C. & Rieman, J. (1994) Task-centered user
interface design: A practical introduction. Shareware book
available at ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-
Design-Book

17. Nielsen, J. & Mack, R.L. (Eds). Usability inspection
methods. New Y ork: Wiley, 1994.

18. Wood, S. (1993). Issuesin the implementation of a
GOMS-model design tool. Unpublished report, University
of Michigan.

