Cognitive Strategies and Eye Movements for Searching Hierarchical Displays

Anthony J. Hornof Tim Halverson

University of Oregon Sponsored by ONR

Three Main Points

- A hierarchical display motivates specific patterns of perceptual, cognitive, and motor processing.
- Cognitive modeling can be used to reveal and explain the cognitive processing and strategies that people use when searching a visual hierarchy.
- **Eye tracking** can be used to evaluate, validate, and refine cognitive models.

A lack of a visual hierarchy makes it harder to find things

An example of a layout with no visual hierarchy:

CHI 2003 Conference at a Glance

Introduction
Saturday Tutorials
Sunday Tutorials
Monday Tutorials
Introduction
Workshop Descriptions
Doctoral Consortium
Development Consortium
Special Areas and the CHI Fringe

Technical Program Overview
What's New at CHI 2003
Tuesday Sessions
Wednesday Sessions
Thursday Sessions
Networking Reception
The Commons
Child Care and CHIkids
General Information
Travel Information
Conference Hotels/Map
Conference Committee
Conference Sponsors
About ACM SIGCHI

A visual hierarchy aids visual search

CHI 2003 Conference at a Glance

Tutorials

Introduction
Saturday Tutorials
Sunday Tutorials
Monday Tutorials

Workshops

<u>Introduction</u> Workshop Descriptions

Consortia, Special Areas and CHI Fringe

Doctoral Consortium

Development Consortium

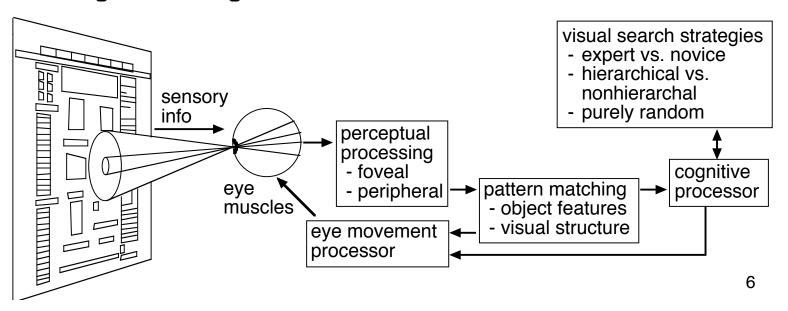
Special Areas and the CHI Fringe

Technical Program

Technical Program Overview
What's New at CHI 2003
Tuesday Sessions
Wednesday Sessions
Thursday Sessions

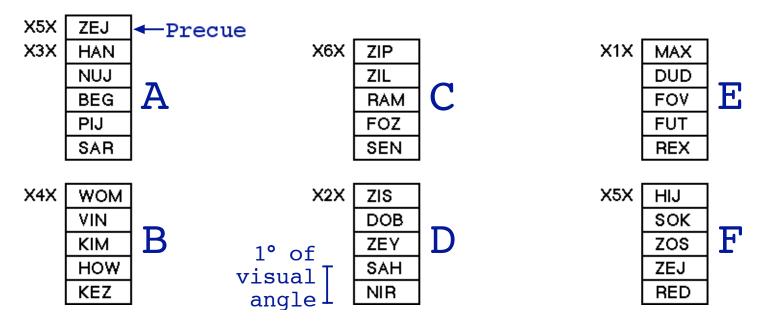
Conference Activities

Networking Reception
The Commons
Child Care and CHIkids


Conference Information

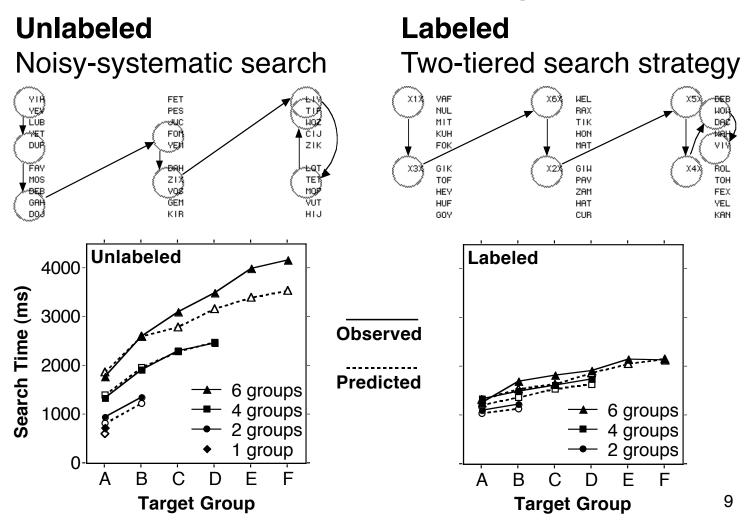
General Information
Travel Information
Conference Hotels/Map
Conference Committee
Conference Sponsors
About ACM SIGCHI

Cognitive modeling in HCI


- Two main goals:
 - 1. Explain user behavior.
 - 2. Predict user behavior.
- Simulates perceptual-motor processes and cognitive strategies.
- A generic cognitive architecture for visual search:

The EPIC Cognitive Architecture

- EPIC: Executive Process-Interactive Control
- Kieras and Meyer (1997)
- Captures human perceptual, cognitive, and motor processing into a simulation framework
- Constrains the models that can be built
- Inputs into the architecture:
 - Task environment
 - Visual-perceptual features
 - Cognitive strategies
- Outputs from the running model:
 - Execution times
 - Trace of the processing
 - Eye movements


The Experimental Task

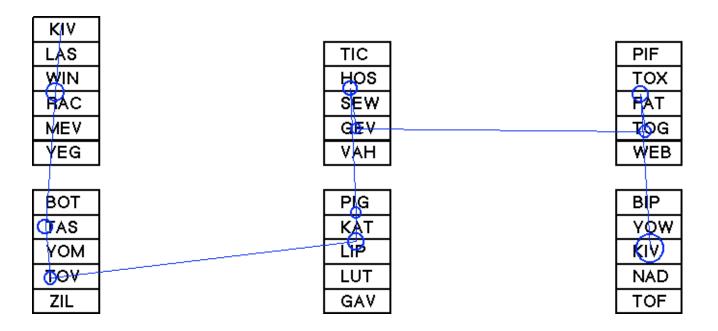
Experimental Design

- 2 x 3 design. Layouts were labeled or unlabeled. Layouts had 2, 4, or 6 groups. Blocked by layout type.
- Procedure: Study precue, click on precue, find target, click on target.
- 16 participants, motivated to search quickly
- Search and selection time recorded separately

Two search strategies

Eye Tracking in HCI

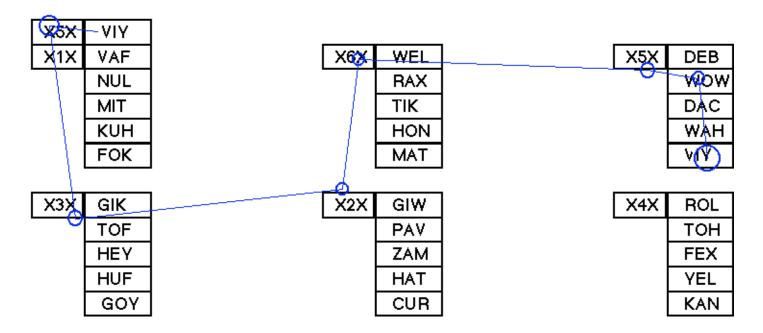
Two general uses:


- Input device
- Retrospective analysis
 (Jacob and Karn, 2003)

The experiment run with eye tracking

- Identical design, but eye movements were recorded
- LC Technologies Eyegaze System (60 Hz, pupilcenter and corneal-reflection)
- Dispersion-based fixation identification (minimum fixation 100 ms, deviation threshold 0.5° visual angle)
- Cleaned up data using required fixation locations (Hornof and Halverson, 2002)

Eye movements for a couple trials

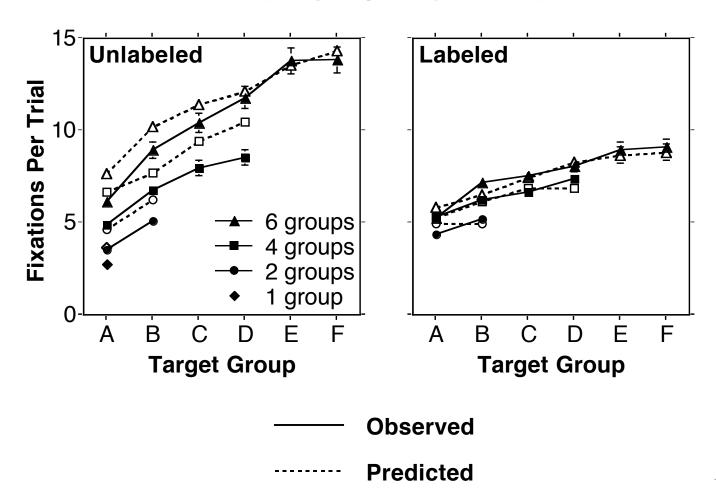

Unlabeled Layout

Visualized with VizFix (Google search on "VizFix")

Eye movements for a couple trials

Labeled Layout

Visualized with VizFix (Google search on "VizFix")


Eye movements

Across All Layouts	Observed	Predicted
Fixations per trial (+)	7.4	7.9
Fixation duration (+)	264 ms	228 ms
Number of scan paths	Many	One
Anticipatory fixations (+)	Yes	Yes
Respond to layout onset (+)	Yes	Yes
Ignore white space (+)	Yes	Yes
Ignore text shape (+)	Yes	Yes
Overshoot the target	Rarely	Yes
Unlabeled Layouts		
Fixations per group	2.1	1.1
Groups revisited per trial	0.69	4.4
Items examined per fixation (+)	2.4	2.6
Labeled Layouts		
Use group labels (+)	Yes	Yes
Groups revisited per trial	0.29	1.2

Eye movements

Across All Layouts	Observed	Predicted
Fixations per trial (+)	7.4	7.9
Fixation duration (+)	264 ms	228 ms
Number of scan paths	Many	One
Anticipatory fixations (+)	Yes	Yes
Respond to layout onset	(+) Yes	Yes
Ignore white space (+)	Yes	Yes
Ignore text shape (+)	Yes	Yes
Overshoot the target	Rarely	Yes

Fixations Per Trial

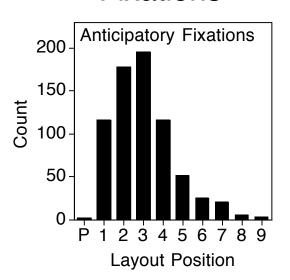
Scan Paths

A C	E	A-	→ C →	– щ	A	C # I	Е	A	≠ C−	►E
♥) F	В		•	V -	♥ D		· ·		F

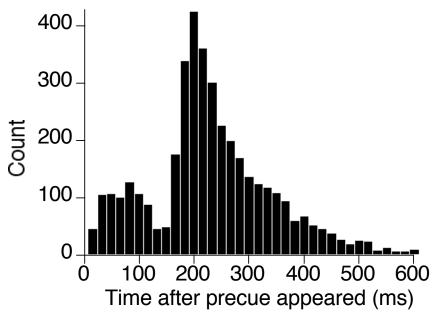
Observed

2% 17	% 5%
	2% 179

Labeled: **19% 12%** 6% 7%


Predicted

Unlabeled: 0% 1% **70% 12%**


Labeled: 0% 0% **75%** 0%

How People Started the Search

Anticipatory Fixations

Second Fixations Respond to layout onset

Eye Movements

Unlabeled Layouts	Observed	Predicted
Fixations per group	2.1	1.1
Groups revisited per trial	0.69	4.4
Items examined per fixation (-	-) 2.4	2.6
Labeled Layouts		
Use group labels (+)	Yes	Yes
Groups revisited per trial	0.29	1.2

What Have We Learned About...

- Hierarchical Displays
- Cognitive Modeling
- Eye Tracking

Hierarchical Displays

Patterns of Behavior	Design Recommendations
Use a visual hierarchy	Support a multitiered search
Examine multiple items with a single fixation	Facilitate simultaneous foveal coverage
Jump over white space	Use white space
Anticipate visual locations	Provide consistent layouts
Prime for onset	Very fast response times

Cognitive Modeling

- Many aspects of the strategies, models, and architecture appear to be correct:
 - More than one item with each fixation
 - Global search strategies
 - Ignore shape
 - Anticipatory fixations
- The data also identify a number of improvements to made:
 - Wider range of scanpaths
 - Stopping on the target

Eye tracking

- Examines specific details of the models:
 - Strategies
 - Perceptual-motor processes
- Better than open-ended questions such as:
 "How do people move their eyes in Task X?"
- Synergy between eye tracking and modeling
- A good way to proceed:
 - Identify theories established with standard measures (speed, accuracy, clickstreams)
 - Evaluate the theory with eye tracking.

Future Work

- Evaluate aspects of the Cognitive Walkthrough for the Web (Blackmon, et al. 2003) using eye tracking.
- "Give meaning" to cognitive modeling of visual search.
- Predictive visual search tool