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Abstract
Time-series data such as eye movements or mouse 
movements contain rich information  about the dependencies 
between successive human actions.  This information can be 
potentially very useful for examining model assumptions and 
constraining parameter search.  This paper explores  the use of 
model tracing, which simulates a task by tracking observable 
human behaviors, to time-series data.  We explore two aspects 
of tracing that are different from conventional  cognitive 
modeling: (a) tracking the observed behaviors  and (b) 
estimating the likelihood of the observed events.  We 
demonstrate how these two features of tracing, along with the 
use of an evolutionary optimization algorithm, led to accurate 
and robust estimates for parameters of visual  acuity functions 
needed by visual search models.

Keywords: cognitive modeling;  model  tracing; visual 
scanpath; visual search; genetic algorithms.

Introduction
Free parameters exist in almost all quantitative 
psychological theories.  The parameters provide flexibility 
for models to capture the variability of the environment and 
the individuals.  However, as many researchers pointed out 
(e.g., Roberts & Pashler,  2000; Howes, Lewis, & Vera, 
2009), excessive free parameters also increase a model’s 
degrees of freedom and reduce its predictive power.

One way to combat the loss of predictive power, 
particularly in the realm of cognitive modeling, is to fit the 
model to data at small timescales such as eye movement 
data or mouse movement data.   Traditional psychometric 
data such as reaction time often do not place enough 
constraints on a model because cognitive models are 
constructed with mechanisms that operate on a much 
smaller timescale.   For example, Hornof and Zhang (2010) 
demonstrated that a model with a plausible but unlikely 
multitasking strategy could accurately fit reaction time data, 
but not the eye movement data.  Because data at small 
timescales are more directly related to some cognitive 
processes such as visual attention, there may be many fewer 
model parameter settings or strategies that can fit the data, 
and so the model that does fit is more likely to be correct.

One particular piece of information, the order of events in 
small timescales,  is often overlooked, yet it may be 
extremely valuable for further constraining the free 
parameters.  Modeling the order of events is also called 
tracing.  Though this approach was initially introduced to 
the field of cognitive modeling by Anderson, Kushmerick 
and Lebiere (1993) in the early ’90s, it has rarely been used 
by cognitive modeling researchers.  This paper revives the 
method and applies it to fit data at small timescales.

Tracing involves predicting the next event given the task 
context that the participant experienced at a given point in 
time.  A cognitive architecture has many context-, time-, or 
location-dependent mechanisms that will produce different 
predictions given different contexts.  For example, in visual 
search,  the location where the model looks next depends on 
the current gaze location (context-dependent), the contents 
of the visual working memory (time-dependent), and what 
objects and features can be perceived by peripheral vision 
(location-dependent).   Correctly predicting a fixation 
location requires a model to adequately account for all three 
dependency factors.  Predicting thousands of fixations, as a 
typical experiment would generate, will then place tight 
constraints on the plausible model parameter ranges.

Though tracing is potentially useful, it requires a different 
approach than conventional cognitive modeling.  This paper 
introduces these approaches and demonstrates how tracing 
may be used to accurately estimate model parameters.  The 
“case study” presented here is a visual search model, for 
which a set of parameters needs to be estimated to correctly 
represent the availability of object features in the peripheral 
vision.  We use tracing and an evolutionary algorithm to 
search for the parameters that best fit the fixation scanpath 
data from a visual search task.  The resulting parameters are 
validated by using them in a conventional cognitive model 
to predict summary eye movement statistics.

Model Tracing
To make the methods concrete and accessible, the following 
discussion about tracing will be grounded in the subjects of 
fixation scanpath tracing and visual search.   However, the 
principle of these methods should easily apply to other 
applications of event sequence tracing.

When a conventional cognitive model is applied to predict 
a scanpath, two problems immediately emerge.  First, the 
error accumulates very fast and can quickly lead to 
completely different scanpaths.  This is because once the 
model’s fixation location diverges from the participant’s,  the 
model will then have a different context in which to make 
decisions about where to look next, and hence is even less 
likely to correctly predict the participant’s next fixation than 
if the model had remained aligned with the participant.  
Second, the scanpath data take on discrete, categorical 
values (e.g., the fixated object sequence may be A-B-C), but 
the conventional goodness-of-fit measures such as R2 only 
apply to continuous values.  This is one problem that 
Anderson et al.’s original tracing method did not address, 
and it will be addressed in this study by introducing a 
suitable goodness-of-fit measure to evaluate how well a 
model fits a scanpath.
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The first problem—that of context—can be addressed by 
continually realigning the model to fixate the same object as 
the participant.   With this technique, although the model still 
makes predictions about where the next fixation might be, it 
may or may not move its gaze to that predicted location.  
Rather, the model is set to match the behavior of the 
participants to make sure that when predicting the next 
fixation, the model always has the same context that the 
participant had.  For example, if the model predicts that the 
next fixation is likely to be on Object B, but the participant 
actually fixated A, then the model’s gaze is moved to A 
rather than to B.

The second problem—finding a suitable goodness-of-fit 
measure for the categorical scanpath data—can be addressed 
by having the tracing model generate likelihood predictions 
about the observed scanpath rather than generating an actual 
fixation sequence.  Visual search, as well as many other 
tasks, is probabilistic in that at any point in time, there may 
be several equally good candidate next steps to take, in 
which case the model should be given the same credit for 
making any of the equally good choices.  For instance, in 
the previous example, if the model predicts that both A and 
B are equally good choices (such as equally similar to the 
target), and the participant happened to choose A, then the 
model should score 50%, because in 50% of the time, the 
model will also choose A.

Visual Acuity Functions
Model tracing is applied in this study to estimate the 
parameters of visual acuity functions. These acuity 
functions describe how the visibility of object features 
gradually diminishes as objects move further from the point 
of gaze.  Correctly characterizing this fundamental visual 
phenomenon is vital for comprehensive unified model of 
visual search, such as Halverson and Hornof (2011).  
Several researchers proposed different forms of visual 
acuity functions (e.g., Findlay & Gilchrist, 2003; Pomplun, 
Reingold, & Shen, 2003; Kieras, 2010; Nyamsuren & 
Taatgen, 2012).   All proposed functions have free 
parameters to account for different feature characteristics, 
such as how color diminishes more gradually than shape.  
And yet it is very difficult to determine these parameters 
from real-world task data.

The particular visual acuity function examined here is 
proposed by Kieras (2010).  This function assumes that for 
an object feature to be perceivable, the object size has to 
exceed a threshold that increases quadratically with 
increased object eccentricity (the angular distance between 
the object and the center of the gaze).   The function is 
described as follows:

where e represents the eccentricity,  s represents object size, 
and X represents a noise that is sampled from a Gaussian 
distribution with a standard deviation of v times s.  The 
parameters a,  b, and c vary for different object features such 
as color, shape, and size to simulate different rates of 
visibility degradation.

Kieras showed that when incorporated into the EPIC 
cognitive architecture, such visual acuity functions can can 
contribute to accurate models of the data from the Williams 
(1966) visual search experiment; however, the good fit is 
somewhat questionable considering that the visual acuity 
functions alone had almost the same number of free 
parameters (10) as the number of data points (16) fitted.  
This problem is addressed here by model-tracing the 
thousands of fixations contained in the scanpath data for a 
re-running of the Williams experiment.   Because, 
statistically speaking, estimating model parameters with 
more data points leads to smaller variance in the estimates 
(Cohen, 2003), fitting the model to a large set of scanpath 
data will result in more robust parameter settings than an 
estimate based on overall task time.

The Williams Visual Search Task (Replicated)
To obtain the complete scanpath data and to conduct a 
deeper analysis than was originally reported, we replicated 
the Williams (1966) experiment with contemporary eye 
tracking technology.  Figure 1 shows a sample search 
display used in the experiment, which occupies a 39º by 30º 
rectangle area on the screen.  The task was to search for a 
target in a grid of 75 objects that have different colors, 
shapes, and sizes.  Each object has a unique two-digit 
number in the center.  Search precues were shown before 
each trial and included the number of the target object and, 
depending on the precue condition,  some combination of the 
target’s color,  size, and shape.  The precue always included 
the target number and optionally included each of three 
features, resulting in eight possible precue conditions, such 
as “17 small blue cross” which was the “All” feature 
condition.

Each object in a search field had a unique combination of 
one of five colors,  one of five shapes, and one of three sizes.  
Colors were blue, green, yellow, red, and purple.  Shapes 
were circles, semi-circles, triangles, squares, and crosses.  
Sizes were small (0.8º), medium (1.6º), and large (2.8º), 
measured by the diameter of the circle for object size 
category; all shapes were normalized to occupy the same 
area as the circles in each size category.

Each participant was presented with ninety-six search 
fields that were grouped into four blocks.  The trials of 
Blocks 1 and 2 and the trials of Blocks 3 and 4 were 
randomly selected from ninety-six preconfigured search 
fields, each with a fixed object arrangement.   Each block 
had the same number of trials for every precue condition.

After finding the target, the participant clicked on it to 
proceed to the next trial.  Monetary rewards were given for 
the correctly completed trials and were adjusted based on 
the search time and task difficulty to motivate good 
performance.

Eye movement data were collected for 22 participants 
using an L.C. Technologies binocular 120 Hz eye tracker.  
A chinrest reduced head movements and improved eye 
tracking accuracy. Fixations were identified using a 
dispersion-based algorithm with a maximum dispersion 
window size of 0.7 and a minimum fixation duration of 60 
ms.  A fixation was assigned to an object if it fell within a 
circular area of interest (AOI) around the object; otherwise, 

WKUHVKROG = DH� + EH + F
3(DYDLODEOH) = 3(V + ; > WKUHVKROG)
; � 1(�, YV)            

(1)
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it is classified as a between-object fixation.  The size of the 
AOI was adjusted for objects of different sizes to properly 
distinguish fixations that were on versus between objects.  
More details about the experiment design and eye 
movement data processing can be found in Hornof and 
Zhang (2013).

The participants’ performance is measure by three 
summary eye movement statistics, presented in Figures 3, 4, 
and 5 (black bars) alongside some model predictions (gray 
bars) that will be discussed later.  Our experiment 
successfully replicated Williams’ observation that color is 
more useful in guiding visual search than size and shape.  
This can be seen in Figure 4 in that the precue conditions 
that specified color had larger proportions of fixations 
landing on objects with the specified feature, which suggests 
that the participants may be able to see color in a wide area 
of their visual periphery and use that information to 
effectively plan their next saccade to objects that are likely 
to be the target.

Estimate Parameters Using Tracing
Our goal is to estimate visual acuity function parameters by 
tracing the fixation data collected in the replicated Williams 
visual search experiment.  To implement tracing, we 
developed a standalone computational model that is 
dedicated to simulate this visual search task only.  We call 
this new model the scanpath tracing model.

The scanpath tracing model adopts theoretical concepts 
the of visual acuity function and visual perceptual store 
(VPS) of the EPIC cognitive architecture, which have 
contributed to explanation of the original Williams results 
and other visual search tasks (Kieras,  2010; Nyamsuren & 
Taatgen,  2012).  As discussed in the introduction,  the visual 
acuity function determines whether an object feature is 
distinguishable based on the object size and its distance 
from the center of gaze.   If the feature is determined to be 
available, it is then deposited in the VPS for a short time 
period (e.g, 300 ms).  The model then uses the features in 
VPS to decide where to look next.   The parameters for the 
two mechanisms include the coefficients of the visual acuity 
function and the feature decay time of VPS.  They are the 

free parameters of the scanpath tracing model, and were 
estimated by fitting the model to the scanpath data.

With the implementation of the two visual mechanisms, 
the scanpath tracing model can simulate the task by cycling 
through three steps:  (1) The model moves the gaze to the 
observed fixation location and sets the simulation time to 
the fixation time. (2) The model deletes from VPS the items 
that should have decayed based on the passing of time, and 
adds the objects and features that the visual acuity functions 
determine are available based on the current gaze position. 
(3) Based on the contents of VPS, the model calculates the 
likelihood that the next fixation would be at the observed 
location as opposed to at other locations.  A higher 
likelihood indicates a better fit between the model and the 
human scanpath data.

In every cycle, the contents of VPS will contain some 
combination of the following:

• Viable-candidates – objects that have a feature in 
common with the target.

• Non-targets – objects that have a feature that is known 
and which makes it not possibly the target (such as a 
red object when looking for a blue target).

• Unknown-objects – objects that are visible but have no 
known color, size, or shape features.

For Step 3, calculating the likelihood of the next fixation 
location, the tracing model can encounter four possible VPS 
states.  Table 1 shows these four states.  These four states 
reflect the possibility that the VPS may or may not contain 
viable-candidates, and may or may not contain non-targets.  
The presence or absence of unknown-objects is not relevant 
for this decision because based on the screen size and acuity 
functions, they would always be present.

Table 1 shows,  for each of the four VPS states,  the 
likelihood that the visual search strategy will move the eyes 
to each of four possible destinations: viable-candidates,  non-
targets, unknown-objects, and the space between objects 
(outside of all of the AOIs).   The table reflects the results of 
setting four numerical parameters:  When neither viable-
candidates nor non-targets are available (State 1), 66% of 
the fixations go to unknown objects, and 34% to the space 
between objects.  If viable-candidates are not available but 
non-targets are available (State 2), 48% of the fixations go 
to non-targets,  and the other half go to the remaining two 
categories based on the same proportions as in State 1.  Any 
time that viable-candidates are available (States 3 and 4), 
95% of the fixations go to the viable-candidates, and the rest 
are distributed based on the same proportions in the 
previous states.

These four parameters were set as follows:  The 66% and 
34% were assigned to unknown-objects and between-
objects because one third of all long saccades (> 8º) that 
were made by participants fell between objects and these are 
the length of saccades the model will be making in State 1.  
The 48% and 95% were chosen by the authors based on 
their intuitions.  The 95% is based on an assumption that 
people would almost always try to use feature information 
when it was available, but that the model needs to also 
account for a small amount of noise and error.  The 48% is 
set to find a balance between (a) not fixating objects that are 
clearly not the target and (b) fixating nearby objects, to 

Figure 1.  A sample search field used in the experiment.
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account for how visual search strategies tends to prefer 
nearby objects over far objects (Halverson & Hornof, 2011).

To calculate the likelihood of each observed fixation 
location, which is used to measure how well the model fits 
the scanpath, the model first determines which cell of Table 
1 should be used based on the VPS state and the destination 
type of the observed location.  Then, if the observed gaze 
location is between-objects, its likelihood is just the 
percentage designated in the table.  If the object location is 
in one of the three other destination categories, its likelihood 
is 1/n of the designated percentage, in which n is the number 
of objects in VPS that are also in that category.

The parameters of the visual acuity function directly 
affect the contents of VPS, and thus the likelihood generated 
for each observed fixation.  Because a higher likelihood 
indicates a better fit to the data, our goal is to find the 
parameter settings that generate the highest likelihood for 
the observed scanpath.

The conventional method for finding good parameter 
settings is by trial-and-error (usually with a grid search), in 
which the analyst iterates through a set of different settings 
and finds one that fits the data well.  However, because in 
this task, the visual acuity functions have 10 parameters 
(three coefficients for each acuity function, plus a noise 
parameter), it would be computationally impractical to 
iterate through the large parameter space with a grid search.  
Thus, we use an efficient evolutionary algorithm, 
specifically differential evolution (Vesterstrom & Thomsen, 
2004), to find suitable parameter settings.

The differential evolution algorithm conducts a parameter 
search for the tracing model in the following four steps: (1) 
The algorithm instantiates a set of scanpath tracing models 
(100 models for our study) with random parameter settings 
(Generation 0).  (2) It runs each instantiated tracing model, 
and each model calculates the likelihood of the scanpath 
data (the average log-likelihood of all fixations).  For our 
study, the scanpath data include 24,821 fixations collected 
from the visual search trials that specified a single target 
feature.  (3) The algorithm creates a new generation of 
parameter settings by moving the parameters that generated 
low likelihoods towards those that generated high 
likelihoods.  The details of how the new parameters are 
created can be found in Vesterstrom and Thomsen (2004).  
(4) The algorithm repeats steps (2) and (3) for many 
generations until the termination condition has been 
reached.  For this study, the search was set to terminate after 
300 generations.  Because in each generation the parameters 
are slightly improved, the parameters found after many 

generations should provide a sufficiently good fit to the 
scanpath data, though they are not guaranteed to be optimal.

To address the possibility that the differential evolution 
algorithm could become trapped in a local maxima, the 
parameter search procedure was repeated 12 times with 
different random number generator seeds.  Each of the 12 
runs produced a set of estimates for the 11 parameters of the 
tracing model (10 for visual acuity functions, and 1 for 
VPS).  In all runs, the estimated parameters allowed the 
tracing model to fit the scanpath data better (average log-
likelihood ranges from -3.61 to -3.614) than the original 
EPIC parameters (average log-likelihood is -3.74), 
suggesting that the parameter search with the differential 
evolution algorithm was successful.  The parameters 
estimated from the 12 runs are very similar to each other 
(the SD ranged from 0.02 to 0.38 for the visual acuity 
function coefficients, and SD was 13 for the VPS feature 
decay time), indicating that the scanpath data provided 
sufficient constraints such that the good parameter settings 
were within a small region.

Results
The parameters of the best fitting model across all 12 runs 
are discussed in this section.  The VPS feature decay time is 
estimated to be 73 ms,  suggesting that the participants rarely 
held the available features in VPS for more than one 
fixation.  The noise parameter v of equation (1) was 
estimated to be 0.05, indicating that the perceptual noise did 
not significantly affect an object’s visibility.

Figure 2 shows the visual acuity functions estimated from 
tracing and from the original EPIC model (which can be 
found in Kieras, 2010).  The curves determine the threshold 
object size for a feature to be available.  That is, an object 
feature is available when it is above (or to the left of) that 
feature’s curve.  Both sets of functions show similar trends 
across the three features: Color is more visible than size,  and 
size is generally more visible than shape.  The main 
difference is that our parameters allow greater availability 
for all features than the original EPIC parameters.  
However, from this graph alone, it is difficult to tell which 
ones are better.  Although our parameters fit the scanpath 
data better,  we need to show that they are not overfitting and 
that they can be used to explain data at large-scales as well.

Validation of The Estimated Parameters
To validate the parameters estimated from tracing, we 

transferred them into Kieras’ EPIC-based visual search 

Visual-Perceptual Store              The Search Strategy Prefers 
           Contains                  Object Types as Follows

State
1 no no 0.0% 0.0% 66.0% 34.0%
2 no yes 0.0% 48.0% 34.3% 17.7%
3 yes no 95.0% 0.0% 3.3% 1.7%
4 yes yes 95.0% 2.4% 1.7% 0.9%

Viable- 
candidates

Non- 
targets

Viable- 
candidates

Non- 
targets

Unknown-
Objects

Between 
Objects

Table 1. The likelihood that the visual search strategy will move the gaze to the four 
possible destinations under each of the four visual-perceptual store states.
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model (with slight modifications discussed below) to see 
whether the EPIC model with the new parameter settings 
can fit the summary statistics of the eye movement data and 
better than the same model with the original parameter 
settings.

Three changes were made to Kieras’ EPIC model: (a) The 
visual feature decay time was changed from 9 seconds to the 
estimated 73 ms.  It is unlikely that the participant can 
actually remember the properties of many objects for as 
long as 9 seconds (Luck & Vogel,  1997).  This was set in the 
original model to simulate how participants seemed able to 
remember objects that were examined recently and to avoid 
repeatedly examine the same objects.  In this new EPIC 
model, repeat fixations are prevented by the next change.  
(b) The model inhibits fixations to the twenty most recently 
visited objects.  Though this mechanism probably exceeds 
human capabilities as well, its effect might be achieved by 
some scanning strategies that remember the regions visited 
rather than individual objects.  (c) When selecting one 
object from multiple objects,  the model randomly selects 
one from the four nearest objects as opposed to from all 
objects.  This change is made to account for the observation 
that people tend to prefer looking at nearby objects over far 
objects (Halverson & Hornof, 2011).

Figures 3, 4, and 5 compare the models’  predictions with 
the observed data on three critical aspects of the visual 
search performance.  The average absolute percentage error 
(AAPE) between the human data and the model predictions 
are listed in the figure captions.

Figure 3 shows the average number of fixations per trial 
across the eight precue conditions.  The fewer the fixations, 
the better the search performance.  Overall, the tracing-
parameter model fits the data better than the original EPIC 
parameter model (as indicated by the AAPEs).  Both models 
captured the main effect, that the conditions that specified 
color required many fewer fixations than other conditions.  
However, both models failed to predict how the number of 
fixations decreased from Shape to Size,  and from Size to 
Size+Shape.  It seems that the tracing parameters 
overestimated shapes’ visibility,  whereas the original 
parameters underestimated Size’s visibility.  Neither model 

predicted the additive effect between Size and Shape, as 
seen in how Size+Shape required fewer fixations than the 
single feature conditions.  Perhaps Size+Shape needs a 
separate visual acuity function to capture the effect.

Figure 4 shows the proportion of fixated objects that had 
at least one of the specified features across conditions.  A 
higher proportion indicates that the participants could more 
easily find an object with the target feature in their visual 
periphery, leading to better search performance.  Again, the 
tracing-parameter model fits the data better than the 
original-parameter model.  Both models predicted smaller 
proportions than the observed in most conditions.  This is 
perhaps because the between-object fixations were removed 
from the human data when calculating the proportions (to be 
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consistent with Williams’  analysis),  which inflated the 
proportion for the human data.  

Figure 5 shows the average saccade amplitude across 
precue conditions, which also serves to illustrate the 
usefulness of the visual guidance provided by the different 
features because some features, such as color, may be more 
visible and useful than other features to guide vision at 
longer distances.  Both models fit the data very well and 
predicted the average saccade amplitude for all conditions 
except the Size+Shape condition.

Overall, when used in the EPIC visual search model, the 
parameters estimated by the tracing model generated good 
fits, and in most cases,  outperformed the original EPIC 
parameters that were specifically adjusted to fit the 
summary eye movement statistics.

Conclusion
This paper explores a novel approach to modeling.  Rather 
than fitting summary statistics of empirical data, we develop 
tracing models that predict an event series, in this case 
fixation scanpaths, to robustly estimate model visual acuity 
function parameters, which are needed to accurately model 
visual search performance.  The parameters were found 
using a genetic algorithm to maximize the likelihood of the 
observed scanpath data given the tracing model.  The 
parameters are further validated in an EPIC visual search 
model.  The results showed that the parameters estimated 
through tracing are accurate.

In developing the tracing model, we found a couple of 
elements that are needed and are not often seen in typical 
cognitive modeling.  First, the tracing model needs to be 
able to track the observed state by making similar actions to 
what the participants did.  This approach gives the model 
the chance to predict the next action with the correct 
context.  Conventional approaches to cognitive modeling 
might benefit by making this event tracing approach readily 
available within cognitive architectures.  Second, the model 
needs to predict the probability of the events to allow better 
assessment of the model’s goodness of fit.  This can be 
challenging because it may require the analyst to guess the 

probability of certain events, as we have done here in 
Table 1.  Future research direction includes finding a more 
principled way to assign these probabilities.

In sum, event tracing is a novel and useful approach to 
explaining human data that may have great potential for 
developing and evaluating accurate computational cognitive 
models of human performance.  This paper demonstrates 
event tracing for scanpath data, but it is possible to apply the 
same approach to other time series data as well.

Acknowledgements
This project was funded in part by NSF Grant 

IIS-1017593,  though the opinions are strictly those of the 
authors.  We thank David Kieras for providing a copy of his 
EPIC Williams task models.

References
Anderson, J. R., Kushmerick, N., & Lebiere, C. (1993). Navigation 

and conflict resolution. In: Anderson, J. R. L. (Ed.), Rules of the 
mind, Erlbaum, Hillsdale, NJ

Cohen, J. (2003). Applied multiple regression/correlation analysis 
for the behavioral sciences (Vol. 1). Lawrence Erlbaum.

Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The 
psychology of looking and seeing. Oxford University Press.

Halverson, T., & Hornof, A. J. (2011). A computational model of 
”active vision” for visual search in human-computer interaction. 
Human-Computer Interaction, 26, 285–314.

Hornof, A. J., & Zhang, Y. (2010). Task-constrained interleaving of 
perceptual and motor processes in a time-critical dual task as 
revealed through eye tracking. In ICCM 2010, 97–102.

Hornof, A. J., & Zhang, Y. (2013). The effect of target specification 
and visual acuity on objects fixated during visual search (Tech. 
Rep. No. CIS-TR-2013-03). University of Oregon: Department 
of CIS Technical Report.

Howes, A., Lewis, R. L., & Vera, A. (2009). Rational adaptation 
under task and processing constraints: Implications for testing 
theories of cognition and action. Psychological Review, 116(4), 
717–751.

Kieras, D. E. (2010). Modeling visual search of displays of many 
objects: The role of differential acuity and fixation memory. In 
ICCM 2010, 127–132.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working 
memory for features and conjunctions. Nature, 390(6657), 
279-281.

Nyamsuren, E., & Taatgen, N. A. (2012). Pre-attentive and 
attentive vision module. In ICCM 1012, 211-216.

Pomplun, M., Reingold, E. M., & Shen, J. (2003). Area activation: 
a computational model of saccadic selectivity in visual search. 
Cognitive Science, 27(2), 299-312.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? a 
comment on theory testing. Psychological Review, 107(2), 358–
367.

Vesterstrom, J., & Thomsen, R. (2004). A comparative study of 
differential evolution, particle swarm optimization, and 
evolutionary algorithms on numerical benchmark problems. In 
Evolutionary computation, 2004. cec2004. congress on (Vol. 2, 
pp. 1980–1987).

Williams, L. G. (1966). The effect of target specification on objects 
fixated during visual search. Attention, Perception, & 
Psychophysics, 1(5), 315–318.

0

2

4

6

8

Number
Shape Size

Size+Shape
Color

Color+Shape

Color+Size All

Av
er

ag
e 

Sa
cc

ad
e 

Am
pl

itu
de

 (D
eg

re
es

)

Figure 5.  Average saccade amplitude across conditions. 
AAPE: Tracing, 5%; Original, 9%.
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