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Abstract

Time-series data such as eye movements or mouse
movements contain rich information about the dependencies
between successive human actions. This information can be
potentially very useful for examining model assumptions and
constraining parameter search. This paper explores the use of
model tracing, which simulates a task by tracking observable
human behaviors, to time-series data. We explore two aspects
of tracing that are different from conventional cognitive
modeling: (a) tracking the observed behaviors and (b)
estimating the likelihood of the observed events. We
demonstrate how these two features of tracing, along with the
use of an evolutionary optimization algorithm, led to accurate
and robust estimates for parameters of visual acuity functions
needed by visual search models.

Keywords: cognitive modeling; model tracing; visual
scanpath; visual search; genetic algorithms.

Introduction

Free parameters exist in almost all quantitative
psychological theories. The parameters provide flexibility
for models to capture the variability of the environment and
the individuals. However, as many researchers pointed out
(e.g., Roberts & Pashler, 2000; Howes, Lewis, & Vera,
2009), excessive free parameters also increase a model’s
degrees of freedom and reduce its predictive power.

One way to combat the loss of predictive power,
particularly in the realm of cognitive modeling, is to fit the
model to data at small timescales such as eye movement
data or mouse movement data. Traditional psychometric
data such as reaction time often do not place enough
constraints on a model because cognitive models are
constructed with mechanisms that operate on a much
smaller timescale. For example, Hornof and Zhang (2010)
demonstrated that a model with a plausible but unlikely
multitasking strategy could accurately fit reaction time data,
but not the eye movement data. Because data at small
timescales are more directly related to some cognitive
processes such as visual attention, there may be many fewer
model parameter settings or strategies that can fit the data,
and so the model that does fit is more likely to be correct.

One particular piece of information, the order of events in
small timescales, is often overlooked, yet it may be
extremely valuable for further constraining the free
parameters. Modeling the order of events is also called
tracing. Though this approach was initially introduced to
the field of cognitive modeling by Anderson, Kushmerick
and Lebiere (1993) in the early *90s, it has rarely been used
by cognitive modeling researchers. This paper revives the
method and applies it to fit data at small timescales.
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Tracing involves predicting the next event given the task
context that the participant experienced at a given point in
time. A cognitive architecture has many context-, time-, or
location-dependent mechanisms that will produce different
predictions given different contexts. For example, in visual
search, the location where the model looks next depends on
the current gaze location (context-dependent), the contents
of the visual working memory (time-dependent), and what
objects and features can be perceived by peripheral vision
(location-dependent). Correctly predicting a fixation
location requires a model to adequately account for all three
dependency factors. Predicting thousands of fixations, as a
typical experiment would generate, will then place tight
constraints on the plausible model parameter ranges.

Though tracing is potentially useful, it requires a different
approach than conventional cognitive modeling. This paper
introduces these approaches and demonstrates how tracing
may be used to accurately estimate model parameters. The
“case study” presented here is a visual search model, for
which a set of parameters needs to be estimated to correctly
represent the availability of object features in the peripheral
vision. We use tracing and an evolutionary algorithm to
search for the parameters that best fit the fixation scanpath
data from a visual search task. The resulting parameters are
validated by using them in a conventional cognitive model
to predict summary eye movement statistics.

Model Tracing

To make the methods concrete and accessible, the following
discussion about tracing will be grounded in the subjects of
fixation scanpath tracing and visual search. However, the
principle of these methods should easily apply to other
applications of event sequence tracing.

When a conventional cognitive model is applied to predict
a scanpath, two problems immediately emerge. First, the
error accumulates very fast and can quickly lead to
completely different scanpaths. This is because once the
model’s fixation location diverges from the participant’s, the
model will then have a different context in which to make
decisions about where to look next, and hence is even less
likely to correctly predict the participant’s next fixation than
if the model had remained aligned with the participant.
Second, the scanpath data take on discrete, categorical
values (e.g., the fixated object sequence may be A-B-C), but
the conventional goodness-of-fit measures such as R? only
apply to continuous values. This is one problem that
Anderson et al.’s original tracing method did not address,
and it will be addressed in this study by introducing a
suitable goodness-of-fit measure to evaluate how well a
model fits a scanpath.
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The first problem—that of context—can be addressed by
continually realigning the model to fixate the same object as
the participant. With this technique, although the model still
makes predictions about where the next fixation might be, it
may or may not move its gaze to that predicted location.
Rather, the model is set to match the behavior of the
participants to make sure that when predicting the next
fixation, the model always has the same context that the
participant had. For example, if the model predicts that the
next fixation is likely to be on Object B, but the participant
actually fixated A, then the model’s gaze is moved to A
rather than to B.

The second problem—finding a suitable goodness-of-fit
measure for the categorical scanpath data—can be addressed
by having the tracing model generate likelihood predictions
about the observed scanpath rather than generating an actual
fixation sequence. Visual search, as well as many other
tasks, is probabilistic in that at any point in time, there may
be several equally good candidate next steps to take, in
which case the model should be given the same credit for
making any of the equally good choices. For instance, in
the previous example, if the model predicts that both A and
B are equally good choices (such as equally similar to the
target), and the participant happened to choose A, then the
model should score 50%, because in 50% of the time, the
model will also choose A.

Visual Acuity Functions

Model tracing is applied in this study to estimate the
parameters of visual acuity functions. These acuity
functions describe how the visibility of object features
gradually diminishes as objects move further from the point
of gaze. Correctly characterizing this fundamental visual
phenomenon is vital for comprehensive unified model of
visual search, such as Halverson and Hornof (2011).
Several researchers proposed different forms of visual
acuity functions (e.g., Findlay & Gilchrist, 2003; Pomplun,
Reingold, & Shen, 2003; Kieras, 2010; Nyamsuren &
Taatgen, 2012). All proposed functions have free
parameters to account for different feature characteristics,
such as how color diminishes more gradually than shape.
And yet it is very difficult to determine these parameters
from real-world task data.

The particular visual acuity function examined here is
proposed by Kieras (2010). This function assumes that for
an object feature to be perceivable, the object size has to
exceed a threshold that increases quadratically with
increased object eccentricity (the angular distance between
the object and the center of the gaze). The function is
described as follows:

threshold = ae® + be + ¢

P(available) = P(s + X > threshold) (D)

X ~ N(0,vs)
where e represents the eccentricity, s represents object size,
and X represents a noise that is sampled from a Gaussian
distribution with a standard deviation of v times s. The
parameters a, b, and ¢ vary for different object features such

as color, shape, and size to simulate different rates of
visibility degradation.

Kieras showed that when incorporated into the EPIC
cognitive architecture, such visual acuity functions can can
contribute to accurate models of the data from the Williams
(1966) visual search experiment; however, the good fit is
somewhat questionable considering that the visual acuity
functions alone had almost the same number of free
parameters (10) as the number of data points (16) fitted.
This problem is addressed here by model-tracing the
thousands of fixations contained in the scanpath data for a
re-running of the Williams experiment. Because,
statistically speaking, estimating model parameters with
more data points leads to smaller variance in the estimates
(Cohen, 2003), fitting the model to a large set of scanpath
data will result in more robust parameter settings than an
estimate based on overall task time.

The Williams Visual Search Task (Replicated)

To obtain the complete scanpath data and to conduct a
deeper analysis than was originally reported, we replicated
the Williams (1966) experiment with contemporary eye
tracking technology.  Figure 1 shows a sample search
display used in the experiment, which occupies a 39° by 30°
rectangle area on the screen. The task was to search for a
target in a grid of 75 objects that have different colors,
shapes, and sizes. Each object has a unique two-digit
number in the center. Search precues were shown before
each trial and included the number of the target object and,
depending on the precue condition, some combination of the
target’s color, size, and shape. The precue always included
the target number and optionally included each of three
features, resulting in eight possible precue conditions, such
as “17 small blue cross” which was the “All” feature
condition.

Each object in a search field had a unique combination of
one of five colors, one of five shapes, and one of three sizes.
Colors were blue, green, yellow, red, and purple. Shapes
were circles, semi-circles, triangles, squares, and crosses.
Sizes were small (0.8°), medium (1.6°), and large (2.8°),
measured by the diameter of the circle for object size
category; all shapes were normalized to occupy the same
area as the circles in each size category.

Each participant was presented with ninety-six search
fields that were grouped into four blocks. The trials of
Blocks 1 and 2 and the trials of Blocks 3 and 4 were
randomly selected from ninety-six preconfigured search
fields, each with a fixed object arrangement. Each block
had the same number of trials for every precue condition.

After finding the target, the participant clicked on it to
proceed to the next trial. Monetary rewards were given for
the correctly completed trials and were adjusted based on
the search time and task difficulty to motivate good
performance.

Eye movement data were collected for 22 participants
using an L.C. Technologies binocular 120 Hz eye tracker.
A chinrest reduced head movements and improved eye
tracking accuracy. Fixations were identified using a
dispersion-based algorithm with a maximum dispersion
window size of 0.7 and a minimum fixation duration of 60
ms. A fixation was assigned to an object if it fell within a
circular area of interest (AOI) around the object; otherwise,
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Figure 1. A sample search field used in the experiment.

it is classified as a between-object fixation. The size of the
AOI was adjusted for objects of different sizes to properly
distinguish fixations that were on versus between objects.
More details about the experiment design and eye
movement data processing can be found in Hornof and
Zhang (2013).

The participants’ performance is measure by three
summary eye movement statistics, presented in Figures 3, 4,
and 5 (black bars) alongside some model predictions (gray
bars) that will be discussed later. Our experiment
successfully replicated Williams’ observation that color is
more useful in guiding visual search than size and shape.
This can be seen in Figure 4 in that the precue conditions
that specified color had larger proportions of fixations
landing on objects with the specified feature, which suggests
that the participants may be able to see color in a wide area
of their visual periphery and use that information to
effectively plan their next saccade to objects that are likely
to be the target.

Estimate Parameters Using Tracing

Our goal is to estimate visual acuity function parameters by
tracing the fixation data collected in the replicated Williams
visual search experiment. To implement tracing, we
developed a standalone computational model that is
dedicated to simulate this visual search task only. We call
this new model the scanpath tracing model.

The scanpath tracing model adopts theoretical concepts
the of visual acuity function and visual perceptual store
(VPS) of the EPIC cognitive architecture, which have
contributed to explanation of the original Williams results
and other visual search tasks (Kieras, 2010; Nyamsuren &
Taatgen, 2012). As discussed in the introduction, the visual
acuity function determines whether an object feature is
distinguishable based on the object size and its distance
from the center of gaze. If the feature is determined to be
available, it is then deposited in the VPS for a short time
period (e.g, 300 ms). The model then uses the features in
VPS to decide where to look next. The parameters for the
two mechanisms include the coefficients of the visual acuity
function and the feature decay time of VPS. They are the
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free parameters of the scanpath tracing model, and were
estimated by fitting the model to the scanpath data.

With the implementation of the two visual mechanisms,
the scanpath tracing model can simulate the task by cycling
through three steps: (1) The model moves the gaze to the
observed fixation location and sets the simulation time to
the fixation time. (2) The model deletes from VPS the items
that should have decayed based on the passing of time, and
adds the objects and features that the visual acuity functions
determine are available based on the current gaze position.
(3) Based on the contents of VPS, the model calculates the
likelihood that the next fixation would be at the observed
location as opposed to at other locations. A higher
likelihood indicates a better fit between the model and the
human scanpath data.

In every cycle, the contents of VPS will contain some
combination of the following:

o Viable-candidates — objects that have a feature in

common with the target.

o Non-targets — objects that have a feature that is known
and which makes it not possibly the target (such as a
red object when looking for a blue target).

o Unknown-objects — objects that are visible but have no
known color, size, or shape features.

For Step 3, calculating the likelihood of the next fixation
location, the tracing model can encounter four possible VPS
states. Table 1 shows these four states. These four states
reflect the possibility that the VPS may or may not contain
viable-candidates, and may or may not contain non-targets.
The presence or absence of unknown-objects is not relevant
for this decision because based on the screen size and acuity
functions, they would always be present.

Table 1 shows, for each of the four VPS states, the
likelihood that the visual search strategy will move the eyes
to each of four possible destinations: viable-candidates, non-
targets, unknown-objects, and the space between objects
(outside of all of the AOIs). The table reflects the results of
setting four numerical parameters: When neither viable-
candidates nor non-targets are available (State 1), 66% of
the fixations go to unknown objects, and 34% to the space
between objects. If viable-candidates are not available but
non-targets are available (State 2), 48% of the fixations go
to non-targets, and the other half go to the remaining two
categories based on the same proportions as in State 1. Any
time that viable-candidates are available (States 3 and 4),
95% of the fixations go to the viable-candidates, and the rest
are distributed based on the same proportions in the
previous states.

These four parameters were set as follows: The 66% and
34% were assigned to unknown-objects and between-
objects because one third of all long saccades (> 8°) that
were made by participants fell between objects and these are
the length of saccades the model will be making in State 1.
The 48% and 95% were chosen by the authors based on
their intuitions. The 95% is based on an assumption that
people would almost always try to use feature information
when it was available, but that the model needs to also
account for a small amount of noise and error. The 48% is
set to find a balance between (a) not fixating objects that are
clearly not the target and (b) fixating nearby objects, to



Visual-Perceptual Store

The Search Strategy Prefers

Contains Object Types as Follows
Viable- Non- Viable- Non-  Unknown- Between
State  candidates targets candidates  targets Objects  Objects
1 no no 0.0% 0.0% 66.0% 34.0%
2 no yes 0.0% 48.0% 34.3% 17.7%
3 yes no 95.0% 0.0% 3.3% 1.7%
4 yes yes 95.0% 2.4% 1.7% 0.9%

Table 1. The likelihood that the visual search strategy will move the gaze to the four
possible destinations under each of the four visual-perceptual store states.

account for how visual search strategies tends to prefer
nearby objects over far objects (Halverson & Hornof, 2011).

To calculate the likelihood of each observed fixation
location, which is used to measure how well the model fits
the scanpath, the model first determines which cell of Table
1 should be used based on the VPS state and the destination
type of the observed location. Then, if the observed gaze
location is between-objects, its likelithood is just the
percentage designated in the table. If the object location is
in one of the three other destination categories, its likelihood
is 1/n of the designated percentage, in which # is the number
of objects in VPS that are also in that category.

The parameters of the visual acuity function directly
affect the contents of VPS, and thus the likelihood generated
for each observed fixation. Because a higher likelihood
indicates a better fit to the data, our goal is to find the
parameter settings that generate the highest likelihood for
the observed scanpath.

The conventional method for finding good parameter
settings is by trial-and-error (usually with a grid search), in
which the analyst iterates through a set of different settings
and finds one that fits the data well. However, because in
this task, the visual acuity functions have 10 parameters
(three coefficients for each acuity function, plus a noise
parameter), it would be computationally impractical to
iterate through the large parameter space with a grid search.
Thus, we use an efficient evolutionary algorithm,
specifically differential evolution (Vesterstrom & Thomsen,
2004), to find suitable parameter settings.

The differential evolution algorithm conducts a parameter
search for the tracing model in the following four steps: (1)
The algorithm instantiates a set of scanpath tracing models
(100 models for our study) with random parameter settings
(Generation 0). (2) It runs each instantiated tracing model,
and each model calculates the likelihood of the scanpath
data (the average log-likelihood of all fixations). For our
study, the scanpath data include 24,821 fixations collected
from the visual search trials that specified a single target
feature. (3) The algorithm creates a new generation of
parameter settings by moving the parameters that generated
low likelihoods towards those that generated high
likelihoods. The details of how the new parameters are
created can be found in Vesterstrom and Thomsen (2004).
(4) The algorithm repeats steps (2) and (3) for many
generations until the termination condition has been
reached. For this study, the search was set to terminate after
300 generations. Because in each generation the parameters
are slightly improved, the parameters found after many
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generations should provide a sufficiently good fit to the
scanpath data, though they are not guaranteed to be optimal.

To address the possibility that the differential evolution
algorithm could become trapped in a local maxima, the
parameter search procedure was repeated 12 times with
different random number generator seeds. Each of the 12
runs produced a set of estimates for the 11 parameters of the
tracing model (10 for visual acuity functions, and 1 for
VPS). In all runs, the estimated parameters allowed the
tracing model to fit the scanpath data better (average log-
likelihood ranges from -3.61 to -3.614) than the original
EPIC parameters (average log-likelihood is -3.74),
suggesting that the parameter search with the differential
evolution algorithm was successful. The parameters
estimated from the 12 runs are very similar to each other
(the SD ranged from 0.02 to 0.38 for the visual acuity
function coefficients, and SD was 13 for the VPS feature
decay time), indicating that the scanpath data provided
sufficient constraints such that the good parameter settings
were within a small region.

Results

The parameters of the best fitting model across all 12 runs
are discussed in this section. The VPS feature decay time is
estimated to be 73 ms, suggesting that the participants rarely
held the available features in VPS for more than one
fixation.  The noise parameter v of equation (1) was
estimated to be 0.05, indicating that the perceptual noise did
not significantly affect an object’s visibility.

Figure 2 shows the visual acuity functions estimated from
tracing and from the original EPIC model (which can be
found in Kieras, 2010). The curves determine the threshold
object size for a feature to be available. That is, an object
feature is available when it is above (or to the left of) that
feature’s curve. Both sets of functions show similar trends
across the three features: Color is more visible than size, and
size is generally more visible than shape. The main
difference is that our parameters allow greater availability
for all features than the original EPIC parameters.
However, from this graph alone, it is difficult to tell which
ones are better. Although our parameters fit the scanpath
data better, we need to show that they are not overfitting and
that they can be used to explain data at large-scales as well.

Validation of The Estimated Parameters

To validate the parameters estimated from tracing, we
transferred them into Kieras’ EPIC-based visual search
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Figure 2. The visual acuity function estimated from tracing
(solid) and from the original EPIC model (dashed). An
object feature is available when it is above or to the left of
that feature’s curve.

model (with slight modifications discussed below) to see
whether the EPIC model with the new parameter settings
can fit the summary statistics of the eye movement data and
better than the same model with the original parameter
settings.

Three changes were made to Kieras’ EPIC model: (a) The
visual feature decay time was changed from 9 seconds to the
estimated 73 ms. It is unlikely that the participant can
actually remember the properties of many objects for as
long as 9 seconds (Luck & Vogel, 1997). This was set in the
original model to simulate how participants seemed able to
remember objects that were examined recently and to avoid
repeatedly examine the same objects. In this new EPIC
model, repeat fixations are prevented by the next change.
(b) The model inhibits fixations to the twenty most recently
visited objects. Though this mechanism probably exceeds
human capabilities as well, its effect might be achieved by
some scanning strategies that remember the regions visited
rather than individual objects. (c¢) When selecting one
object from multiple objects, the model randomly selects
one from the four nearest objects as opposed to from all
objects. This change is made to account for the observation
that people tend to prefer looking at nearby objects over far
objects (Halverson & Hornof, 2011).

Figures 3, 4, and 5 compare the models’ predictions with
the observed data on three critical aspects of the visual
search performance. The average absolute percentage error
(AAPE) between the human data and the model predictions
are listed in the figure captions.

Figure 3 shows the average number of fixations per trial
across the eight precue conditions. The fewer the fixations,
the better the search performance. Overall, the tracing-
parameter model fits the data better than the original EPIC
parameter model (as indicated by the AAPEs). Both models
captured the main effect, that the conditions that specified
color required many fewer fixations than other conditions.
However, both models failed to predict how the number of
fixations decreased from Shape to Size, and from Size to
Size+Shape. It seems that the tracing parameters
overestimated shapes’ visibility, whereas the original
parameters underestimated Size’s visibility. Neither model

Observed
Tracing—Parameter

Model
Original-Parameter
50 = Model
40 -
30 -
20 =
0
I I I I I I I I

et e e e ot e e \Y
o ge® Xg\'&? o Xe‘\afé S la
W 5 o°

@)

Average Number of Fixations Per Trial

o
Figure 3. Average number of fixations per trial across eight
precue conditions. The black bars represent human data,
including the 95% confidence interval. The dark gray bars
represent the model with parameters from tracing, and the
light gray bars represent the the model with the original
EPIC parameters. AAPE: Tracing, 18%; Original, 40%.
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Figure 4. The proportion of fixations that landed on objects
with at least one of the specified features in each of the
seven precue conditions that provided object features.
AAPE: Tracing, 8%; Original, 24%.

predicted the additive effect between Size and Shape, as
seen in how Size+Shape required fewer fixations than the
single feature conditions. Perhaps Size+Shape needs a
separate visual acuity function to capture the effect.

Figure 4 shows the proportion of fixated objects that had
at least one of the specified features across conditions. A
higher proportion indicates that the participants could more
ecasily find an object with the target feature in their visual
periphery, leading to better search performance. Again, the
tracing-parameter model fits the data better than the
original-parameter model. Both models predicted smaller
proportions than the observed in most conditions. This is
perhaps because the between-object fixations were removed
from the human data when calculating the proportions (to be
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Figure 5. Average saccade amplitude across conditions.
AAPE: Tracing, 5%; Original, 9%.

consistent with Williams’ analysis), which inflated the
proportion for the human data.

Figure 5 shows the average saccade amplitude across
precue conditions, which also serves to illustrate the
usefulness of the visual guidance provided by the different
features because some features, such as color, may be more
visible and useful than other features to guide vision at
longer distances. Both models fit the data very well and
predicted the average saccade amplitude for all conditions
except the Size+Shape condition.

Overall, when used in the EPIC visual search model, the
parameters estimated by the tracing model generated good
fits, and in most cases, outperformed the original EPIC
parameters that were specifically adjusted to fit the
summary eye movement statistics.

Conclusion

This paper explores a novel approach to modeling. Rather
than fitting summary statistics of empirical data, we develop
tracing models that predict an event series, in this case
fixation scanpaths, to robustly estimate model visual acuity
function parameters, which are needed to accurately model
visual search performance. The parameters were found
using a genetic algorithm to maximize the likelihood of the
observed scanpath data given the tracing model.  The
parameters are further validated in an EPIC visual search
model. The results showed that the parameters estimated
through tracing are accurate.

In developing the tracing model, we found a couple of
elements that are needed and are not often seen in typical
cognitive modeling. First, the tracing model needs to be
able to track the observed state by making similar actions to
what the participants did. This approach gives the model
the chance to predict the next action with the correct
context. Conventional approaches to cognitive modeling
might benefit by making this event tracing approach readily
available within cognitive architectures. Second, the model
needs to predict the probability of the events to allow better
assessment of the model’s goodness of fit. This can be
challenging because it may require the analyst to guess the
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probability of certain events, as we have done here in
Table 1. Future research direction includes finding a more
principled way to assign these probabilities.

In sum, event tracing is a novel and useful approach to
explaining human data that may have great potential for
developing and evaluating accurate computational cognitive
models of human performance. This paper demonstrates
event tracing for scanpath data, but it is possible to apply the
same approach to other time series data as well.
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