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A Discrete Movement Model For Cursor Tracking
Validated in the Context of a Dual-Task Experiment

Yunfeng Zhang and Anthony J. Hornof
Computer and Information Science, University of Oregon

Understanding human cursor tracking behavior is essential in understanding human motor control.
Though tracking has been hypothesized as a sequence of discrete movements, better data is needed to
support the theory. By analyzing moment-to-moment tracking data, this paper shows that discrete, non-
ballistic movements exist throughout a tracking task, and that these short submovements can be
characterized by either Fitts’ law or a linear model. A cognitive model was built to incorporate the
characteristics of these discrete movements into a dual task. Using parameters estimated through linear
regression of the movement data, the model achieves a good fit to the overall performance measures of
the dual-task experiment. This research investigates the characteristics of human motor control in
tracking tasks, improves modeling techniques by providing a new method for estimating tracking
parameters, and advances the science of motor control with new evidence for the discrete movement
tracking hypothesis. The discrete movement model presented here offers an excellent alternative to
established control theory models that are used to simulate steering in cognitive models of driving.

Tracking is a class of tasks in which people use their
hands to guide the position of a pointer (such as a cursor) with
respect to a target. Driving is a tracking task because a driver
uses a steering wheel to guide the position of a car to track the
changing curvature of the road. Many other tasks such as
controlling mechanical arms or putting out a fire with a hose
involve tracking as well. Because tracking is an essential
component of human-machine interaction, it has attracted
researchers’ attention since World War II. Through the
decades, researchers have gained considerable insights into
human motor control, which has helped in the design of
systems that enhance the speed and accuracy of tracking
(Jagacinski & Flach, 2003).

Kieras, Meyer, Ballas, and Lauber (2000) proposed that a
laboratory tracking task can be modeled as a series of discrete
aimed movements that, like other aimed movements such as
pointing, adhere to Fitts’ law (Fitts, 1954). This discrete
movement model was implemented in the EPIC cognitive
architecture (Executive Process-Interactive Control; Kieras &
Meyer, 1997), which consists of software modules that
simulate many aspects of human perceptual, cognitive, and
motor information processing in fine-grained details.

In Kieras et al.’s discrete movement model, EPIC’s ocular
motor module simulates the eye movements that keep the
foveal vision onto the moving target, and EPIC’s manual
motor module simulates the pointing movements that move
the cursor to the target. With these parts of the task handled
by the cognitive architecture, Kieras et al’s implementation of
the discrete movement model is straightforward: The model is
a set of rules that tells the architecture to initiate a pointing
movement whenever the tracking target and cursor are visible
to the simulated human and the manual module is not
executing another pointing movement or movements for other
tasks. Consequently, when there are no other tasks, this model
would use contiguous pointing movements to achieve smooth
tracking performance; when there are other tasks that need
visual or manual processing, this tracking model may be
interrupted by models of other tasks, thereby simulating task
interference effects exist in multitasking performance.

Kieras et al. applied the discrete movement tracking
model to a dual-task experiment, and they found that the
model was able to fit the overall observed root-mean-squared

(RMS) tracking error very well, with a minimum 4% average
absolute error.

Although the discrete pointing movement model may fit
an overall tracking performance measure well, it is unclear
whether such a model is able to accurately capture tracking
dynamics from moment to moment. Analysis of overall
tracking performance measures such as the RMS tracking
error cannot provide the two pieces of evidence that are key to
verify the discrete movement model: (a) whether there are
distinguishable individual movements in the human tracking
data, and (b) if such movements exist, whether they can be
described by Fitts’ law. Although studies have shown that
Fitts’ law can apply to rapid movements to a target that moves
at a constant velocity (Jagacinski, Repperger, Ward, & Moran,
1980), it is questionable whether this extends to the tracking
task, in which the target moves in an unpredictable manner.
To show that tracking is truly comprised of discrete aimed
movements, more detailed analysis is needed.

Applying the discrete movement model also requires a
more reliable procedure for estimating the slope and intercept
parameters of the Fitts’ law equation. Currently, if the default
parameter values in the EPIC architecture are inappropriate for
certain tracking task conditions, analysts need to reestimate
them by running the whole model of a task and then
comparing the predicted summary statistics such as the RMS
tracking error with the observed data. If the prediction does
not fit the observed data very well, the analyst needs to
manually adjust the parameters and rerun the model.

This method of estimating parameter values based on
overall RMS error suffers from three drawbacks: First, many
other parameters may contribute to the RMS tracking error in
a multitasking scenario, and when multiple parameters are
present, an incorrect configuration of the parameter values
may still lead to correct RMS tracking error. For example, a
large RMS tracking error might occur because a participant
responds to the moving target slowly, or because another
difficult visual task delays tracking. Second, because there is
often not a direct relationship between the parameter values
and the predicted RMS tracking error, it can take many
iterations of parameter adjustments to arrive at a satisfactory
fit. Third, a good fit to the RMS tracking error will not
provide much support for the tracking model considering that
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only a few RMS tracking error data points might be collected
from an experiment (one data point per session) and a two-
parameter Fitts’ law equation can easily fit them all. A better
procedure would use other data to estimate the parameters,
and leave the RMS tracking error for overall model
evaluation.

This paper provides new evidence that a discrete
movement model is capable of capturing the moment-to-
moment tracking dynamics, and presents a robust procedure
for estimating parameters from the tracking error data. To
utilize the parameter estimation procedure, a new model is
developed based on Kieras et al’s (2000) tracking model, but
with a slightly different assumption about the nature of the
individual tracking movements. Though the model was
implemented in EPIC, the ACT-R architecture (adaptive
control of thought-rational; Anderson et al., 2004) should
benefit from it as well, because ACT-R’s approach to
simulating motor behavior is derived from EPIC. The new
discrete movement model and the parameter estimation
procedure were validated in the context of a dual-task
experiment, discussed next.

METHOD
Experiment

A dual-task experiment (Hornof, Zhang, & Halverson
2010) was conducted that collected tracking data in a
multitasking scenario. In this experiment, a choice-reaction
task was presented concurrently with a tracking task on
opposite sides of the screen. On the left side of the screen, a
series of icons moved down the display with different shapes,
colors, speed and direction. In some sessions, auditory alerts
signaled the statuses of these moving stimuli such as their
initial appearances. In a window on the right side of the
screen, an airplane-shaped tracking target (30 pixels by 12
pixels) moved constantly within the window. One degree of
visual angle spanned 40 pixels. The moving path of the target
was predetermined by combining several sinusoids, and
appeared to be random to the participant.

Each participant used a keypad to classify the icons on the
left display as hostile or neutral based on their appearances
and moving velocities, and interleaved with this activity, they
used a joystick to keep a tracking cursor as close as possible to
the target. The position of the joystick was sampled every 83
ms and was integrated by the experimental software to
produce a mixture of first- and second-order control, i.e. the
joystick position influenced the tracking cursor’s velocity and
acceleration. The positions of the target and the cursor were
also refreshed every 83 ms, and were recorded to a log file.

Twelve participants from the University of Oregon and
surrounding communities completed the experiment, and ten
of them met the criteria for this analysis of tracking
performance (an overall mean tracking error of under 30
pixels). The participants completed four eight-minute sessions
of the experiment on each of three consecutive days. Two
factors were manipulated across the four daily sessions: (a) the
availability of the auditory alerts for the choice-reaction task,
and (b) the visibility of the not-currently-looked-at display
(controlled using an eye tracker and a gaze-contingent
display). Participants were financially motivated to perform
quickly and accurately. For the tracking task, participants

gained monetary rewards only when the cursor was kept
within 20 pixels from the target, and lost rewards when the
tracking error was larger than 50 pixels. Cursor color changed
in real time to indicate the immediate reward or loss state.
Given the practice and motivation, the participants’
performance by the third day likely approached that of an
expert. The data from the third day are used in this analysis.

Extract discrete movements

To determine whether there are distinct movements in the
empirical tracking data to support a discrete movement model,
we examined how the tracking error changed over time in the
dual-task experiment. Figure 1 shows a glimpse of how the
tracking error typically fluctuated over an eight-second period
in one experiment session. The participant happened to be
looking at the tracking display for the entire eight seconds. As
can be seen, within this short time period, there were three
steep descents (marked by gray lines) that began as a large
tracking error above 50 pixels and eventually came down to
below 20 pixels. These descents were likely caused by the
participant’s manual movements because they were
uninterrupted drops that lasted several hundred milliseconds
and ended with the cursor in the region in which participants
could gain rewards. These trends can be seen consistently
throughout all participant data.
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Figure 1. Tracking error data over eight seconds of a
dual-task experiment session. The solid line shows the
moment-to-moment tracking error, and the black
dashed line marks the threshold below which the
participant would gain rewards. Regressions were
calculated for each downward slope that dropped at
least 10 pixels and ended below 20. The gray lines
mark three examples of such downward slopes.

If we can show that the steep descents in Figure 1 persist
throughout the tracking task data, it can support the hypothesis
that tracking is comprised of discrete movements. Based on
this reasoning, we developed an algorithm to find descents
with similar characteristics to those in Figure 1. Specifically,
to qualify as a tracking movement, a decent must be an
uninterrupted decrease of tracking error that reduces tracking
error by more than 10 pixels and ends below 20 pixels. With
these criteria, descents that were solely introduced by the
random movements of the target should be eliminated. Thus,
the extracted descents were treated as participants’ discrete
movements in subsequent analysis.

Estimate parameters

To further support the discrete movement model, it needs
to be shown that there is a regular pattern in the movement
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data so that a simple function with a few free parameters can
describe them. Kieras et al.’s (2000) tracking model assumed
that the tracking movements can be described by Fitts’ law,
but provided no direct evidence to support this hypothesis.
With the extracted movement data, it is possible to evaluate
Kieras et al.’s assumption by examining how well the Fitt’ law
equation fits the data. The particular Fitts’ law equation used
by Kieras et al. is Welford’s equation (1968), which is adopted
in the EPIC cognitive architecture for calculating the
movement time of pointing movements:
MT=a+ blog(A/W+0.5),

where MT is the movement time, 4 is the movement
amplitude, W is the target width, and a and b are parameters
determined through linear regression. The logarithmic term,
log2(A/W + 0.5), is also referred to as index of difficulty. The
target width I is set to 20 pixels because the participants only
had to keep the tracking error below this value to gain reward.
For movement amplitude 4, we chose to use the tracking error
at the moment that a movement is initiated instead of the
ultimate distance that the cursor is actually moved. This is
because a movement might change its course to follow the
shifting of the target, which leads to variable and
unpredictable moving distances. Using tracking error as 4
was also done in Kieras et al’s model and in Jagacinski et al.’s
(1980) study that investigated how well Fitts’ law explains
pursuit movements to a target with a constant velocity, as
opposed to targets with a variable velocity as used in the
tracking task.

The above procedure can determine the goodness-of-fit of
a Fitts’ law equation to the tracking data and can also be used
to estimate the slope and intercept parameters of the equation
to maximize the fit of the equation to the movement data.
This parameter estimation procedure is more robust than the
previous method that maximizes the fit to the RMS tracking
error, because more factors contribute to the RMS tracking
error than the slope and the intercept.

The discrete pursuit model

To use the parameters estimated with the above
procedure, Kieras et al.’s discrete movement model needs to
be modified slightly. Figure 2 illustrates how the movement in
Kieras et al.’s model proceeds (dashed arrows and circles) and
how the movement in the modified, discrete pursuit model
proceeds (solid arrows and circles). As can be seen, in Kieras
et al.’s model, a movement is ballistic in that once initiated,
the movement cannot change its direction even if the target
position changes. In the discrete pursuit model, however, a
movement can change its course to follow the shifting of the
target. The smoothness of the descents found in Figure 1
suggests that individual movements may be able to follow the
motion of the target, because otherwise the random movement
of the target would increase the tracking error from time to
time and likely create a jagged pattern in the descents. In fact,
we attempted to use the ballistic movement model with the
estimated parameters, but the resulting RMS tracking error
was inflated due to the failure to correct tracking direction
during the movements. This suggests that iterative directional
adjustments were performed.

A non-ballistic movement model has been adopted by
many other motor control theories. For example, Meyer,
Abrams, Kornblum, Wright, and Smith (1988) showed that
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Figure 2. An illustration of how a ballistic tracking
movement and a pursuit tracking movement proceed.
The cross represents the target, and the circle represents
the cursor. The arrows mark the paths of the target and
cursor, from time T1 to time T3. Dashed lines represent
the ballistic movement, and solid lines represent the
pursuit movement.

rapid aimed movements to stationary targets, such as moving a
mouse cursor to a button, can be described by a stochastic
optimized-submovement model, which assumes that an aimed
movement consists of a fast primary submovement and one or
more corrective submovements. If humans are capable of
making corrective submovements during a rapid aimed
movement, which lasts only a few hundred milliseconds, it is
likely that they can also respond to the motion of the tracking
target within a similarly short period of time.

To validate the discrete pursuit model, we incorporated it
into our EPIC model for the dual-task experiment and
compared the predicted tracking data with the empirical data.
The dual-task model was built based on Hornof and Zhang’s
(2010) moderately-overlapped model, which achieved a great
deal of concurrent processing between the tracking task and
the choice-reaction task, and which accurately explained the
observed performance within and across the two tasks.

RESULTS

This section first presents the results from the analysis of
the movement data to provide direct support for the discrete
pursuit model, and then shows the goodness-of-fit of the
model to the dual-task experiment tracking data.

Movement data

An average of 235 movements was extracted from each of
the 40 eight-minute sessions, with a mean movement duration
of 503 ms. These tracking movements accounted for 30% of
the time spent on the tracking task. Considering that the
extracted movements did not include small movements (those
that reduced tracking error by fewer than 10 pixels), the
discrete movements made up a substantial portion of the
tracking task. This empirical result supports the basic
assumption that tracking behavior is comprised of a series of
discrete movements.

Figure 3 gives an example of running a linear regression
on one session’s tracking movement data. The distance
reduced by each pursuit movement was rounded to its nearest
integer, and movements that reduced the same amount of
tracking error were collapsed into a single data point. The
duration of the movement is plotted as a function of the index
of difficulty, (logz (Tracking Error/20 + 0.5)). As can be seen,
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although the movement time and distance varied largely, the
data points still lie roughly along the regression line. This
suggests that the extracted movements can be approximated
by Welford's equation.

Figure 4 shows the distribution of R? that resulted from
fitting Welford’s equation to the movement data of each of the
40 participant-sessions. The R? ranged from 0.19 to 0.69, but
the majority fell between 0.4 and 0.6, with an average of 0.48.
That is, on average, about half of the variance in the
movement data can be explained by Welford’s equation.
Considering that the movement data itself has a large
variability (as seen in Figure 3), that a two-parameter Fitts’
law equation could account for about half of the variability
suggests that these discrete movements adhere to Fitts’ law.

Besides the Fitts' law model, a linear equation, MT=a + b
x Tracking Error, was also fitted to the movement data, which
resulted in R? similar to those of the Fitts” law model. The R’
of the linear model ranged from 0.18 to 0.75, with an average
0of 0.48. The linear model probably achieved results similar to
the Fitts' law model because the movements were small,
typically between 10 pixels (the lower limit of our
measurement) and 70 pixels. Within this range, the index of
difficulty, logz (Tracking Error/20 + 0.5), is almost a linear
function of the tracking error. However, because Fitts' law is
used extensively in modeling manual movements, we chose to
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adopt Fitts' law in the discrete pursuit model.
Tracking parameters and model predictions

Figure 5 shows all the Fitts’ law parameter values
estimated for the 40 sessions. For each of the ten participants,
four sets of parameters were estimated, one for each session.
The top panel shows the values of the intercept parameter
across participants, and the bottom panel shows the values of
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Figure 5. The best-fitting Fitts’ law intercept and slope
parameters estimated from the movement data across
40 participant-sessions.

the slope parameter. That the majority of the intercept values
were between 150 and 250 ms suggests that the minimum
tracking time might be the participants’ simple reaction time.
From the graph, it seems that participants varied their
parameters considerably across sessions.

Using the EPIC cognitive architecture and the parameters
in Figure 5, models that incorporate the discrete pursuit
tracking component were built for the dual-task experiment.
The RMS tracking error and the reaction time for the choice-
reaction task were calculated for the simulation of each
experimental session. The overall average predicted RMS
tracking error is 21 pixels, which is very close to the average
observed RMS tracking error of 22 pixels. Figure 6 shows the
absolute percentage error between the predicted and observed
RMS tracking error across participants and sessions. As can
be seen, the majority of the predicted RMS tracking error is
within 10% range of the observed RMS tracking error, which
we accept as a good data fit for predictive modeling. The
model also explained the observed data for the other
nontracking task in the dual task experiment, suggesting that
the proposed parameter estimation procedure can lead to
correct tracking parameter values without overfitting the RMS
tracking error.

DISCUSSION

The results from the movement data analysis support the
basic assumption of the discrete movement model, that
tracking behavior can be approximated by a sequence of
discrete Fitts' law movements. Clear evidence of the discrete
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Figure 6. Absolute percentage error of models’ RMS
tracking error compared to the empirical data across
the forty participant-sessions.

movements were found throughout participants' tracking data,
such as shown in Figure 1. Each discrete movement
represents an uninterrupted reduction of tracking error over a
few hundred milliseconds.

The results suggest that overall tracking performance can
be accurately modeled using Fitts’ law parameters that are
estimated based on individual movements. Using the
parameters estimated with this procedure, the cognitive
models for the dual-task experiment accurately predict the
performance of both tasks. By assessing the model's fit to
both tasks simultaneously, we have reduced the possibility that
the parameters of one task were incorrectly adjusted to
compensate the model's fit to the other task.

The data plots and the good fits of the discrete pursuit
model support a hypothesis that tracking is comprised of non-
ballistic movements whose directions can be altered to follow
the movements of the target. Tracking movements extracted
from the dual-task experimental data lasted on average about
500 ms, which is much longer than simple reaction time. The
long duration of pursuit movements should allow participants
to perceive the shifting of the target and to change their
manual output to the controller device during a movement.

Implementing the discrete pursuit model within EPIC, as
we have done, shows that it is possible to leverage the
architecture's existing perceptual, cognitive, and motor
modules to simulate the details of human information
processing involved in tracking and other tasks. As a result,
the model could accurately account for the tracking
performance in a dual-task scenario.

Though the discrete pursuit model is validated here with a
tracking task with control dynamics of first- and second-order
control, it is likely that the model applies to other control
dynamics as well. As control theory studies suggest (see
Jagacinski & Flach, 2003 for a review), regardless of the
actual control dynamics of a device, humans tend to adapt
their manual movements to the dynamics of the device to
make the response of the system behave as if it were a first-
order control. As a result, regardless of the dynamics of the
device, it always appears to the human operator that the
tracking error drives the velocity of the system response, and
larger tracking error leads to increasingly faster human
movements. This is in fact in accordance with the discrete
pursuit model proposed here because of the logarithmic
function for calculating movement duration. Thus, the

discrete pursuit model and the control theory seem to, albeit
from different perspectives, describe the same phenomenon in
tracking, and this phenomenon should not be dramatically
affected by the control dynamics of the device.

The discrete pursuit model can potentially be applied to
more complex, real-world tracking tasks such as driving. Eye
tracking studies of driving (e.g., Land & Lee, 1994) suggest
that humans use, as the error signal to guide steering during
curve negotiation, the angular difference between (a) the
forward line of sight and (b) the line of sight to the tangent
point of the upcoming curve. A few models have been
proposed to use the error signal to predict the steering angle
(Salvucci, 2006) or vehicle lateral velocity (Brumby, Salvucci,
& Howes, 2009), but these models are based on the control
theory. Perhaps the discrete pursuit model could be used to
predict the steering movement time in a dual task setting
because, unlike control theory models that assume continuous
tracking responses, the discrete movement model offers a
straightforward means of interleaving steering with other
tasks.
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