
Tracking is a class of tasks in which people use their 
hands to guide the position of a pointer (such as a cursor) with 
respect to a target.  Driving is a tracking task because a driver 
uses a steering wheel to guide the position of a car to track the 
changing curvature of the road.  Many other tasks such as 
controlling mechanical arms or putting out a fire with a hose 
involve tracking as well.  Because tracking is an essential 
component of human-machine interaction, it has attracted 
researchers’ attention since World War II.  Through the 
decades, researchers have gained considerable insights into 
human motor control, which has helped in the design of 
systems that enhance the speed and accuracy of tracking 
(Jagacinski & Flach, 2003).

Kieras, Meyer, Ballas, and Lauber (2000) proposed that a 
laboratory tracking task can be modeled as a series of discrete 
aimed movements that, like other aimed movements such as 
pointing, adhere to Fitts’ law (Fitts, 1954).  This discrete 
movement model was implemented in the EPIC cognitive 
architecture (Executive Process-Interactive Control; Kieras & 
Meyer, 1997), which consists of software modules that 
simulate many aspects of human perceptual, cognitive, and 
motor information processing in fine-grained details.

In Kieras et al.’s discrete movement model, EPIC’s ocular 
motor module simulates the eye movements that keep the 
foveal vision onto the moving target, and EPIC’s manual 
motor module simulates the pointing movements that move 
the cursor to the target.  With these parts of the task handled 
by the cognitive architecture, Kieras et al’s implementation of 
the discrete movement model is straightforward:  The model is 
a set of rules that tells the architecture to initiate a pointing 
movement whenever the tracking target and cursor are visible 
to the simulated human and the manual module is not 
executing another pointing movement or movements for other 
tasks.  Consequently, when there are no other tasks, this model 
would use contiguous pointing movements to achieve smooth 
tracking performance; when there are other tasks that need 
visual or manual processing, this tracking model may be 
interrupted by models of other tasks, thereby simulating task 
interference effects exist in multitasking performance.

Kieras et al. applied the discrete movement tracking 
model to a dual-task experiment, and they found that the 
model was able to fit the overall observed root-mean-squared 

(RMS) tracking error very well, with a minimum 4% average 
absolute error.

Although the discrete pointing movement model may fit 
an overall tracking performance measure well, it is unclear 
whether such a model is able to accurately capture tracking 
dynamics from moment to moment.  Analysis of overall 
tracking performance measures such as the RMS tracking 
error cannot provide the two pieces of evidence that are key to 
verify the discrete movement model: (a) whether there are 
distinguishable individual movements in the human tracking 
data, and (b) if such movements exist, whether they can be 
described by Fitts’ law.  Although studies have shown that 
Fitts’ law can apply to rapid movements to a target that moves 
at a constant velocity (Jagacinski, Repperger, Ward, & Moran, 
1980), it is questionable whether this extends to the tracking 
task, in which the target moves in an unpredictable manner.  
To show that tracking is truly comprised of discrete aimed 
movements, more detailed analysis is needed.

Applying the discrete movement model also requires a 
more reliable procedure for estimating the slope and intercept 
parameters of the Fitts’ law equation.  Currently, if the default 
parameter values in the EPIC architecture are inappropriate for 
certain tracking task conditions, analysts need to reestimate 
them by running the whole model of a task and then 
comparing the predicted summary statistics such as the RMS 
tracking error with the observed data.  If the prediction does 
not fit the observed data very well, the analyst needs to 
manually adjust the parameters and rerun the model.

This method of estimating parameter values based on 
overall RMS error suffers from three drawbacks:  First, many 
other parameters may contribute to the RMS tracking error in 
a multitasking scenario, and when multiple parameters are 
present, an incorrect configuration of the parameter values 
may still lead to correct RMS tracking error.  For example, a 
large RMS tracking error might occur because a participant 
responds to the moving target slowly, or because another 
difficult visual task delays tracking.  Second, because there is 
often not a direct relationship between the parameter values 
and the predicted RMS tracking error, it can take many 
iterations of parameter adjustments to arrive at a satisfactory 
fit.  Third, a good fit to the RMS tracking error will not 
provide much support for the tracking model considering that 
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Understanding human cursor tracking behavior is essential in understanding human motor control.  
Though tracking has been hypothesized as a sequence of discrete movements, better data is needed to 
support the theory.  By analyzing moment-to-moment tracking data, this paper shows that discrete, non-
ballistic movements exist throughout a tracking task, and that these short submovements can be 
characterized by either Fitts’ law or a linear model.  A cognitive model was built to incorporate the 
characteristics of these discrete movements into a dual task.  Using parameters estimated through linear 
regression of the movement data, the model achieves a good fit to the overall performance measures of 
the dual-task experiment.  This research investigates the characteristics of human motor control in 
tracking tasks, improves modeling techniques by providing a new method for estimating tracking 
parameters, and advances the science of motor control with new evidence for the discrete movement 
tracking hypothesis.  The discrete movement model presented here offers an excellent alternative to 
established control theory models that are used to simulate steering in cognitive models of driving.
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only a few RMS tracking error data points might be collected 
from an experiment (one data point per session) and a two-
parameter Fitts’ law equation can easily fit them all.  A better 
procedure would use other data to estimate the parameters, 
and leave the RMS tracking error for overall model 
evaluation.

This paper provides new evidence that a discrete 
movement model is capable of capturing the moment-to-
moment tracking dynamics, and presents a robust procedure 
for estimating parameters from the tracking error data.   To 
utilize the parameter estimation procedure, a new model is 
developed based on Kieras et al’s (2000) tracking model, but 
with a slightly different assumption about the nature of the 
individual tracking movements.  Though the model was 
implemented in EPIC, the ACT-R architecture (adaptive 
control of thought-rational; Anderson et al., 2004) should 
benefit from it as well, because ACT-R’s approach to 
simulating motor behavior is derived from EPIC.  The new 
discrete movement model and the parameter estimation 
procedure were validated in the context of a dual-task 
experiment, discussed next.

METHOD

Experiment

A dual-task experiment (Hornof, Zhang, & Halverson 
2010) was conducted that collected tracking data in a 
multitasking scenario.  In this experiment, a choice-reaction 
task was presented concurrently with a tracking task on 
opposite sides of the screen.  On the left side of the screen, a 
series of icons moved down the display with different shapes, 
colors, speed and direction.  In some sessions, auditory alerts 
signaled the statuses of these moving stimuli such as their 
initial appearances.  In a window on the right side of the 
screen, an airplane-shaped tracking target (30 pixels by 12 
pixels) moved constantly within the window.  One degree of 
visual angle spanned 40 pixels.  The moving path of the target 
was predetermined by combining several sinusoids, and 
appeared to be random to the participant.

Each participant used a keypad to classify the icons on the 
left display as hostile or neutral based on their appearances 
and moving velocities, and interleaved with this activity, they 
used a joystick to keep a tracking cursor as close as possible to 
the target.  The position of the joystick was sampled every 83 
ms and was integrated by the experimental software to 
produce a mixture of first- and second-order control, i.e. the 
joystick position influenced the tracking cursor’s velocity and 
acceleration.  The positions of the target and the cursor were 
also refreshed every 83 ms, and were recorded to a log file.

Twelve participants from the University of Oregon and 
surrounding communities completed the experiment, and ten 
of them met the criteria for this analysis of tracking 
performance (an overall mean tracking error of under 30 
pixels).  The participants completed four eight-minute sessions 
of the experiment on each of three consecutive days.  Two 
factors were manipulated across the four daily sessions: (a) the 
availability of the auditory alerts for the choice-reaction task, 
and (b) the visibility of the not-currently-looked-at display 
(controlled using an eye tracker and a gaze-contingent 
display).  Participants were financially motivated to perform 
quickly and accurately.  For the tracking task, participants 

gained monetary rewards only when the cursor was kept 
within 20 pixels from the target, and lost rewards when the 
tracking error was larger than 50 pixels.  Cursor color changed 
in real time to indicate the immediate reward or loss state.  
Given the practice and motivation, the participants’ 
performance by the third day likely approached that of an 
expert.  The data from the third day are used in this analysis.

Extract discrete movements

To determine whether there are distinct movements in the 
empirical tracking data to support a discrete movement model, 
we examined how the tracking error changed over time in the 
dual-task experiment.  Figure 1 shows a glimpse of how the 
tracking error typically fluctuated over an eight-second period 
in one experiment session.  The participant happened to be 
looking at the tracking display for the entire eight seconds.  As 
can be seen, within this short time period, there were three 
steep descents (marked by gray lines) that began as a large 
tracking error above 50 pixels and eventually came down to 
below 20 pixels.  These descents were likely caused by the 
participant’s manual movements because they were 
uninterrupted drops that lasted several hundred milliseconds 
and ended with the cursor in the region in which participants 
could gain rewards.  These trends can be seen consistently 
throughout all participant data.

If we can show that the steep descents in Figure 1 persist 
throughout the tracking task data, it can support the hypothesis 
that tracking is comprised of discrete movements.  Based on 
this reasoning, we developed an algorithm to find descents 
with similar characteristics to those in Figure 1.  Specifically, 
to qualify as a tracking movement, a decent must be an 
uninterrupted decrease of tracking error that reduces tracking 
error by more than 10 pixels and ends below 20 pixels.  With 
these criteria, descents that were solely introduced by the 
random movements of the target should be eliminated.  Thus, 
the extracted descents were treated as participants’ discrete 
movements in subsequent analysis.

Estimate parameters

To further support the discrete movement model, it needs 
to be shown that there is a regular pattern in the movement 
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Figure 1.  Tracking error data over eight seconds of a 
dual-task experiment session.  The solid line shows the 
moment-to-moment tracking error, and the black 
dashed line marks the threshold below which the 
participant would gain rewards.  Regressions were 
calculated for each downward slope that dropped at 
least 10 pixels and ended below 20.  The gray lines 
mark three examples of such downward slopes.
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data so that a simple function with a few free parameters can 
describe them.  Kieras et al.’s (2000) tracking model assumed 
that the tracking movements can be described by Fitts’ law, 
but provided no direct evidence to support this hypothesis.  
With the extracted movement data, it is possible to evaluate 
Kieras et al.’s assumption by examining how well the Fitt’ law 
equation fits the data.  The particular Fitts’ law equation used 
by Kieras et al. is Welford’s equation (1968), which is adopted 
in the EPIC cognitive architecture for calculating the 
movement time of pointing movements:

MT = a + b log2(A/W + 0.5),
where MT is the movement time, A is the movement 
amplitude, W is the target width, and a and b are parameters 
determined through linear regression.  The logarithmic term, 
log2(A/W + 0.5), is also referred to as index of difficulty.  The 
target width W is set to 20 pixels because the participants only 
had to keep the tracking error below this value to gain reward.  
For movement amplitude A, we chose to use the tracking error 
at the moment that a movement is initiated instead of the 
ultimate distance that the cursor is actually moved.  This is 
because a movement might change its course to follow the 
shifting of the target, which leads to variable and 
unpredictable moving distances.  Using tracking error as A 
was also done in Kieras et al’s model and in Jagacinski et al.’s 
(1980) study that investigated how well Fitts’ law explains 
pursuit movements to a target with a constant velocity, as 
opposed to targets with a variable velocity as used in the 
tracking task.

The above procedure can determine the goodness-of-fit of 
a Fitts’ law equation to the tracking data and can also be used 
to estimate the slope and intercept parameters of the equation 
to maximize the fit of the equation to the movement data.  
This parameter estimation procedure is more robust than the 
previous method that maximizes the fit to the RMS tracking 
error, because more factors contribute to the RMS tracking 
error than the slope and the intercept.

The discrete pursuit model

To use the parameters estimated with the above 
procedure, Kieras et al.’s discrete movement model needs to 
be modified slightly.  Figure 2 illustrates how the movement in 
Kieras et al.’s model proceeds (dashed arrows and circles) and 
how the movement in the modified, discrete pursuit model 
proceeds (solid arrows and circles).  As can be seen, in Kieras 
et al.’s model, a movement is ballistic in that once initiated, 
the movement cannot change its direction even if the target 
position changes.  In the discrete pursuit model, however, a 
movement can change its course to follow the shifting of the 
target.  The smoothness of the descents found in Figure 1 
suggests that individual movements may be able to follow the 
motion of the target, because otherwise the random movement 
of the target would increase the tracking error from time to 
time and likely create a jagged pattern in the descents.  In fact, 
we attempted to use the ballistic movement model with the 
estimated parameters, but the resulting RMS tracking error 
was inflated due to the failure to correct tracking direction 
during the movements.  This suggests that iterative directional 
adjustments were performed.

A non-ballistic movement model has been adopted by 
many other motor control theories.  For example, Meyer, 
Abrams, Kornblum, Wright, and Smith (1988) showed that 

rapid aimed movements to stationary targets, such as moving a 
mouse cursor to a button, can be described by a stochastic 
optimized-submovement model, which assumes that an aimed 
movement consists of a fast primary submovement and one or 
more corrective submovements.  If humans are capable of 
making corrective submovements during a rapid aimed 
movement, which lasts only a few hundred milliseconds, it is 
likely that they can also respond to the motion of the tracking 
target within a similarly short period of time.

To validate the discrete pursuit model, we incorporated it 
into our EPIC model for the dual-task experiment and 
compared the predicted tracking data with the empirical data.  
The dual-task model was built based on Hornof and Zhang’s 
(2010) moderately-overlapped model, which achieved a great 
deal of concurrent processing between the tracking task and 
the choice-reaction task, and which accurately explained the 
observed performance within and across the two tasks.

RESULTS

This section first presents the results from the analysis of 
the movement data to provide direct support for the discrete 
pursuit model, and then shows the goodness-of-fit of the 
model to the dual-task experiment tracking data.

Movement data

An average of 235 movements was extracted from each of 
the 40 eight-minute sessions, with a mean movement duration 
of 503 ms.  These tracking movements accounted for 30% of 
the time spent on the tracking task.  Considering that the 
extracted movements did not include small movements (those 
that reduced tracking error by fewer than 10 pixels), the 
discrete movements made up a substantial portion of the 
tracking task.  This empirical result supports the basic 
assumption that tracking behavior is comprised of a series of 
discrete movements.

Figure 3 gives an example of running a linear regression 
on one session’s tracking movement data.  The distance 
reduced by each pursuit movement was rounded to its nearest 
integer, and movements that reduced the same amount of 
tracking error were collapsed into a single data point.  The 
duration of the movement is plotted as a function of the index 
of difficulty, (log2 (Tracking Error/20 + 0.5)).  As can be seen, 

Figure 2.  An illustration of how a ballistic tracking 
movement and a pursuit tracking movement proceed.  
The cross represents the target, and the circle represents 
the cursor.   The arrows mark the paths of the target and 
cursor,  from time T1 to time T3.  Dashed lines represent 
the ballistic movement, and solid lines represent the 
pursuit movement.

T1

T2
T3

T2

T3

T2
T3

T1

PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 56th ANNUAL MEETING - 2012 1002



although the movement time and distance varied largely, the 
data points still lie roughly along the regression line.  This 
suggests that the extracted movements can be approximated 
by Welford's equation.

Figure 4 shows the distribution of R2 that resulted from 
fitting Welford’s equation to the movement data of each of the 
40 participant-sessions.  The R2 ranged from 0.19 to 0.69, but 
the majority fell between 0.4 and 0.6, with an average of 0.48.  
That is, on average, about half of the variance in the 
movement data can be explained by Welford’s equation.  
Considering that the movement data itself has a large 
variability (as seen in Figure 3), that a two-parameter Fitts’ 
law equation could account for about half of the variability 
suggests that these discrete movements adhere to Fitts’ law.

Besides the Fitts' law model, a linear equation, MT = a + b 
× Tracking Error, was also fitted to the movement data, which 
resulted in R2 similar to those of the Fitts’ law model.  The R2 
of the linear model ranged from 0.18 to 0.75, with an average 
of 0.48.  The linear model probably achieved results similar to 
the Fitts' law model because the movements were small, 
typically between 10 pixels (the lower limit of our 
measurement) and 70 pixels.  Within this range, the index of 
difficulty, log2 (Tracking Error/20 + 0.5), is almost a linear 
function of the tracking error.  However, because Fitts' law is 
used extensively in modeling manual movements, we chose to 

adopt Fitts' law in the discrete pursuit model.

Tracking parameters and model predictions

Figure 5 shows all the Fitts’ law parameter values 
estimated for the 40 sessions.  For each of the ten participants, 
four sets of parameters were estimated, one for each session.  
The top panel shows the values of the intercept parameter 
across participants, and the bottom panel shows the values of 

the slope parameter.  That the majority of the intercept values 
were between 150 and 250 ms suggests that the minimum 
tracking time might be the participants’ simple reaction time.  
From the graph, it seems that participants varied their 
parameters considerably across sessions.

Using the EPIC cognitive architecture and the parameters 
in Figure 5, models that incorporate the discrete pursuit 
tracking component were built for the dual-task experiment.  
The RMS tracking error and the reaction time for the choice-
reaction task were calculated for the simulation of each 
experimental session.  The overall average predicted RMS 
tracking error is 21 pixels, which is very close to the average 
observed RMS tracking error of 22 pixels.  Figure 6 shows the 
absolute percentage error between the predicted and observed 
RMS tracking error across participants and sessions.  As can 
be seen, the majority of the predicted RMS tracking error is 
within 10% range of the observed RMS tracking error, which 
we accept as a good data fit for predictive modeling.  The 
model also explained the observed data for the other 
nontracking task in the dual task experiment, suggesting that 
the proposed parameter estimation procedure can lead to 
correct tracking parameter values without overfitting the RMS 
tracking error.

DISCUSSION

The results from the movement data analysis support the 
basic assumption of the discrete movement model, that 
tracking behavior can be approximated by a sequence of 
discrete Fitts' law movements.  Clear evidence of the discrete 

Figure 5.  The best-fitting Fitts’  law intercept and slope 
parameters estimated from the movement data across 
40 participant-sessions.
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blip: (1) Eyes from tracking to tactical,  (2) eyes to target 
(the blip that changed color), and (3) eyes back to tracking.  
Figure 10 shows a sort of timeline of the time intervals 
preceding each of these three events.

Figure 10.  Mean performance times across the lifetime of a 
colored blip, from when a blip changes from black to 
colored, to when the eyes leave the blip and it is classified.  
The horizontal axis shows the subtasks: Get the eyes from 
the tracking to the tactical display; get the eyes onto the 
target blip to classify; and get the eyes back to the tracking 
display.

1. Eyes to Tactical (to Classify a Blip)

There are three ways to know when to move the gaze to a 
target blip:  The participant sees the color-change in their 
periphery, hears an auditory cue, or decides it is time to 
make the next self-motivated movement.   The overall eyes-
to-tactical response times are shown as the first event in 
Figure 10, and were broken out further in Figure 6, earlier.  
Participants respond most quickly when color-change 
events are peripherally visible (674 ms), and more slowly to 
just auditory color-change cues (984 ms).  In the no-
periphery no-sound condition, self-paced or otherwise 
motivated, lead to roughly 1.2s eye-to-tactical delays.  The 
three triggers for eyes-to-tactical movements are perhaps 
typical for visual-stimulus-motivated intermittent secondary 
tasks:  Participants see something,  they hear something, or 
they decide that it is just time to check.  Our data suggest 
that a visual stimuli in the near periphery is best,  and an 
auditory cue is second-best.

2. Eyes to Target

After the gaze arrives on the tactical display, it needs to 
move to the target blip.  This time relates directly to where 
the eyes landed, which will be discussed shortly.   The eyes-
to-target time (shown in Figure 10) is lowest when 
peripheral information is available because these eye 
movements often land directly on the target.

3. Eyes to Tracking.

Once the gaze lands on a target blip, its stays there just long 
enough to gather up the visual features needed to classify 
that blip, and then returns to the tracking.  The duration is 
constant across all conditions, as shown in the convergence 
of all lines onto a single point in Figure 10.  Figure 9 
showed that this duration is 440 ms for red or green blips, 
and 678 ms for yellow blips.  Figure 11 shows how 
participants reduced this duration decreased by about 200 
ms across three days of practice, but appear to have arrived 
at a somewhat optimal duration by Day 3.
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Figure 11. The time spent looking at a blip while
it was in its colored state (and thus ready for

classification) as a function of day.

Examination of Blips Prior to Color Change

Aside from moving the eyes to classify a blip, there is 
potentially another motivation to move the eyes to the 
tactical display—to gain and maintain situational awareness 
that could reduce the classification time for a black blip 
after it changes color.  It is possible, for example, to 
determine a blip’s classification while it is still black, 
though this would require as much work as classifying a 
yellow blip.  Short of this, it is potentially useful simply to 
track the location of blips to assist with eye movements to 
those blips once they change color.  We refer to these 
glances at blips while they are still black at pre-
classification fixations.

Figure 12 shows the number of pre-classification fixations 
made on black blips.  The graph is similar to that Figure 7 
but collapsed by wave size.  As noted earlier, each blip 
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Figure 3.  Durations 
of discrete 
movements as a 
function of the 
movements’ index 
of difficulty for one 
session, and the 
best-fitting linear 
regression with an 
R2 of 0.68.  The 
solid line is the 
regression line over 
the data points.
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movements were found throughout participants' tracking data, 
such as shown in Figure 1.  Each discrete movement 
represents an uninterrupted reduction of tracking error over a 
few hundred milliseconds.

The results suggest that overall tracking performance can 
be accurately modeled using Fitts’ law parameters that are 
estimated based on individual movements.  Using the 
parameters estimated with this procedure, the cognitive 
models for the dual-task experiment accurately predict the 
performance of both tasks.  By assessing the model's fit to 
both tasks simultaneously, we have reduced the possibility that 
the parameters of one task were incorrectly adjusted to 
compensate the model's fit to the other task.

The data plots and the good fits of the discrete pursuit 
model support a hypothesis that tracking is comprised of non-
ballistic movements whose directions can be altered to follow 
the movements of the target.  Tracking movements extracted 
from the dual-task experimental data lasted on average about 
500 ms, which is much longer than simple reaction time.  The 
long duration of pursuit movements should allow participants 
to perceive the shifting of the target and to change their 
manual output to the controller device during a movement.

Implementing the discrete pursuit model within EPIC, as 
we have done, shows that it is possible to leverage the 
architecture's existing perceptual, cognitive, and motor 
modules to simulate the details of human information 
processing involved in tracking and other tasks.  As a result, 
the model could accurately account for the tracking 
performance in a dual-task scenario.

Though the discrete pursuit model is validated here with a 
tracking task with control dynamics of first- and second-order 
control, it is likely that the model applies to other control 
dynamics as well.  As control theory studies suggest (see 
Jagacinski & Flach, 2003 for a review), regardless of the 
actual control dynamics of a device, humans tend to adapt 
their manual movements to the dynamics of the device to 
make the response of the system behave as if it were a first-
order control.  As a result, regardless of the dynamics of the 
device, it always appears to the human operator that the 
tracking error drives the velocity of the system response, and 
larger tracking error leads to increasingly faster human 
movements.  This is in fact in accordance with the discrete 
pursuit model proposed here because of the logarithmic 
function for calculating movement duration.  Thus, the 

discrete pursuit model and the control theory seem to, albeit 
from different perspectives, describe the same phenomenon in 
tracking, and this phenomenon should not be dramatically 
affected by the control dynamics of the device.

The discrete pursuit model can potentially be applied to 
more complex, real-world tracking tasks such as driving.  Eye 
tracking studies of driving (e.g., Land & Lee, 1994) suggest 
that humans use, as the error signal to guide steering during 
curve negotiation, the angular difference between (a) the 
forward line of sight and (b) the line of sight to the tangent 
point of the upcoming curve.  A few models have been 
proposed to use the error signal to predict the steering angle 
(Salvucci, 2006) or vehicle lateral velocity (Brumby, Salvucci, 
& Howes, 2009), but these models are based on the control 
theory.  Perhaps the discrete pursuit model could be used to 
predict the steering movement time in a dual task setting 
because, unlike control theory models that assume continuous 
tracking responses, the discrete movement model offers a 
straightforward means of interleaving steering with other 
tasks.
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Figure 6.  Absolute percentage error of models’  RMS 
tracking error compared to the empirical data across 
the forty participant-sessions.
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blip: (1) Eyes from tracking to tactical,  (2) eyes to target 
(the blip that changed color), and (3) eyes back to tracking.  
Figure 10 shows a sort of timeline of the time intervals 
preceding each of these three events.

Figure 10.  Mean performance times across the lifetime of a 
colored blip, from when a blip changes from black to 
colored, to when the eyes leave the blip and it is classified.  
The horizontal axis shows the subtasks: Get the eyes from 
the tracking to the tactical display; get the eyes onto the 
target blip to classify; and get the eyes back to the tracking 
display.

1. Eyes to Tactical (to Classify a Blip)

There are three ways to know when to move the gaze to a 
target blip:  The participant sees the color-change in their 
periphery, hears an auditory cue, or decides it is time to 
make the next self-motivated movement.   The overall eyes-
to-tactical response times are shown as the first event in 
Figure 10, and were broken out further in Figure 6, earlier.  
Participants respond most quickly when color-change 
events are peripherally visible (674 ms), and more slowly to 
just auditory color-change cues (984 ms).  In the no-
periphery no-sound condition, self-paced or otherwise 
motivated, lead to roughly 1.2s eye-to-tactical delays.  The 
three triggers for eyes-to-tactical movements are perhaps 
typical for visual-stimulus-motivated intermittent secondary 
tasks:  Participants see something,  they hear something, or 
they decide that it is just time to check.  Our data suggest 
that a visual stimuli in the near periphery is best,  and an 
auditory cue is second-best.

2. Eyes to Target

After the gaze arrives on the tactical display, it needs to 
move to the target blip.  This time relates directly to where 
the eyes landed, which will be discussed shortly.   The eyes-
to-target time (shown in Figure 10) is lowest when 
peripheral information is available because these eye 
movements often land directly on the target.

3. Eyes to Tracking.

Once the gaze lands on a target blip, its stays there just long 
enough to gather up the visual features needed to classify 
that blip, and then returns to the tracking.  The duration is 
constant across all conditions, as shown in the convergence 
of all lines onto a single point in Figure 10.  Figure 9 
showed that this duration is 440 ms for red or green blips, 
and 678 ms for yellow blips.  Figure 11 shows how 
participants reduced this duration decreased by about 200 
ms across three days of practice, but appear to have arrived 
at a somewhat optimal duration by Day 3.
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Figure 11. The time spent looking at a blip while
it was in its colored state (and thus ready for

classification) as a function of day.

Examination of Blips Prior to Color Change

Aside from moving the eyes to classify a blip, there is 
potentially another motivation to move the eyes to the 
tactical display—to gain and maintain situational awareness 
that could reduce the classification time for a black blip 
after it changes color.  It is possible, for example, to 
determine a blip’s classification while it is still black, 
though this would require as much work as classifying a 
yellow blip.  Short of this, it is potentially useful simply to 
track the location of blips to assist with eye movements to 
those blips once they change color.  We refer to these 
glances at blips while they are still black at pre-
classification fixations.

Figure 12 shows the number of pre-classification fixations 
made on black blips.  The graph is similar to that Figure 7 
but collapsed by wave size.  As noted earlier, each blip 
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Figure 10.  Movement times across the lifetime of a colored 
blip.  The horizontal axis shows the subtasks: Get the eyes 
from the tracking to the tactical display; get the eyes onto 

the target blip; and get the eyes back to tracking.
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Figure 12.  The mean number of fixations on black blips, 
for each of the four conditions, as a function of day.
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