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Human visual search plays an important role in many human–computer

interaction (HCI) tasks. Better models of visual search are needed not

just to predict overall performance outcomes, such as whether people will

be able to find the information needed to complete an HCI task, but

to understand the many human processes that interact in visual search,

which will in turn inform the detailed design of better user interfaces. This

article describes a detailed instantiation, in the form of a computational

cognitive model, of a comprehensive theory of human visual processing

known as ‘‘active vision’’ (Findlay & Gilchrist, 2003). The computational

model is built using the Executive Process-Interactive Control cognitive

architecture. Eye-tracking data from three experiments inform the devel-

opment and validation of the model. The modeling asks—and at least

partially answers—the four questions of active vision: (a) What can be

perceived in a fixation? (b) When do the eyes move? (c) Where do the

eyes move? (d) What information is integrated between eye movements?

Answers include: (a) Items nearer the point of gaze are more likely to be

perceived, and the visual features of objects are sometimes misidentified.

(b) The eyes move after the fixated visual stimulus has been processed

(i.e., has entered working memory). (c) The eyes tend to go to nearby

objects. (d) Only the coarse spatial information of what has been fixated is

likely maintained between fixations. The model developed to answer these

questions has both scientific and practical value in that the model gives
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1. INTRODUCTION

Visual search is an important part of human–computer interaction (HCI). Users

search news websites to locate stories of interest, search user interfaces to learn how
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to use desktop applications, and search virtual environments to locate and identify

objects that require more scrutiny or action. For sighted users, nearly every action

requires some visual interaction, and many of these actions require visual search to

find familiar or novel information.

The visual search processes that people use in HCI tasks have a substantial effect

on the time and likelihood of finding the information that a user seeks. Visual search

is a particularly fascinating human activity to study because it requires a complex and

rapid interplay among perceptual, cognitive, and motor processes. Computational

cognitive modeling is a very powerful methodology for proposing and evaluating

plausible sets of interaction among these processes.

The most important contribution of computational cognitive models to the

field of HCI is that the modeling provides a science base that is badly needed for

predictive interface-analysis tools. Projects such as CogTool (John, Prevas, Salvucci,

& Koedinger, 2004) and CORE/X-PRT (Tollinger et al., 2005) are at the forefront

of the development of tools that utilize cognitive modeling to predict user interaction

based on a description of the interface and task. These tools provide theoretically

grounded predictions of human performance for a range of tasks without requiring

that the analyst be knowledgeable in the cognitive, perceptual, and motoric theories

embedded in the tool. Designers of device and application interfaces may be able to

utilize such tools to evaluate their visual layouts, identify potential usability problems

early in the design cycle, and reduce the need for more human user testing early in

the development cycle.

Predicting people’s visual interaction is one aspect of user behavior that research

with interface analysis tools is trying to improve. To this end, a recent version of

CogTool (Teo & John, 2008, 2010) now incorporates modeling work presented in

this paper based on an early summary of the work (Halverson & Hornof, 2007).

However, interface analysis tools such as CogTool and CORE/X-PRT do not yet

fully account for human vision, as in where the eyes move and what they do and do

not see. A partial account of visual information processing is provided by EMMA

(Salvucci, 2001), which is an extension to the ACT–R (Anderson, Matessa, & Lebiere,

1997) modeling framework underlying CogTool. EMMA provides a simulation of the

eyes including where the eyes move and how quickly visual information is processed.

But this falls short of a complete account of active vision; automated interface analysis

tools do not yet simulate active vision.

Active vision (Findlay & Gilchrist, 2003) embraces the notion that eye movements

are a crucial aspect of our visual interaction with the world, and thus critical for

visual search. When people interact with the environment (e.g., a user interface),

they continually move their eyes to sample information. Accounting for these eye

movements allows not only a better understanding of the processes underlying visual

search but also a better understanding of how people use computer interfaces.

This article describes a computational model of visual search for HCI that

integrates a contemporary understanding of visual processing in the context of active

vision. The remainder of this article is arranged as follows: Section 2 introduces

the Executive Process-Interactive Control (EPIC; Kieras & Meyer, 1997) cognitive
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architecture that was used to build the model and describes two eye-tracking ex-

periments that helped to guide the development of the model. Section 3 asks and

answers the four questions of active vision in the context of the model. Section 4

assesses the validity of the model with a new set of data. Section 5 summarizes the

research, identifies key contributions, and suggests future directions.

2. MODELING ACTIVE-VISION VISUAL SEARCH

The goal of this work is to better understand and predict how people visually

search computer displays in everyday tasks. It is increasingly important for models

of visual search in HCI to account for eye movements (and sometimes even head

and body movements). This is especially true due to the increasing size of computer

displays and the increasing ubiquity of computing interfaces, and hence the increased

importance of where the eyes are physically pointing. One way to improve models of

visual search is to address the questions raised by active vision (Findlay & Gilchrist,

2003).

A model of active vision should address the four questions posed by active

vision, the answers to which are important to designers and those interested in HCI:

(a) When and why do we move our eyes? (b) Where do we move our eyes? (c) What

information in the environment can be perceived when the eyes are held steady?

(d) What information from the environment is integrated between eye movements?

The research presented here proposes answers to these four questions within a larger

set of psychological theory using a cognitive architecture, specifically EPIC (Kieras

& Meyer, 1997).

A cognitive architecture provides a computational instantiation of psychological

theory that is useful for modeling human performance. The architecture constrains

the construction of the models by enforcing human capabilities and constraints.

The cognitive models discussed in this article consist of (a) a detailed set of if–

then statements called production rules that encode the strategy used by the simulated

human to carry out a task, (b) a set of hypothesized processors that interact with the

production rules to produce behavior, and (c) parameters that constrain the behavior

of the model (e.g., the velocity of a saccadic eye movement). Although the parameters

can be task specific, the majority of the parameters are usually fixed across a wide

variety of models.

The theory, which is computationally instantiated in the models, generates

predictions of how a person would perform a task. The results of such simulations

allow the testing of the theory by directly comparing the model’s performance with

human performance.

There is a special synergetic relationship between cognitive modeling and the

study of eye movements. Eye movements provide data for informing the construction

and evaluation of the models at a more detailed level than reaction time data. Eye

movement data provide many constraints on the models, including the number,
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extent, sequence, and timing of eye movements. The models, in turn, provide a

means for understanding and explaining the strategies and processes that motivate

the observed eye movements. The modeling framework used here—EPIC—is par-

ticularly well suited to model active vision because EPIC makes explicit predictions

of eye movements.

2.1. The Modeling Environment

The EPIC Cognitive Architecture

EPIC is a cognitive architecture that computationally instantiates and integrates

theories of perceptual, motor, and cognitive processing constraints. Figure 1 shows

the high-level components of EPIC (Kieras & Meyer, 1997). EPIC provides sep-

arate facilities for simulating the human and the task. In the task environment, a

visual display, pointing device, keyboard, speaker, and microphone can be simulated.

Information from the environment enters the simulated human through eyes, ears,

and hands and moves into corresponding visual, auditory, and tactical perceptual

processors. Information from the perceptual processors is deposited into working

memory. Working memory is represented by a set of clauses that represent discrete

FIGURE 1. The high-level overview of the EPIC cognitive architecture (Kieras & Meyer, 1997).
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facts about the world. In the cognitive processor, information in working memory

interacts with a cognitive strategy, represented in production rules, to produce action

through the ocular, manual, and voice motor processors. The motor processors

control the simulated eyes, hands, and mouth to interact with the environment. All

processors run in parallel with each other.

The perceptual and motor processors constrain the behavior that a set of

production rules can generate. Particularly relevant to active vision are the constraints

imposed by the simulated eyes, including EPIC’s retinal availability functions, which

constrain the perception of visual information from the environment. The availability

functions simulate the varying resolution of the retina, with greater resolution near

the center of vision and lower resolution in the periphery. The retinal availability

functions determine the eccentricity at which visual properties can be perceived.

For example, text is available within 1ı of visual angle from the center of fixation,

roughly corresponding to foveal vision, whereas color is available within 7
1

2

ı

of visual

angle. EPIC also simulates the ballistic eye movements, called saccades, which are

made to gather visual information. The cognitive processor sends commands to the

ocular-motor processor to initiate eye movements. The ocular-motor processor then

prepares and executes the eye movements, imposing appropriate time delays for

processing time and eyeball rotation. To illustrate, Figure 2 annotates the contents

of a production rule that selects the next saccade destination and prepares an eye

movement to that location.

The encoding of visual objects and their properties into visual working memory

takes time. EPIC simulates these encoding times by delaying information as it flows

through the visual sensory processor and the visual-perceptual processor, each of

FIGURE 2. Example of an EPIC production rule that illustrates the selection of a saccade

destination and prepares an eye movement to that location.



Computational Model of Active Vision 291

which induces a delay. For example, if an object appears in the model’s parafovea,

the shape of that object would appear 50 ms later in the visual sensory store and

another 50 ms later in the perceptual memory store (i.e., visual working memory).

Different visual features have different delays, which are detailed in Kieras (2004) and

Kieras and Meyer (1997).

Model Development

All models presented in this article started with the core EPIC cognitive ar-

chitecture. Some modifications were made to EPIC’s visual processors during the

iterative process of refining the models. All of EPIC’s perceptual properties were

kept at established values, including: Text centered within 1ı of the point of fixation

will enter working memory after 149 ms; saccades take time to prepare, 50 ms if

the previous saccade had the same direction and extent, and 150 ms if the previous

saccade had a different direction and extent; saccades require 4 ms per degree of

visual angle to rotate the eyeball.

The models search ‘‘without replacement.’’ That is, any object for which the text

has been perceived is excluded from being the destination of future saccades. Although

there is some controversy over whether visual search proceeds with replacement (i.e.,

amnesic-search; see, e.g., Horowitz & Wolfe, 2001) or without replacement (see,

e.g., Shore & Klein, 2000), the preponderance of evidence favors search without

replacement.

The development of the model proceeded in a principled manner, guided by the

questions raised by active vision (Findlay & Gilchrist, 2003). The modeling started

with a baseline model that was based on the reasonable initial assumptions previously

identified and progressed to a model that explains many features of observed eye

movement data. With a model of active vision as the goal, the modeling focused on

details in the data that related to questions such as what is perceived in a fixation and

when are saccades initiated.

Throughout the development of the models presented in this article, a model’s

prediction is considered to be accurate, or at least adequate, if its prediction falls within

10% of the observed data. This is consistent with engineering practices (Kieras, Wood,

& Meyer, 1997).

2.2. Eye-Tracking Experiments to Develop the Model

The computational model of active vision was developed using eye-tracking

data from two experiments: a mixed density search task and a consonant–vowel–

consonant (CVC) search task. The mixed density experiment (Halverson & Hornof,

2004b) investigated the effects of varying the visual density of elements in a structured

layout. The CVC search experiment (Hornof, 2004) investigated the effects of layout

size and visual hierarchy. Together, the two experiments provide a useful set of data

for building and refining an active-vision model of visual search for HCI because
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there are substantial differences between the two tasks and because the model needs

to predict performance for a range of visual layouts and features.

Both experiments were conducted using a classic visual search experimental

paradigm in which the entire layout is displayed at the same moment, permitting any

search order, and the trials are blocked by experimental condition, which in this case

is layout type. Each trial proceeded as follows: The participant studied and clicked on

the precue; the precue disappeared and the layout appeared; the participant found the

target, moved the mouse to the target, and clicked on the target; the layout disappeared

and the next precue appeared.

Mixed Density Task

The mixed density experiment explored how the size and spacing of text affects

the visual search of structured layouts. The experiment is discussed in more detail

in Halverson and Hornof (2004b) and is presented here specifically with regard to

developing a comprehensive model of active vision.

Layouts in the mixed density task contained two types of groups: sparse groups

containing five words, and dense groups containing 10 words. Both types of groups

subtended the same vertical visual angle. There were three types of layouts: sparse,

dense, and mixed density. Sparse layouts contained six sparse groups. Dense layouts

contained six dense groups. Mixed density layouts contained three sparse groups and

three dense groups. Figure 3 shows an example of a mixed density layout. Twenty-four

people participated in the experiment.

The results of the experiment suggest that people tend to search sparse groups

first and faster. The search time data demonstrate that people spent less time per

FIGURE 3. A mixed density layout.

Note. All angle measurements are in degrees of visual angle. The gray text did not appear during

the experiment.
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word when searching sparse layouts. It appears that, with sparse groups, participants

adopted a more efficient eye movement strategy that used slightly fewer and slightly

shorter fixations.

CVC Task

The CVC search task investigated the effects of layout size and a visual hierarchy

(Hornof, 2004). The CVC task is called such because the task used three-letter

consonant–vowel–consonant pseudowords (such as ZEJ), which controlled for word

familiarity and other effects. The CVC task included layouts with and without a labeled

visual hierarchy. When labels were used, groups were randomly labeled with single

numerical digits flanked by Xs (e.g., ‘‘X1X’’). Data from the tasks without a labeled

visual hierarchy are used to inform the development of the model presented here.

The CVC experiment was originally conducted by Hornof (2001) without eye

tracking and modeled by Hornof (2004). The experiment was run again by Hornof

and Halverson (2003) to collect eye movement data that were used to evaluate the

models in more detail. Sixteen people participated in each study.

Each layout contained one, two, four, or six groups. Each group contained five

objects. The groups always appeared at the same physical locations on the screen.

Figure 4 shows a sample layout from the experiment. One-group layouts used Group

A. Two-group layouts used Groups A and B. Four-group layouts used Groups A

through D.

The results of the experiment show that people were able to search smaller

layouts faster than larger and to search labeled layouts faster than unlabeled. Further,

people required disproportionately more time and fixations to find the target in large

unlabeled layouts compared to small unlabeled layouts. It appears that participants

used a more consistent search strategy when a useful visual hierarchy was present.

FIGURE 4. A layout without group labels from Hornof’s (2001) consonant–vowel–consonant

search task.

Note. The gray text did not appear during the experiment.
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A good model of active vision needs to accurately predict eye movements, as

these are the most directly observable and measurable events of interest during a visual

search task. In all experiments reported in this article, eye movements were recorded

using a pupil-center and corneal-reflection eye tracker. In all analyses presented in the

following sections, the accuracy of the eye-tracking data is assured using the required

fixation locations post hoc method (Hornof & Halverson, 2002), and fixations are

identified using a dispersion-based algorithm (Salvucci & Goldberg, 2000). Following

established conventions, fixations are defined as a series of eye-tracker gaze samples

with locations within a 0.5ı of visual angle radius of each other for a minimum of

100 ms. These are the data that our model will explain in order to answer the four

questions of active vision, presented next.

3. ANSWERING THE FOUR QUESTIONS OF

ACTIVE VISION

Building on the special synergetic relationship between cognitive modeling and

eye tracking, this section describes the development of models of the mixed density

and CVC search tasks using the EPIC cognitive architecture. The result is a single

comprehensive model that answers the four questions of active vision: (a) When do

the eyes move? (b) What can be perceived? (c) Where do the eyes move? (d) What

information is integrated between eye movements?

3.1. When Do the Eyes Move?

Existing Theory

The question of when to move the eyes from one visual element to another,

or conversely how long the eyes should linger on elements in a visual layout, is an

important factor to consider in a model of active vision. For example, the eyes might

remain on complex icons longer than simple icons in order to gather more visual

details.

Four explanations of the control of fixation duration have been proposed in the

literature: (a) preprogramming-per-trial, (b) preprogramming-per-fixation, (c) process-

monitoring, and (d) mixed-control. The first explanation, preprogramming-per-trial,

asserts that the fixation duration required for the task is estimated before the visual

search task is initiated and that this estimated fixation duration is used through-

out the entire visual search task. The second explanation, preprogramming-per-

fixation, assumes that fixation durations are similarly preset but dynamically estimated

throughout a task and, if previous fixations were too short to perceive the stimulus

before initiating a saccade, then future fixation durations are lengthened. The third

explanation, process-monitoring, asserts that fixation durations are not estimated but

instead directly determined based on the time that is required to perceive a stimuli

during a fixation. The fourth explanation, mixed-control, assumes that saccades are
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sometimes initiated by the time to perceive the stimuli and sometimes by previously

estimated durations. Hooge and Erkelens (1996) reviewed these four explanations of

fixation duration control.

A variety of research supports the mixed-control explanation of fixation duration

both for reading (e.g., Yang, 2009) and natural scene viewing (e.g., Henderson &

Pierce, 2008). However, other data (such as Henderson & Pierce, 2008) suggest that,

at least in natural scene viewing, the majority of fixations are process-monitoring.

Existing computational models of visual search implement different mechanisms

for the control of fixation duration, each of which is aligned with one of the four

explanations of fixation duration. Fixations in Guided Search (Wolfe & Gancarz,

1996) are best characterized as preprogramming-per-trial, as fixation durations are

fairly constant, each lasting 200 to 250 ms. Understanding Cognitive Information

Engineering (Lohse, 1993), on the other hand, proposes a varying time for fixa-

tion durations—akin to process-monitoring—with durations based on the number,

proximity, and similarity of objects near the point of gaze.

Modeling Fixation Duration

The model presented here was developed considering the four explanations

of fixation duration described by Hooge and Erkelens (1996): preprogramming-

per-trial, preprogramming-per-fixation, process-monitoring, and mixed-control. The

observed fixation durations for dense groups were longer than the durations for

sparse groups, suggesting that a factor such as the density, size, or discriminability

of the text influenced the fixation durations. But such a factor could have been used

by either a preprogramming-per-fixation or process-monitoring scheme. One way to

answer the question of which scheme the active-vision model should use is to look

for a parsimonious explanation based on the constraints of the architecture.

Newell (1990) encouraged researchers building cognitive models to ‘‘listen to

the architecture.’’ By this, he meant that researchers should develop models that,

at least in part, derive their parsimony from the basic principles encoded in the

architecture. It turns out that EPIC lends itself to a process-monitoring explanation

of saccade initiation because the timing and retinal availability of visual features that

are built into the cognitive architecture can be used in a very straightforward manner

to simulate process-monitoring. Modeling the preprogramming of saccade initiation

would require additional mechanisms and parameters to be added to EPIC and would

therefore decrease the parsimony of the model. (For example, a preprogramming

strategy might require a theory of time perception to predict saccade time intervals.)

The current modeling effort uses process-monitoring to explain fixation durations

and in doing so finds a good fit between the theory and the architecture.

EPIC’s visual-perceptual processor was used to simulate process-monitoring as

follows: EPIC’s default recoding time for text (a constant 100 ms) was modified to

fit the human data from the mixed density experiment in which fixation durations

differed as a function of text density. As shown in Figure 5, the observed fixation

duration in the dense layouts was more than 100 ms longer than in the sparse layouts.
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FIGURE 5. Mean fixation durations observed and predicted by the process-monitoring model

(PM) and minimum fixation duration model (MFD) for the mixed density task.

Note. The average absolute error of the PM model is 10.0% and the MFD model is 65.5%.

To model this, a stepped recoding function was introduced to the visual-perceptual

processor to calculate the perceptual time for a feature based on the proximity of

adjacent items. If an object’s closest neighbor is closer than 0.15ı of visual angle (a

dense object), the text recoding time is 150 ms. Otherwise the text recoding time is

50 ms. The differentiation of the time to recode the text is consistent with a principle

in the EPIC architecture in which the processing of visual objects is differentiated

based on the features of those visual objects.

Figure 6 shows a flowchart that represents the model’s production rules used for

the process-monitoring. After the text property for the current saccade destination

becomes available, and after it is decided whether the target has been found, then

the model initiates a saccade. These rules, along with the delays that represent the

time to process the visual features, encode the process-monitoring theory of saccade

initiation into the active-vision model of visual search.

FIGURE 6. Flowchart of the production rules for the process-monitoring strategy.
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All models presented in this article use process-monitoring, but the mechanism

that is used to select the next saccade destination matured throughout the model-

building process. The mixed-density task model used EPIC’s default ocular motor

preparation parameters and only a single production rule. In the final model, the ocular

motor preparation time was removed and the model used a sequence of several

production rules. The removal of the ocular motor preparation time is consistent

with research that suggests that the processes for preparing an eye movement are

better represented as decisions implemented in production rules rather than motor

preparation time (Kieras, 2005).

The model’s predictions are compared to the human data from the mixed density

task, in which fixation durations varied systematically as a function of visual layout

features. As shown in Figure 5, the process-monitoring (PM) model correctly predicts

the fixation durations in the mixed density task. The PM model delays the initiation of

saccades until after the text information has entered working memory and increases

recoding time for dense objects. Figure 5 also shows EPIC’s prediction with the

minimum fixation duration model in which saccades are initiated as quickly as possible,

somewhat akin to a preprogrammed duration model. As can be seen, the predictions

of the PM model are much better than a similar model in which saccades were

initiated without regard to whether the text property has entered working memory.

Additional details on this model and its development can be found in Halverson and

Hornof (2004a).

The PM model suggests a number of components that should be included in a

comprehensive computational model of active vision for HCI. A process-monitoring

strategy for saccade initiation provides straightforward, plausible predictions. The

fixation durations predicted by EPIC match the observed mean fixation duration

very well, with an average absolute error (AAE) of 10%, by including the time to

decide where to move the eyes, to wait on the relevant features to enter working

memory, and to execute the eye movement.

Although other explanations of the control of fixation duration might also work

to explain the observed fixation duration data, this would require introducing addi-

tional processes and parameters into the EPIC cognitive architecture. The process-

monitoring strategy is an important component of the model as it is parsimonious,

predicts the observed data very well, is supported by the literature, and provides a

satisfactory answer to the question of when do the eyes move.

3.2. What Can Be Perceived?

Existing Theory

Another important question that must be answered by a comprehensive model

of visual search for HCI is what can be visually perceived in an interface at any given

moment. For example, a user may or may not notice a notification that just appeared

on their screen.
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One reasonable assumption about what can be perceived is that all objects within

a fixed region can be perceived around the point of gaze. Some previous models of

visual search make this assumption. Barbur, Forsyth, and Wooding (1990) assumed

that all information within 1.2ı of visual angle of the fixation center can be perceived.

Understanding Cognitive Information Engineering (Lohse, 1993) assumes that all

items around the point of gaze are processed, but only the object of interest at the

center of fixation is considered. Guided Search (Wolfe & Gancarz, 1996) assumes that

up to five objects near the center of fixation are processed during each fixation. The

Area Activation model (Pomplun, Reingold, & Shen, 2003) assumes that all items are

perceived within a ‘‘fixation field’’ normally distributed around the center of fixation

and varies based on the properties of the stimuli.

A challenge when building a comprehensive, predictive model of visual search

is to determine which of the many research findings regarding what is perceived in

a fixation need to be incorporated into the model and which can be left out. For

example, although some models assume that all items within a given region can be

perceived in parallel, no models differentiate between the perception of vertically or

horizontally organized objects, though research has shown that the region may be

larger in the horizontal dimension than in the vertical (Ojanpää, Näsänen, & Kojo,

2002). As another example, Casco and Campana (1999) found that density (but not

spatial perturbation) affects search time for simple objects, and spatial perturbation

(but not density) affects search time for complex objects. Must a useful model

account for this? Although a predictive model can be useful without addressing

all observed phenomena, it is presently unclear how accurately a predictive model

needs to represent what can be perceived in a fixation in order for the model to have

theoretical and practical value.

A straightforward and reasonable model of visual search for HCI might assume

that all objects in an effective field of view (Bertera & Rayner, 2000) are perceived

during each fixation. Many existing models do just that (Barbur et al., 1990; Hornof,

2004; Lohse, 1993). This simplifies the model because it means that location is the

only object feature that is required to determine which objects are perceived, and an

object’s position is a feature that can be automatically extracted relatively easily from

a physical device and input into a predictive modeling tool (more easily than color,

size, shape, etc.). A reasonable approximation for this region is a radius of 1ı of visual

angle. Such a region has been used, for example, to successfully explain visual search

performance for simple shapes (Barbur et al., 1990) and text (Hornof, 2004).

Modeling What Is Perceived During a Fixation

As shown in Figure 7, people require more fixations for denser text. This trend

can be modeled in multiple ways. One way is to reduce the size of the region in which

dense text can be perceived. Another is to keep the size of the region constant but

reduce the probability that dense text in this region will be correctly perceived. These

two explanations were implemented in two separate models, and the predictions of

those two models were compared to the observed data.



Computational Model of Active Vision 299

FIGURE 7. Mean number of fixations per trial observed, predicted by the Text-Encoding Error

(TEE) model and the Reduced-Region (RR) model for the mixed-density task.

Note. The average absolute error of the TEE model is 8.8% and the RR model is 21.1%.

A reduced-region (RR) model was implemented to test the hypothesis that

dense text can be perceived over a smaller region than sparse text can be perceived.

Previous research suggests that a straightforward way to predict the observed number

of fixations in a search task is to assume that two or three objects are processed per

fixation (Hornof & Halverson, 2003). For this model, the EPIC visual-perceptual

processor availability function was modified so that two or three words were processed

per fixation regardless of density. This was accomplished by processing sparse words

that appear within 1ı of visual angle of the fixation (consistent with EPIC’s default

availability function for text) but by processing dense words that appear only within

0.5ı of visual angle. This modification resulted in a much better fit for the predicted

number of fixations per trial. However, as shown in Figure 7, the RR model still

underpredicted the number of fixations per trial in all layouts, with an AAE of 21.1%,

and so this words-per-fixation approach was rejected in favor of the probability-of-

encoding approach, discussed next.

A text-encoding error (TEE) model was implemented to test the hypothesis that

the region in which text can be perceived is a constant 1ı of visual angle and that the

probability of correctly perceiving text is higher for sparse text than for dense text.

To this end, EPIC’s perceptual processor was modified so that the probability of

correctly encoding text increased with the distance to the nearest neighboring object.

This is one of several ways of measuring density and is somewhat akin to how one

might model the flanker effects reported in Bouma (1970).

EPIC’s visual-perceptual processor was modified as follows: If an object’s closest

neighbor is at least 0.15ı of visual angle away (sparse text), the probability of the model

correctly perceiving the text is 90%. Otherwise, the probability of the model correctly

perceiving the text is 50%. These probabilities were chosen because they result in

an average of two to three items perceived per fixation across both densities, which
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previous modeling suggests is a good estimate of the number of items processed per

fixation (Hornof & Halverson, 2003).

The TEE model’s strategy includes the following details: Even if the text of

an object is incorrectly encoded, that object is nonetheless marked as fixated just

like objects that are correctly encoded. This makes it possible for the simulation to

sometimes fixate but pass over the target as was observed in the human data. If the

entire layout is searched (all objects have been marked as fixated) without finding

the target, the model restarts the search by resetting all objects as unfixated.

As seen in Figure 7, with text-encoding errors introduced to the model, the TEE

model predicts the number of fixations much better than the RR model. The average

absolute errors for the two models are 8.8% and 21.1%, respectively. The number

of fixations per trial in the TEE model closely approximates the observed data.

The modification made to the text-encoding property remains true to a principle

in the EPIC architecture in which the processing of visual objects is differentiated

based on the characteristics of visual objects as opposed to global parameter settings,

permitting the model to ‘‘listen to the architecture.’’ Additional details on the model

presented here and its development can be found in Halverson and Hornof (2004a).

The modeling suggests that a useful answer to the question of what can be

perceived in a fixation is that all objects in a fixed region are marked as perceived

but that the probability of correctly perceiving each object property will vary based on

the properties (e.g., density) and, further, that the use of encoding errors is a good

method to simulate the challenges associated with perceiving dense objects. For the

current task, when all items in a fixed region are perceived in every fixation, the model

underpredicts the number of eye movements that the humans need to find the target.

When the model is modified to include the possibility of misperceiving text, the model

correctly predicts the number of fixations used in each layout.

3.3. Where Do the Eyes Move?

Existing Theory

The order in which items in a layout are searched—the scanpath—may have a

large impact on usability. For example, visitors to a web page will sometimes follow

the scanpath that the designer intended and sometimes take a completely different

path. A great deal of research has been conducted to determine the factors that

influence a user’s scanpath in a visual search task (see Wolfe & Horowitz, 2004, for

a review).

Scanpaths are influenced by bottom-up features and top-down strategies. Object

features (e.g., color, size, shape, or text) affect the order in which objects are searched.

When target features are known, and these features can be perceived in the periphery,

this information can guide visual search. Many existing models of visual search use

visual features to guide search in some way. For example, Guided Search 2 (Wolfe,

1994) builds an activation map based on the color and orientation of objects to

be searched. Activation maps are spatial representations of the locations of visual
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information in the visual environment. Visual search is then guided to the items in

order from highest to lowest activation. Guided Search 3 (Wolfe & Gancarz, 1996)

adds the additional constraint that objects closer to the center of the fixation produce

more activation. The Area Activation model (Pomplun et al., 2003) is similar to

Guided Search 2 except that the Area Activation model guides the search process

to regions rather than items of greatest activation. But if peripherally visible features

or the exact identity of the target is not available, bottom-up features alone cannot

guide the scanpath, and top-down strategies are needed.

In addition to bottom-up features, top-down strategic decisions also influence

the order in which objects are searched. For example, hierarchical versus nonhier-

archical layouts motivate fundamentally different strategies (Hornof, 2004), and the

ordering of menu items, either alphabetically, functionally, or randomly, also motivate

different strategies (Card, 1982; Perlman, 1984; Somberg, 1987). Search patterns are

also motivated by the spatial structure or global contour of the objects to be searched

(Findlay & Brown, 2006).

Although many complex factors contribute to the decision of which object to fix-

ate next, in general people tend to move their eyes to objects that are relatively nearby.

That is, when the target is not visually salient, saccade destinations tend to be based

largely on the proximity of objects to the center of fixation (Motter & Belky, 1998).

Previous cognitive modeling supports the idea that people tend to fixate nearby

objects. The original CVC task model suggests that moving to nearby objects is a

reasonable strategy. The best-fitting model for the CVC task data in Hornof (2004)

uses a strategy that, during each saccade, moves the eyes a few items down each column

of CVCs. Although the strategy did a good job explaining the human data for that

one task, a more general proximity-based strategy for selecting saccade destinations

is needed for more general search tasks. Fleetwood and Byrne’s (2006) model of icon

search, for example, moved visual attention to the nearest icon that matched one

randomly chosen feature of the target icon. With the goal of determining a general-

purpose approach for determining scanpaths, the development of an active-vision

model next explores the role of proximity in visual search.

Modeling the Selection of Saccade Destinations

The model implements a strategy in which saccade destinations are chosen based

on each visual object’s eccentricity—the distance from the current gaze position—as

follows:

(a) After each saccade, the eccentricity property of each object is updated based

on the new eye position.

(b) The eccentricity is scaled by a fluctuation factor, which has a mean of 1.0 and a

standard deviation of 0.3 (determined iteratively to find the best fit of the mean

saccade distance). This scaling factor is individually sampled for each object.

(c) Objects with text that has not been identified and that are in unvisited groups

are marked as potential saccade destinations (search without replacement).
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(d) The candidate object outside the effective field of view—1ı of visual angle from

the center of fixation—that has the lowest eccentricity is selected as the next

saccade destination (this was implemented by introducing a ‘‘Least’’ predicate

to EPIC’s production system). Figure 2 gives a sense of how the fourth step

in this strategy can be implemented in production rules.

In visual search, sometimes the eyes return to locations that have already been

searched. To this end, the strategy accommodated an occasional revisit to a group.

Participants revisited groups only on occasion, approximately once every one to four

trials, usually (a) after all groups had been visited once or (b) because the target was

overshot, resulting in a fixation in another group before refixating the target. One

possible explanation for the low rate of observed revisits is that people remember

the regions that they have explored. Searching groups without replacement, described

earlier, provides a straightforward approach to explain this behavior.

Figures 8 and 9 show the predictions made by the fixate-nearby model as well

as those made by the original CVC task model (Hornof, 2004) compared to the

observed data. As shown in Figure 8, the fixate-nearby model predicts the mean

saccade distances very well, with an AAE of 4.2%, a considerable improvement over

the AAE of 43.3% of the original model. As shown in Figure 9, the fixate-nearby

model also does a good job of predicting the observed scanpaths. The figure shows

the three most frequently observed scanpaths, and how the general purpose fixate-

nearby model predicts the observed scanpath frequencies better than the original,

rigid location-based model. Additional details on the model presented here can be

found in Halverson and Hornof (2007).

Results from this modeling suggest that people select saccade destinations partly

based on eccentricity from the current fixation location. The selection of saccade desti-

nations based on proximity results in a good fit of both the mean saccade distance and

FIGURE 8. Saccade distance observed in the consonant–vowel–consonant (CVC) search task,

predicted by the original CVC search task model and predictedby the fixate-nearby (FN) model.

Note. The average absolute error of the original model is 43.3% and of the FN model is 4.2%.
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FIGURE 9. The most commonly observed scanpaths in the consonant–vowel–consonant

search task for six-group layouts, and how often each path was taken by the participants

(Observed), predicted by the fixate-nearby (FN) model, and predicted by the original model.

Note. The dashed boxes emphasize the good fits of the FN model.

the scanpaths that people used in this task. The original CVC model (Hornof, 2004)

moves the eyes down a few words on each saccade and predicts saccade distances that

are much larger than those observed. In addition, as can be seen in Figure 8, the original

model predicts little difference based on the size of the layout, whereas the fixate-

nearby accounts for longer saccades in larger layouts. Further, as seen in Figure 9,

the fixate-nearby model correctly accounts for the two most frequent scanpaths.

To explain the eye movement data and to depict the human information process-

ing that is not directly observable, two mechanisms just described were introduced

to the fixate-nearby model: (a) noisy saccades to nearby objects and (b) inhibition of

group revisits. It might seem that these two mechanisms would interact to produce

effects similar to those produced by the encoding errors introduced earlier and may

thus help to explain not only the current question of ‘‘where do the eyes move’’ but

also the previous question of ‘‘what can be perceived by the eyes,’’ but without the

need for encoding errors. In other words, if the noise in the saccade selection strategy

results in the gaze moving to another group before all words in the current group

have been processed, the target can get passed over as it was with the recoding errors.

However, an exploration of this possibly redundant account of what is perceived in

a fixation revealed that removing the text-recoding errors from the current model

substantially decreased the accuracy of the predicted number of fixations per trial.

The fixate-nearby model without the encoding errors resulted in an AAE of 14.3% for

the fixations per trial, which is not acceptable. Therefore, text-encoding errors were

left in the model.

The fixate-nearby strategy used in the model has a couple of benefits for

predicting visual search behavior if compared to models whose predictions are based

primarily on particular visual structures or saliency of visual features, such as Guided

Search (Wolfe, 1994). First, a predictive tool using the fixate-nearby strategy would

only need to encode the location information from a device representation. This is

beneficial if other properties in the layout are either unknown or difficult to automati-

cally extract from the device representation. Second, the fixate-nearby strategy can be

used when bottom-up information alone cannot predict visual search, as can be the

case with goal-directed search (Koostra, Nederveen, & de Boer, 2006). Third, unlike

the original CVC model (Hornof, 2004), the fixate-nearby model does not require
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a predefined scanpath, making the fixate-nearby model more applicable to a variety

of layouts.

Where the eyes move and how to model those processes is a difficult question

to answer completely but a straightforward and useful way to model where the eyes

move is based on object proximity. The fixate-nearby strategy works well for models

of tasks like those used in the present research in which the salience of objects cannot

be easily determined or salience does not vary substantially throughout the interface.

3.4. What Information Is Integrated Between Eye Movements?

Existing Theory

The fourth question of active vision for visual search is what information is

integrated between eye movements. For example, when searching for a specific

news article, a user may or may not remember which headings have already been

searched so that those headings can be passed over for the remainder of the search.

A comprehensive model of visual search needs to address how working memory

affects visual search.

There are multiple types of working memory that could affect visual search.

Research has shown that visual search processes use spatial working memory (Oh

& Kim, 2004) but that it does not use verbal working memory (Logan, 1978, 1979),

semantic working memory (Altarriba, Kambe, Pollatsek, & Rayner, 2001), or visual

working memory (Woodman, Vogel, & Luck, 2001). The spatial working memory

used during visual search has been shown to be somewhat coarse (Irwin, 1996). A

possible use of a coarse spatial working memory is to help select saccade destinations

that are away from previous fixation locations (Klein & MacInnes, 1999).

To avoid reinspecting objects until after all items have been searched without

locating the target (i.e., searching without replacement), most computational models of

visual search include some mechanism to remember which items have been inspected.

In general, these models do not impose any capacity limitations on such memory but

instead assume a perfect memory for objects searched (Anderson et al., 1997; Barbur

et al., 1990; Byrne, 2001; Hornof, 2004; Kieras & Meyer, 1997; Pomplun et al., 2003;

Wolfe, 1994). The next section identifies the role of working memory in the model

of active vision presented in this work.

Modeling Memory for Examined Objects

The fixate-nearby model proposed and evaluated in the previous section offers

an answer to what information is maintained between fixations. The answer was

coarse spatial information of fixation locations. As was mentioned, in order to explain

the observed eye movement data, the fixate-nearby model was set to maintain the

locations of previous fixations. When deciding which group to visit next, the model

uses memory of which groups—not individual objects—have been visited. This is

consistent with previous research that shows that a coarse spatial memory may be
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the only short-term memory used in visual search (Irwin, 1996; Oh & Kim, 2004).

Although the model presented in this research does not rule out the possibility that

other information is maintained between fixations, the model explains the observed

data quite well by maintaining only a high level overview of what has and has not yet

been fixated.

3.5. Discussion

The cumulative model presented thus far is offered as a candidate computational

model of active vision for visual search in HCI. Answers to the four questions of

active vision have emerged from the process of developing the model, and the model

does a good job of explaining the observed eye movement data from two experiments.

The active-vision model predicts the number of fixations, fixation duration, saccade

distance, and scanpaths for two tasks. The model does so primarily by employing four

constraints and associated visual features: (a) a process-monitoring strategy to account

for saccade durations, (b) text-encoding errors to help account for total fixations,

(c) fixating nearby objects to help account for saccade distances and scanpaths,

and (d) inhibiting group revisits to further help account for saccades distances and

scanpaths. The model synthesizes previous research, explains data, and can now be

applied to predict performance for new visual search tasks. The next section validates

the active-vision model.

4. MODEL VALIDATION WITH THE SEMANTIC

GROUPING TASK

This section evaluates the predictive potential of the active-vision model de-

scribed in the previous section by applying the model to the semantic grouping task

(Halverson, 2008).

4.1. Semantic Grouping Task

The semantic grouping experiment was conducted to determine how people

search layouts that are organized based on the meanings of words. The experiment

investigated effects of (a) positioning a target in a group of semantically similar words,

(b) giving the groups identifying labels, and (c) further subdividing the layouts into

meta-groups using graphic design techniques.

Figure 10 illustrates the three variables that were manipulated in the layouts:

the semantic cohesion of groups of words, the presence or absence of group labels,

and the use or nonuse of metagroups (groups of groups). Groups of words were

either semantically related (e.g., cashew, peanut, almond ) or randomly grouped (e.g.,

elm, eraser, potato). Groups were either labeled or not. Metagroups were indicated by

colored regions (gray in Figure 10) that provided a second-level semantic grouping
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FIGURE 10. A layout from the semantic grouping experiment, with semantically cohesive

groups, group labels, and metagroups, annotated with three measurements of visual angle.

to semantic layouts (such as by associating jewelry with cloth) and provided visual

structure to random layouts. Figure 10 shows a layout with semantically cohesive

groups, group labels, and metagroups. All layouts contained eight groups with five

words per group. Eighteen people participated in the study.

The results of the experiment show that people’s search is guided in part by

combining the visual structure with the semantic content of the words. People

appear to require only a single fixation to judge the semantic relevance of all objects

in a semantically cohesive group, even when the group has no summarizing label.

The semantic cohesion of words in a group, it turns out, can to some extent substitute

for labels of those groups. The metagroups did not appear to affect people’s behavior.

This experiment provides a rich set of reaction time and eye movement data in

a task that is arguably more ecologically valid than the previous tasks on which the

model was built, so this should be a good test of the model. One new ecologically

valid detail is that the precue always appeared at the location of the target from the

previous trial, comparable to how when a computer display changes the eyes are often

initially positioned at the same location where they were positioned before the change.

4.2. Model Validation

Human performance for the semantically cohesive and random layouts was

compared to the model’s predictions across measures of search time, number of

fixations, and fixation duration. When words were grouped randomly, the model did

a very good job of predicting the search times (AAE D 6.5%), number of fixations

(AAE D 3.0%), and saccade distances (AAE D 5.9%). In all three measures, when
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only considering the random conditions, the model predicted the observed data with

accuracies well below an AAE of 10%.

With the exception of saccade distance (AAE D 8.9%), the model did not

accurately predict human performance in the semantic conditions (search time per

trial AAE D 42.6%; number of fixations per trial AAE D 37.3%). Because the

cognitive model had no representation for semantic information, it is not surprising

that the model makes more fixations than people, who were observed passing over

an entire group with a single fixation that evidently captured the semantic content of

the group.

But the model does a good job of predicting the human data when semantic

grouping is removed from the layout, and is well within our target margin of error

of 10%. The active vision model is validated by showing its ability to predict visual

search behavior a priori for a task that includes a larger layout, more words, and a

different word set. These results suggest that the model would be an appropriate

starting place for modeling more complex tasks and more complex stimuli.

The correct and incorrect predictions made by the model in the semantically

grouped conditions provide guidance for future work. That the model correctly

predicts saccade distances for both semantic and nonsemantic layouts suggests that

many details of the model—in this case, the basis for saccade destination selection—

will continue to be useful and correct in new contexts. The results suggest that certain

constraints of human information processing are invariant across tasks and that the

active-vision model has captured many of those constraints. This comprehensive

model of active-vision for visual search extends our understanding of how people

search computer displays and provides a basis for a priori predictive modeling.

5. DISCUSSION

This article presents a computational model of active vision that is a substantial

push towards a unified model for predicting visual search in HCI tasks. Such a model

is needed for automated interface analysis tools, such as CogTool (John et al., 2004),

which do not yet include fully developed active-vision subsystems. In that the model is

built into a computer program that generates predictions, the model is demonstrated

to have achieved a level of completeness and to be sufficient to account for the major

processes involved in active vision.

5.1. Contributions to Cognitive Modeling

This research moves the field of HCI closer to a detailed computational un-

derstanding of how people apply their active-vision processes to visual HCI tasks.

This work extends the practice of computational cognitive modeling by addressing

the four questions of active vision for the first time in a computational framework,

setting a standard of completeness for future modeling of visual search in HCI. The



308 Halverson and Hornof

model of visual search proposed here accounts for eye-movement data, from fixation

duration to scanpaths, by employing visual search strategies and constraints that are

informed by the eye-movement data itself as well as previous research. The model

suggests answers to the four questions of active vision, as follows.

Question 1: When do the eyes move? A process-monitoring saccade-initiation

strategy accurately predicts fixation durations. The simulated flow of information

through perceptual processors, modeled here via the transduction times in the EPIC

cognitive architecture, works well to explain observed fixation durations. Although

other hypotheses of saccade initiation (Hooge & Erkelens, 1996) are not ruled out

by this research, the process-monitoring strategy works very well, without additional

mechanisms or parameters that would be necessary to implement the other saccade

initiation strategies.

Question 2: What do the eyes fixate next? Perhaps most important, the eyes

tend to go to nearby objects. When the target does not ‘‘pop out,’’ a strategy of

selecting saccade destinations based on proximity to the center of fixation does a

good job of predicting eye movement behavior. The model predicts people’s saccade

distributions and scanpaths by utilizing only the location of the objects in the layout,

a further contribution to predictive modeling in HCI in that object location is one

of the few visual characteristics that can be automatically translated from a physical

device to a predictive modeling tool.

Question 3: What can be perceived during a fixation? Items near the point

of gaze are more likely to be perceived, and different features will be perceived at

different eccentricities. The modeling showed that some limitations on the amount

of information that can be processed in a fixation are best explained by text-encoding

errors rather than by varying the effective field of view. A text-encoding error rate of

10% accurately predicts human performance across a range of tasks.

Question 4: What information is integrated across fixations? At the very least, the

memory of previously visited regions is retained. The active-vision model integrates

this memory across fixations to guide the search toward unexplored areas and, in

doing so, accurately reproduces saccade distances and scanpaths

This research informs the process of building computational models of visual

search. The original CVC model (Hornof, 2004) predicted the observed search times

well but did not predict eye-movement data as well as the active-vision model. This

is not surprising, because the original model was not informed by eye-movement

analysis. This discrepancy suggests a strong need for utilizing eye-movement data

when building models of visual tasks.

The active-vision model instantiates and integrates previous claims in the re-

search literature (such as Bertera & Rayner, 2000; Hooge & Erkelens, 1996; Motter &

Belky, 1998). The modeling reinforces and refines previous claims, such as Bertera and

Rayner’s (2000) claim that the effective field of view does not change as a function

of density, by showing that density-based text-encoding errors explain text search

better than changing the effective field of view as a function of text density. What

is more, the tasks used to inform the active-vision model are more ecologically valid

than those used by Bertera and Rayner, who used randomly arranged single letters.
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5.2. Informing the Development of Automated Interface
Analysis Tools

An aim of this research is to provide the theoretical underpinnings of visual

search needed for automated interface analysis tools by providing a useful method

for predicting users’ gaze interaction with novel visual displays. Interface designers

can use such tools to evaluate visual layouts early in the design cycle before user testing

is feasible. One way to improve the predictive power of interface analysis tools with

respect to predicting users’ visual interaction is to enhance existing interface analysis

tools with a robust model of visual search based the active-vision model presented

here. The active-vision model predicts the visual search of text-based displays with an

acceptable level of accuracy for engineering-based models and, as such, will be useful

in automated interface analysis tools.

Evidence of the need for an active-vision model of visual search and evidence of

the potential impact of such a model is demonstrated by the fact that components

of the active-vision model have already been incorporated into automated analysis

tools. CogTool-Explorer (Teo & John, 2008, 2010) incorporates components that

were described in early reports of this modeling project (Halverson & Hornof, 2007),

such as a strategy that uses the distances between objects to decide which object to ex-

amine next. The accuracy of CogTool-Explorer’s visual search predictions improved

after integrating components of the active-vision model. However, CogTool-Explorer

and the computational model on which it is partially based, SNIF-ACT (Fu & Pirolli,

2007), do not embrace all aspects of active vision. These tools do not simulate eye

movements and do not simulate visual perception with the same fidelity as the active-

vision model. For example, in CogTool-Explorer and SNIF-ACT, all visual objects

on a web page have equal visual saliency regardless of their location on the page.

5.3. Future Directions

Although the model presented in this research is a substantial step toward a

unified theory of visual search for HCI, more work is required to achieve a truly unified

theory of visual cognition. The model proposed here answers four fundamental

questions that should be answered by any predictive model of visual search, but more

work is needed to move the active-vision model beyond the search of structured

layouts of text.

Integration of Models of Visual Search

Current models of visual search cannot accurately predict how people will

interact with some of the complex visual layouts used in today’s computer applications.

Individual models exist that separately instantiate the different strategies that people

will use when visually searching different layout elements. However, a unified visual

search theory is needed. Newell proposed a unified theory of cognition, which he

described as ‘‘a single system [that] would have to take the instructions for each [task],
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as well as carry out the task. For it must truly be a single system in order to provide

the integration we seek’’ (Newell, 1973, p. 305). His vision of a unified theory of

cognition has been realized in cognitive architectures such as EPIC (Kieras & Meyer,

1997) and ACT–R (Anderson et al., 1997). However, the independence of the models

within each architecture has a disunifying effect if there is no unification of the theory

embedded in the individual models. Work is needed to integrate models, including

models from different cognitive architectures.

Integration With Other EPIC Models

Other computational models of visual search have been proposed in EPIC that

propose slightly different answers to some of the questions of active vision. EPIC

lends itself to the modeling of active vision because it emphasizes the use of the

visual-perceptual and ocular-motor processes that are central to active vision, but

these processes can be recruited in different ways to answer the same questions.

A current area of research using the EPIC cognitive architecture is the in-

vestigation of the perceptual constraints of the visual system (Kieras, 2005; Kieras

& Marshall, 2006). Recent modeling efforts and architectural developments have

refined EPIC’s visual availability functions, which are the equations that determine

what visual properties are available to cognitive processes as a function of where the

object is in the visual field. For example, the default availability of text is that text

can be perceived up to 1ı of visual angle from the center of gaze, but this could be

replaced with a continuous function in which the availability of text (or some other

feature) degrades continuously as a function of eccentricity—a more veridical account

of how human perception really works.

Search behavior for some tasks can be produced equally well by relying on either

a fixate-nearby strategy (as in the active-vision model) or the continuous availability

functions. Whereas the active-vision model explains where the eyes move using the

objects’ location, other EPIC models (Kieras, 2005; Kieras & Marshall, 2006) use

the continuous availability functions to explain where the eyes move—to objects

with available task-relevant features. Further research is required to determine whether

both approaches are necessary to predict all scanpaths, how the two methods might

be integrated, or whether one approach might subsume the other. Such integration

will be useful for extending our active-vision model to a wider variety of visual tasks

and to develop a truly comprehensive model of visual search.

Integration With Models of Semantic Search

Although the active-vision model explained some of the eye movement behavior

in the semantic grouping task, the model did not explain how semantics influenced

search. Research and modeling has provided much insight into how semantics can

guide visual search (Brumby & Howes, 2004, 2008; Fu & Pirolli, 2007). Computational

models such as Brumby and Howes’s (2004) model of the interdependence of link

assessment and Fu and Pirolli’s (2007) SNIF-ACT 2.0 accounted for some of the

effects of semantics on visual search, but these models use simplified scanpaths
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and do not account for all aspects of active vision, such as how people select saccade

destinations. The integration of these two models with our active-vision model would

be a substantial contribution to predictive modeling in HCI.

6. CONCLUSION

To better support users and predict their behavior with future human–computer

interfaces, it is essential that we better understand how people search visual layouts.

Computational cognitive modeling is an effective means of expanding a theory

of visual search in HCI and will ultimately provide a means of predicting visual

search behavior for the evaluation of user interfaces. The active-vision computational

cognitive model of visual search presented here illustrates the efficacy of using eye

movements in a methodical manner to better understand and better predict visual

search behavior. The results from the modeling extend and solidify an understanding

of active vision in a computationally instantiated theory that is useful for both

future HCI and cognitive psychology research. This research ultimately benefits

HCI by giving researchers and practitioners a better understanding of how users

visually interact with computers, and provides a foundation for tools that will predict

that interaction.
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