
Issues in the Design and Development of Experimental
Software for Use With an Eye Tracking System

Tim Halverson
Department of Computer and Information Science

University of Oregon
Eugene, Oregon
(541) 346-1124

thalvers@cs.uoregon.edu

Anthony Hornof
Department of Computer and Information Science

University of Oregon
Eugene, Oregon
(541) 346-1372

hornof@cs.uoregon.edu

ABSTRACT
The data collection software that ships with eye tracking
systems must often be extended or integrated with additional
software developed by the experimenter to present the
appropriate visual stimuli to participants in an experiment,
and to record the participants' responses (other than eye
movements). Though this programming task is routinely
undertaken, there has been little or no attempt to record the
details of this software development process to facilitate the
re-use of code or design patterns by other experimenters. This
paper attempts to provide such guidance. Specifically, the
paper discusses the details involved in converting the LC
Technologies Eyegaze System’s Windows-based API
(application programming interface) to a Macintosh-based
API. This conversion allows the eye tracker to collect eye
movement data while the participant in the experiment
interacts with the Macintosh, and allows the experimental
software running on the Macintosh to have instant access to
eye movement data. The paper discusses numerous issues that
will arise when designing, developing and testing software for
use with an eye tracking system.

Keywords
Experimental design, Eye tracking, eye-tracking software,
software design, software development

1. INTRODUCTION
Eye-tracking technology has progressed to the point that “off-
the-shelf” units are quickly deployable and come with
software that can be readily modified by an experienced
programmer to meet specific data collection needs. However,
while literature exists on the methods used by eye-tracking
devices, there is little guidance available on the advantages
and disadvantages of various eye-tracking equipment and
their configurations. In addition, there is a shortage of
literature discussing experimental software design for eye-
tracking studies.

This paper will add to such discussions in three ways. First, we

briefly describe and assess the Eyegaze system from LC
Technologies. Second, we present a reference for porting
Eyegaze client source code, along with a brief description of a
port of the Eyegaze client software to the Macintosh OS.
Finally, we offer some proposals for the design of eye-tracking
experimental software design. Though the Eyegaze System i s
emphasized, we expect the findings to be generally useful to
the human-computer interaction (HCI) and eye-tracking
communities.

2. THE LC TECHNOLOGIES EYEGAZE
SYSTEM: DESCRIPTION AND
ASSESSMENT
The Eyegaze System from LC Technologies
(http://www.eyegaze.com) is straightforward to setup “off-the-
shelf”, and offers many convenient features. Here we
specifically discuss its use in a client-server configuration. In
the client-server configuration, the Eyegaze System is the
“server”. The system consists of a MS-Windows computer,
monitor, camera, eye-position video monitor, and various
image processing and gaze fixation software. A second “client”
computer is used to actually display the visual stimuli used in
the experiment. As shown in figure 1, the video camera that
monitors the eye movement is connected to the Eyegaze
computer. The client and Eyegaze system communicate with
each other during the course of an eye tracking session.
Additional details on this configuration and other aspects of
the Eyegaze system may be found in [7].

Figure 1. The Eyegaze System in client-server configuration.
(Derived from [7].)

2.1 Eyegaze System Description
The Eyegaze System is a video-based eye tracking device for
use in real-time gaze analysis and recording of gaze data. This
analysis is done with a specialized video camera, mounted
under a computer screen, which shines an infrared light on the

hornof
Copyright © 2001 by the University of Oregon. All rights reserved. Department of CIS Technical Report 02-02.

eye and captures an image of the eye 60 times a second.
Specialized video-processing software uses the infrared
images of the eye to determine the coordinates on the screen at
which the eye is aimed or point of regard (POR). This is done
using the pupil center corneal reflection method [11], which
uses the vector between the center of the pupil and the corneal
reflection to determine the POR. In addition, the video-
processing software determines the diameter of the pupil and
the location of the eyeball center.

In order to determine the POR accurately, a calibration must be
performed. The default calibration presents nine points that
must each be fixated on in turn. A client application may
initiate this calibration to take place on the client screen (see
“Eyegaze Code” section below).

The client-server configuration gives the added benefits of
gathering the data from and using the data on a computer
platform other than Windows 2000, which is the Eyegaze
System’s native platform, and allowing an operator to
remotely monitor the operation of the eye tracking without
interfering with the participant. Ethernet or serial connections
can be used to for communication between the Eyegaze System
and a client. Ethernet may be preferred as it is faster and
platform-independent packet protocols are well-established. In
the client-server configuration, the eye position data can also
be sent to the client for the same purposes.

2.2 “Off-the-shelf” Use
We found the Eyegaze System to be straightforward to
configure and utilize. The hardware was only marginally more
difficult to configure than a normal PC. Utilizing the
softwarethat ships with it, calibration and data gathering were
also found to be uncomplicated. Our experience thus far is that
preparation for gaze data collection takes two to five minutes.
The calibration takes as little as 10 seconds and as long as two
minutes, depending on how well the participants can be
tracked. The majority of calibrations take between 15 to 20
seconds, near the average calibration time claimed by LC
Technologies [7].

Perhaps the greatest advantage of the Eyegaze software is that
it not only comes with a full-featured application program
interface (API) for developing client applications under
Windows, but it also comes with a majority of the source code.
In this way, the Eyegaze System is especially customizable and
allows porting of client code to other platforms besides
Microsoft Windows. The shortcoming of the Eyegaze System’s
software is its lack of “off-the-shelf” utility is its software. It i s
a disadvantage in that the software is not as elaborate as some
packages that run with other eye-tracking equipment (e.g. SMI
and ASL). For example, the Eyegaze System does not come
with features such as video playback or statistical analysis.
The next section discusses one way in which the availability
of the Eyegaze source code can be an advantage.

3. PORTING AND CUSTOMIZATION OF
THE EYEGAZE CODE
The Eyegaze System ships with a majority of its source code
allowing an experienced programmer to customize aspects of
its operation and to convert or “port” the client code for use
under other operating systems (e.g. Macintosh, Linux). While
other eye-tracking systems (e.g. SMI) may come with a
software development kit (SDK), no other system from a major

eye-tracking manufacturer offers the source code. The
following is a brief reference for converting the source code for
use with a client, and then a brief description of a port to the
Macintosh OS.

3.1 A Reference to Porting the Eyegaze Code
To develop a client application, only a subset of the source
code shipped with the Eyegaze System is required. Therefore, a
programmer unfamiliar with the Eyegaze source code would
have to study the code extensively before finding the proper
code to port. This section should aid in finding those bits of
code that are required.

3.1.1 Maintaining a Consistent API
Every attempt should be made to maintain an API consistent
with LC Technologies API. Maintaining a consistent Eyegaze
API between multiple operating systems and various versions
of the code on the same operating system will potentially
benefit many users of the Eyegaze System. The familiar API of
another version will aid any programmer already familiar with
one version of the Eyegaze code. A consistent API will likely
result in decreased development time when using the new
Eyegaze code and will increase the amount of code-reuse, and
help to maintain a common understanding of program
functionality when discussing issues with LC Technologies
staff and other programmers using the system.

Certain minor changes to the API may be unavoidable. For
example, the function EgCalibrate (“Eg” stands for Eyegaze)
takes as an argument a data type of HWND. HWND is a Windows
specific data structure for a window handle (pointer to a
pointer). HWND will most likely need to be changed to another
data type for non-Windows implementations, or possibly
removed altogether in an object-oriented implementation to
promote encapsulation and to maintain data abstraction.
Although certain changes may be needed, programmers are
encouraged to maintain the basic function names and roles of
the API functions that are declared in EgWin.h and also
includes QueryEyegazeSystem in Suprt2PC.h.

3.1.2 Eyegaze Source Files
What follows is a brief summary of the Eyegaze source code
files, written in the C programming language, which contain
the code that must be modified in order to use the Eyegaze on a
non-Windows systems. All of t

EgWin.h: Eyegaze Windows header. This file contains the
function prototypes for the Eyegaze API, structs used to
contain key control data and gaze data. In addition, this file
contains constant definitions for messages between the
client and server. These messages are detailed latter in this
paper.

EgWin.c: Eyegaze Windows implementation. This file
contains definitions of the API functions. Each function
calls a utility function contained in one of the files listed
below.

LctCalLib.h: LC Technologies Calibration Library
header. Only the function definition for LctCalibrate i s
required from this file.

LctColor.h: LC Tehcnologies color header. This file
contains the constant definitions for the values the server
may send to represent colors (RGB represented in
hexidecimal).

Figure 2. A typical sequence of messages passed between an Eyegaze client and server.

LctFont.h: LC Technologies font header. This file need
not be ported unless fonts will be handled in the same
manner as the Window implementation.

LctSupt.h: LC Tehcnologies support functions header.
Declarations for utility functions defined in WinSupt.c
and Winser.c.

LctTypDef.h: LC Technologies type definition header.
Definitions of many data types used throughout the
source code.

Suprt2PC.c: Support functions for PCs. The
functionality of the all functions defined in this file are
required, but the exact structure need not be maintained.

Suprt2PC.h: Support functions for PCs header. Not all
of the functions declared in this file are required. Those
concerned with mouse position and clicking may be
ignored.

WinSer.c: Windows serial communication functions. The
functionality of the many of the functions contained in
this file is needed. Those that are not required are
passiveTCP and passivesock. In addition, any code in
lct_socket_open concerned with the constant
SOCKET_SERVER is not required for a client.

WinSupt.c: Windows support functions implementation.
The functionality of all of the functions in this file i s
required. However, the way in which these are
implemented will most likely differ in a non-Windows
environment.

3.1.3 Messages
Communication between the server and client i s
implemented using “messages”. Understanding the message
constants defined in EgWin.h is the key to deciphering the
Eyegaze code and finding the code that must be ported. The
client uses these constants to request actions from the server,
and the server uses them to initiate actions on the client.
Figure 2 shows a typical progression of these messages.

3.1.3.1 Sending messages
All messages are sent from the client to the server through a
common utility function, LctSendMessage. The purpose of
this function is to determine the length of the message and
create a buffer array of characters representing the following:
the message length, the message, and additional data that
must sometimes be sent with the message. The utility
function lct_send_buffer sends this array to the server.

3.1.3.2 Receiving messages
There is no utility function for receiving messages from the
server. The process required to receive messages is as
follows: The first three bytes of each packet received from the
server are read individually. The first three bytes indicate the
length of the remaining message. This length is then used by
the utility function lct_socket_read_buffer to write the
remaining bytes of the incoming packet to a buffer array of
characters. The first character in this array is the message
type. Message types are defined below. If the message carries
other information with it (e.g. eye position data), the
remainder of the array contains this information.

3.1.3.3 Message definitions
Listed below are descriptions of messages the Eyegaze client
code must utilize. These messages are grouped by
functionality. Calibration messages are those messages used
only during a calibration. Communication messages are
those messages that may be used any time after a calibration.
In the interest of brevity, certain conventions have been used
in the descriptions. First, the message declarations are shown
with “EG_MESSAGE_TYPE_” removed from the beginning of
each (e.g. EG_MESSAGE_TYPE_CALIBRATE is listed as
CALIBRATE). Each message is defined as either a message
sent from the server to the client, and the specific client
function receiving the message is indicated (such as
Server->client_function_name), or as a message sent
from the client to the server, and the specific client function
sending the message is specified (e.g. client_function()-
>Server).

Calibration Messages

CALIBRATE: EgCalibrate->Server. The client requests a
calibration.

WORKSTATION_QUERY: Server->EgCalibrate. The server
acknowledges a calibration request.

WORKSTATION_RESPONSE: EgCalibrate->Server. The
client responds to the workstation query. The dimensions
of the client screen (in millimeters and pixels) and
characteristics of the calibration window (dimensions and
offset in pixels) are sent with this message.

CLEAR_SCREEN: Server->EgCalibrate. The server
instructs the client to clear the calibration window.

SET_COLOR: Server->EgCalibrate. The server instructs
the client to set a variable to a color predefined in
LctColor.h. This color is used for objects in the
calibration window. The hexadecimal number representing
the color is sent.

SET_DIAMETER: Server->EgCalibrate. The server
instructs the client to set diameter of the crosshairs or the
radius of a circle that will displayed in the calibration
window for the participant to fixate during calibration.

DRAW_CIRCLE: Server->EgCalibrate. The server
instructs the client to draw a circle in the calibration
window at a specified location.

DRAW_CROSS: Server->EgCalibrate. The server instructs
the client to draw crosshairs in the calibration window at a
specified location.

DISPLAY_TEXT: Server->EgCalibrate. The server
instructs the client to draw text in the calibration window

at a specified location. The text would include feedback
such as “Gaze is not consitent.”

CALIBRATION_COMPLETE: Server->EgCalibrate. The
server notifies the client that the calibration was
successful. Gaze data should not be requested until a
calibration complete message has been received for a
participant.

CALIBRATION_ABORTED: Server->EgCalibrate. The
server notifies the client that the calibration was aborted.

Communication messages

BEGIN_SENDING_DATA: EgGetData->Server. The client
requests that the server start sending gaze data.

GAZEINFO: Server->EgGetData. The server indicates that
gaze data is available. One frame of available gaze data i s
sent.

STOP_SENDING_DATA: EgGetData->Server. The client
requests that the server stop sending gaze data. It i s
possible that one more frame of data will be sent
following this message.

FILE_OPEN: EgLogFileOpen->Server. The client requests
the opening of a file for data collection on the server. The
name of the file is sent. In addition, an ‘a’ is sent to
append to an existing file, or ‘w’ to request a new file.

FILE_WRITE_HEADER:
EgLogWriteColumnHeader->Server. The client requests
the writing of column headers to the file opened with the
file open message.

FILE_APPEND_TEXT: EgLogAppendText->Server. The
client to append text to the file opened with the file open
message. The text to append is sent.

FILE_START_RECORDING: EgLogStart->Server. The
client requests the recording of gaze data to the file
opened with the file open message.

FILE_MARK_EVENT: EgLogMark->Server. The client
requests an increment of the server event counter.

FILE_STOP_RECORDING: EgLogStop->Server. The client
requests the stop of gaze data recording to the file opened
with the file open message.

FILE_CLOSE: EgLogFileClose->Server. The client
requests the closing of the file opened with the file open
message.

CLOSE_AND_RECYCLE: The client requests a
disconnection. The server closes the IP connection and
recycles to wait for another connection. No current
function in the original or ported API uses this message.

3.2 Eyegaze Client Code on the Mac
This is a description of Eyegaze code recently ported to the
Macintosh OS. A serious effort was made to keep the
Macintosh Eyegaze API consistent with the Windows
Eyegaze API. However, some changes to the API were
required, some because the target platform was Macintosh. As
well, where as the Windows source code was written in a
functional style using the C language, we chose to write the
Macintosh code in an object-oriented style using C++.

The following description of our Macintosh Eyegaze API
emphasizes the few places that its methods differ from the
original Windows Eyegaze API. The Mac Eyegaze API
includes the following class and methods:

EgMac – This is the main class, and the only class which
must be instantiated in a client. The constructor now takes
part of the original EgInit’s functionality. EgInit’s
stEgControl struct argument is copied internally so that
those variables set by the stEgControl argument can
only be accessed through member functions.

init – This is largely equivalent to the original EgInit.
It establishes a TCP/IP connection with the Eyegaze
System. But note that the stEgControl struct is now sent
to the constructor rather than init. The “Eg” was removed
from this and subsequent methods since the Eg is implied
because these are methods of the EgMac class.

calibrate – The functionally is identical to the original
Calibrate.

startData and stopData – Instructs the Eyegaze System
to start and stop sending gaze data. These subsume part of
EgGetData’s functionality.

getData – Returns a boolean value indicating the
presence of unprocessed gaze data. The gaze data is copied
to the stEgData struct reference used as the argument to
this function. This subsumes part of EgGetData’s
original functionality.

logFileOpen, logFileClose, logStart,
logStop, logWriteColumnHead, and logMark –
Equivalent to the Windows Eyegaze API functions of
similar name.

The following EgMac class methods extend the original API.

isConnected – Returns a boolean value indicating
whether a TCP/IP connection has been established.

isCalibrated – Returns a boolean value indicating
whether a successful calibration has taken place.

isRecievingData - Returns a boolean value indicating
whether gaze data is being sent by the Eyegaze System.

isLogOpen - Returns a boolean value indicating whether
the Eyegaze System has opened a log for gaze data
recording.

isLogging - Returns a boolean value indicating whether
the Eyegaze System is currently logging gaze data.

getBufferOverFlow – Returns a boolean value
indicating whether gaze data was lost because the ring
buffer allocated for gaze data overflowed.

4. PROPOSALS FOR THE DESIGN OF
EYE-TRACKING EXPERIMENTAL
SOFTWARE
While porting the Eyegaze code to the Macintosh OS,
interesting issues arose that may have a wider application in
HCI eye-tracking research. The motivation for porting the
Eyegaze code to the Macintosh was to collect fixation data
for a visual search study that replicates a previous
experiment conducted using a Macintosh [6]. With the goal
of reducing opportunities for errors in the eye-tracking
component of an experiment, we identified three issues
pertaining to the design and application of eye-tracking
software. These issues will be discussed, and solutions to
some of the problems will be proposed.

4.1 The Motivating Study
The context in which these issues arose was a study on visual
search and mouse pointing in two-dimensional visual
hierarchies [6]. In this experiment, participants were precued
with a word (or pseudo-word) and then asked to find the word
in a layout such as that shown in Figure 3. The factors that
were varied included the number of items that appeared in the
layout (10, 20, or 30) and whether the layout included group
labels to guide the participant to the target. Labels were X1X,
X2X, etc.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Precue
(disappears
when layout
appears)

2° of visual
angle at 56 cm

Figure 3. A screen layout with thirty items and with group
labels, from the visual search task that the PI will attempt
to model in EPIC. In this trial, the target REJ appears in
the group labeled X5X. The number to the right of each
screen object is the number assigned to that position. The
precue is shown where it would have disappeared when the
layout appeared. (The smaller text and numbers did not
actually appear during the experiment.)

The experiment was designed to separate visual search time
from target selection time by imposing a point-completion
deadline. Once the participant started to move the mouse
from the precue position, he or she had a limited amount of
time to click on the target before the trial is interrupted.
Search time was thus be measured from when the layout
appears to when the participant starts moving the mouse to
the target.

The observed visual search times demonstrate that a labeled
visual hierarchy can be searched significantly faster than an
unlabeled visual hierarchy. Details in the search time data,
such as a more pronounced number-of-groups effect for
unlabeled layouts, also suggest that people adopt
fundamentally different search strategies for labeled versus
unlabeled visual hierarchies. More details are available in
[6].

It remains to be determined what were the actual visual search
strategies used by participants in the experiment. The same
experiment will be conducted again, but with eye movements
recorded by an eye tracker. It is anticipated that this
additional dependent variable will prove invaluable for
identifying the actual search strategies employed. A number
of issues will be addressed in the modification of the
experiment to accommodate eye-tracking, one of which i s
recalibration of the eye-tracker during an experimental
session.

4.2 Objective Recalibration
A possible issue with eye-tracking equipment, as with most
instrumentation, is that the initial calibration may become
invalid during an experiment. In reviewing the literature on
HCI eye-tracking experiments, we have found that most
articles do not mention the possibility of a degraded

calibration (e.g. [4]). Some studies use subjective measures
to determine the need for a recalibration (e.g. [3]), but, in
order to reduce experimenter bias, the need for recalibrating
an eye-tracker during an experiment should be determined in
an objective manner.

To satisfy the need for an unbiased recalibration
determination, a coding scheme can be implemented to help
ensure the eye-tracker’s calibration remains accurate with an
automated, predetermined test. This scheme requires three
components. The first is a forced-fixation location (FFL). The
second is an implementation of a fixation detection
algorithm. The third is an eye-tracking system that allows
real-time gaze data analysis.

The definition used here for a FFL is a periodically displayed
element on which a participant must fixate in order to
continue the experiment. In order to force the participant to
look at the object before continuing, the participant may be
required to click on the object, or manipulate it in some other
way that would require the eyes to fixate the object. As an
alternative, the object may contain some detailed
information required to continue the experiment
successfully. An example of an FFL is the precue object in
the experiment discussed, [6]. The precue is the initial object
shown in each trial. A participant must fixate and click on the
precue to reveal the target and distracter objects, and to know
the target object to click on during the trial. The frequency at
which a FFL appears is at the discretion of the designer since
the need to check the calibration will vary with the
experiment and the eye-tracking equipment used.

The implementation and use of an FFL to verify calibration
requires a fixation detection algorithm that can accept gaze
data from the eye-tracker and generate fixations in real-time.
An accurate algorithm that runs in linear time, such as a
Hidden Markov Model or Dispersion Threshold algorithm, i s
best [10]. See [10] for a description of each of these
algorithms. We suspect that most eye-trackers can transmit
real-time gaze data to a custom application.

We wrote an automated recalibration scheme that runs in
linear time, and requires only seven lines of code (see Table 1
for the pseudocode). After the FFL is presented, the scheme
proceeds as follows: Continuously monitor for the FFL
fixated condition. While the FFL has not been fixated, check
for fixations. If a fixation is found and is within range of the
FFL a recalibration is not needed. If a fixation is not found
within range of the FFL by the time the FFL needs to be
fixated, a recalibration should be initiated. Two key issues
for this method are how to define “in range” of the FFL and a
fixation before a recalibration is required, and when to
interrupt the experiment for a possible recalibration.

4.2.1 Identifying fixation in range of the FFL
The maximum distance allowed from the center of the FFL to
the fixation coordinates determined by a fixation detection
algorithm is a significant issue for the reliability of the
automated recalibration scheme. Three issues that are
immediately evident are the size of the FFL and noise in the
eye-tracker data. Therefore, a beginning guideline for
defining “in range” may be the visual angle subtended by the
FFL plus the maximum angular gaze error of the eye-tracker.

4.2.2 When to Interrupt for Recalibration
The time at which a recalibration is initiated may negatively
impact an experiment. If the experiment software needs to be

interrupted for a recalibration of the eye-tracker, this should
be done at a point in the experiment at which the participant
would not be poised to execute a time-pressured or memory-
intensive response. Otherwise, the software could disrupt any
motor program preparation or memorization that has been
done thus far, and influence the participant’s decision to do
such preparation in the future. Thus, the software would
interfere with the very human performance that the
experiment was designed to capture in the first place. Instead,
the software should wait for an appropriate time in the
experiment when the participant is not poised to execute a
critical task.

However, waiting for such a time to initiate a recalibration
may result in the loss of data, because the need for a
recalibration would indicate that the data about to be
collected may not be valid. From this point of view, a
recalibration should be initiated as soon as possible.
Therefore, the experiment designers must balance the loss of
data with continuity of the participant’s experience.

Present the FFL
While (the FFL is not satisfied)
{
 Fixation Algorithm (gaze data)
 If (fixation)
 {
 If (distance from FFL to fixation < preset maximum)
 {
 Return and do not calibrate
 }
 }
}
Recalibrate
Table 1. Pseudocode for an automated recalibration
scheme.

4.3 Gaze and Mouse Data Disparity
Some HCI experiments collect both gaze and mouse
movement data, which are integrated and analyzed together
(such as [1], [3], and [5]). Single computer video-based eye-
tracking systems generate a delay between the time the image
of the eye is captured and the time at which the eye position
data is reported.

As illustrated in Figure 4, the time to capture, transfer, and
process the camera image can produce a significant time
disparity between eye position and mouse movement data.
As an example, the availability of gaze data on the 60 Hz
version of the Eyegaze System from LC Technologies i s
delayed by approximately 8.33ms by the shutter period of
the camera, 16.67ms to transfer the image to the frame
grabber, and 6.67ms by the video processing software, [7].
The result is a delay of 31.67ms from the time a picture of the
eye is taken to the time the data from that picture is available.
This delay, if not accounted for, can cause a significant error
in experiments that investigate the relationship between eye
position and other data, such as mouse movements.

An additional concern with respect to the eye-position data
delay may be that a client-server configuration may increase
the time delay of eye position data that is integrated in real-
time with other data on a client computer. Two factors may
increase the time delay if not handled properly. The first
factor is inherent network lag. This can be avoided by
properly configuring the client-server connection. A viable
network configuration is directly connected 100BaseT
Ethernet. This configuration supplies ample bandwidth

Figure 4. Approximate time disparity between image capture and reported data. The proportion of each delay is not intended to
be representative of any one eye-tracker. Each eye-tracker has unique properties. The only consistent delays are the 'image
capture' delay of approximately 1/2 the frame period and the ‘image transfer’ delay of approximately a full frame period. On
the Eyegaze System, a frame period is 16.7ms. The network lag for a 100BaseT direct connection between client and server adds
an minor delay in relationship to the other delays.

(100Mb/sec or 12.5 million characters per second) and a low
latency relative to the delay induced by the eye-tracking
system (approximately 0.11ms or 0.35% of the eye-tracker
delay)1. In addition to the configuration, the programmatic
style of the code used by the client application to receive the
gaze data will affect the delay. In short, an efficient,
responsive method should be used to retrieve the data from
the network, such as asynchronous notification or a
dedicated thread. However, this topic is beyond the scope of
this paper. Consult the target operating systems network
software development kit (SDK) for means to implement data
retrieval. These two factors, network configuration and
programmatic method, if handled properly, will not induce a
significant delay in the availability of the eye position data.

Since the delay caused by the eye-tracker, and possibly by
the network, causes a disparity between eye position and
mouse movement data, a solution is needed to quantify this
disparity. We are in the process of developing a software
utility for this purpose. The utility will work as follows:
Automatically move the cursor across the screen at some
constant velocity. Have a participant fixate the cursor object
and maintain this fixation with a series of smooth pursuit
eye movements [9]. Sample both the position of the screen
object and gaze position using the same functions or
methods as used in the experimental software. Write this data
to a file, preferably in a format that is easily imported into a
spreadsheet or statistics package. Calculate the mean
distance between the cursor position and gaze position.
Assuming the user in this test is actually smooth-tracking
the cursor, the calculated mean distance will be the sum of
two errors, the error of the eye-tracker and the disparity
caused by the timing mentioned above. This quantification
can then be used to verify the algorithms and data

1 This is the average time for one-way delivery of data using

the ‘ping’ utility. The test used 1,000 packets of 108 bytes
each. The configurations used were a Power G4 (733MHz)
running OS X (10.1) and an Intel 867MHz running
Windows 2000.

connection speed, and can be reported along with the
experimental data in an eye-tracking experiment.

4.4 Use of a Chinrest
The use of a chinrest may aid in maintaining a consistent
setup during a lengthy experiment and obviate the need of a
head tracker. If a participant needs to take a break at some
point during the experiment, the initial placement of the
chinrest will aid in placing the participant back in the proper
position without much need for adjusting the eye-tracking
equipment. Depending on the tolerances of the eye-tracker,
the use of a chinrest may eliminate the need for a
recalibration. However, the use of a chinrest could create or
exacerbate two potential problems, mouse movement errors
and participant discomfort.

However, negative effects of the chinrest must also be
considered. Meegan and Tipper [8] specifically do not use a
chinrest in their eye tracking study because they believe that
it would interfere with the arm movements, and cite Biguer,
Jeannerod, and Prablanc [2] as demonstrating that a chinrest
will interact as such. Looking at the data reported in Biguer
et al. [2], however, it becomes evident that the chinrest only
interfered when making eye movements to targets greater
than 30° from the center of view. If a chinrest is used in
experiments with a standard sized computer monitor (15-
19in) at a reasonable distance of 20-30in (50.8-76.2cm),
mouse use should not be impacted. We do, however, share
Meegan and Tipper's concerns that the chinrest may interfere
with the "naturalistic reaching conditions" and ecological
validity of the experiment.

There is also cause for concern with the design of
conventional chinrests. Many conventional chinrests require
the participant to lean over the edge of a table as shown in
Picture 1. We believe this may interfere with a participant’s
comfort and their ability to move the mouse effectively.
Therefore, it may be advisable to modify the chinrest’s
mounting mechanism so that it is angled away from the table
as shown in Picture 2.

Picture 1. Many chinrests require the participant to lean
forward in a position that is potentially uncomfortable and
may interfere with normal mouse movements. Shown here i s
the HeadSpot chinrest.

Picture 2. We expect that slight modifications to chinrests,
obviating the need for the participant to lean over the
table, can resolve the problems shown in Picture 1.

5. CONCLUSION
As eye-tracking technology become more readily available,
inexpensive, easy to use, extendable and expandable, and
applied to new problems and new domains, this community
will need more discussion on the specifics of these devices
and their integration in experimental design. To that end, we
have offered an assessment of the Eyegaze System by LC
Technologies, and given a general reference for converting
the Eyegaze client code for use on other operating systems.
We then presented a specific conversion of the Eyegaze client
code to the Macintosh OS. We concluded by raising
experimental design issues, specifically software design, for
HCI eye-tracking experiments. We expect that the design
issues discussed should be relevant and useful to
programmers and researchers working with other eye-
tracking systems.

The discussions of experimental design issues relating to
objective recalibration determination, disparity between eye
position and mouse movement data, and use of chinrests in
an eye-tracking experiment suggest some basic guidelines
for lessening potential errors in an HCI eye-tracking
experiment. Further study in these areas may be needed to
establish firm guidelines. The experimental software
described here is currently in the final stages of
development, and a formal experiment with paid participants
will be conducted in the fall of 2001. We expect that this
empirical data will help to resolve and clarify many of the
deign issues discussed herein.

6. ACKNOWLEDGMENTS
The authors would like to thank Dixon Cleveland and Peter
Norloff of LC Technologies for their assistance with the work
discussed in this paper. This work was supported by the
Office of Naval Research through Grant N00014-01-10548 to
the University of Oregon, Anthony J. Hornof, principal
investigator.

7. REFERENCES
[1] Aaltonen, A., Hyrskykari, A., & Räihä, K.-J. (1998). 101
spots, or how do users read menus? Proceedings of CHI 98,
New York: ACM, 132-139.

[2] Biguer, B., Jeannerod, M., & Prablanc, C. (1985). The role
of position of gaze in movement accuracy. In M. I. Posner &
O. S. Marin (Eds.), Attention and Performance XI:
Mechanisms of Attention. Hillsday, NJ: Erlbaum, 407-424.

[3] Byrne, M. D., Anderson, J. R., Douglass, S., & Matessa, M.
(1999). Eye tracking the visual serach of click-down menus.
ACM CHI 99, ACM, 402-409.

[4] Crowe, E. C., & Narayanan, N. H. (2000). Comparing
interfaces based on what users watch and do. ETRA
Symposium 2000, ACM, 29-36.

[5] Gray, W. D., & Fu, W.-T. (2001). Ignoring perfect
knowledge in-the-world for imperfect knowledge in-the-
head: Implications of rational analysis for interface design.
Proceedings of ACM CHI 2001: Conference on Human
Factors in Computing Systems, New York: ACM.

[6] Hornof, A. J. (in press). Visual search and mouse pointing
in labeled versus unlabeled two-dimensional visual
hierarchies. ACM Transactions on Computer-Human
Interaction.

[7] LC Technologies. (2001). EyeGaze Development System:
Development Manual. Fairfax, VA: LC Technologies, Inc.

[8] Meegan, D. V., & Tipper, S. P. (1999). Visual search and
target-directed action. Journal of Experimental Psychology:
Human Perception and Performance, 25(5), 1347-1362.

[9] Rosenbaum, D. A. (1991). Human Motor Control. New
York: Academic Press.

[10] Salvucci, D. D., & Goldberg, J. H. (2000). Identifying
fixation and saccades in eye-tracking protocols. ETRA
Symposium 2000, ACM, 71-78.

[11] Young, L. R., & Sheena, D. (1975). Survey of eye
movement recording methods. Behavior Research Methods
and Instrumentation, 7(5), 397-429.

