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Abstract

Visual search is an integral component in many human
activities. The eye movements produced during such activities
can provide valuable information about people’s cognitive
processes. This research investigates, with detailed eye
movement data analysis and computational cognitive modeling,
the perceptual, strategic, and oculomotor processes people use
to visually search. A cognitive model is evolved in a principled
manner based on eye movement data, past modeling efforts,
and recent psychological literature. In the model, re-usable,
parsimonious, local strategies interact with perceptual-motor
constraints to predict the bulk of the eye movement data,
including aspects of the data that appear to require task-specific
global strategies in addition to fixation-to-fixation local
strategies. The analysts evolve a base level model with a
random strategy into a robust and reusable model with a
flexible strategy that could work with a wide range of visual
stimuli.
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Introduction

The visual search strategies people employ have a substantial
effect on the time it takes people to find a target in a visual
layout. A fair amount of research has been done on visual
search strategies people use. For example, Shen, Reingold,
and Pomplun (2003) found that people tend to shift their
visual search strategy very quickly based on which visual
feature is most informative for a given layout. Burke, et al.
(2005) found that people ignore the most salient objects that
do not relate to the task, flashing banner advertisements, in
simulated web pages.

One way to better understand what visual search strategies
people use, and why they use them, is through computational
cognitive modeling. The models instantiate the theory, make
testable numeric predictions, and facilitate identification of
unanswered questions. Several computational models of
visual search have been proposed (e.g. Pomplun, Reingold, &
Shen, 2003; Wolfe, 1994). For the most part, these
computational models of visual search account for one or two
of the perceptual, strategic, or oculomotor processes involved
in visual search, but not all three. Ideally, a model of visual
search would explain some aspect of each process involved in
visual search.

This research proposes a flexible and reusable
computational cognitive model of text search that builds

directly on a number of previous studies of structured, menu-
like visual layouts. The purpose of this modeling effort is to
further clarify and build a framework for understanding
(scientifically) and predicting (scientifically and for design
purposes) how people integrate perceptual, strategic and
motor processes in visual search. This paper describes the
evolution of a visual search model from a constrained,
random search strategy into a robust and flexible model of
menu search that accounts for a wide variety of eye
movement data. We believe the resulting model, while
developed using data from one task, has been evolved by the
analysts with sufficiently few task-specific requisites. That is,
the model is flexible and reusable.

Building on Previous Visual Search Models

This research builds directly on previous research of menu
search. Hornof (2004) studied the visual search of layouts
with and without a useful visual hierarchy. The task relevant
to the current research is the visual search of layouts without
a visual hierarchy. Figure 1 shows a sample layout from the
experiment.

Sixteen participants searched four different screen layouts
for a precued target object. Each layout contained one, two,
four, or six groups. Each group contained five objects. The
groups always appeared at the same physical locations on the
screen. One-group layouts used group A. Two-group layouts
used groups A and B. Four-group layouts used groups A
through D.

Each trial proceeded as follows: The participant studied and
clicked on the precue; the precue disappeared and the layout
appeared; the participant found the target, moved the mouse
to the target, and clicked on the target; the layout disappeared
and the next precue appeared.

Hornof (2004) presented models that predicted and
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Figure 1. A 6-group layout. The precue, in the top left,
would disappear when the layout appeared. The gray text
did not appear during the experiment.
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explained the search time data collected from the visual
hierarchy task. Hornof and Halverson (2003) replicated the
study to collect eye movement data to verify the eye
movement strategies predicted by the models. In the model,
the eyes moved down the first column of text, then down the
second column, and then down the third. Furthermore, the
eyes jumped over a carefully controlled number of items with
each eye movement. This selection strategy resulted in a very
plausible explanation for how people did the task. The model
accounted for the reaction time and a fair number of eye
movement measures, especially considering that the model
was built without the eye movement data to guide its
development.

However, the model’s strategy is perhaps somewhat tuned
to aspects of this one visual task and layout. Aspects of the
strategy, such as the strict use of the three columns, will not
be directly applicable to a wide range of visual layouts. The
original model might thus be characterized as somewhat
brittle, whereas a more flexible model might be more useful
for predicting human performance in a wider range of visual
search tasks.

This concern motivated a need for a more flexible model
that would predict the eye movements with greater fidelity
and would do so in a more general, task-independent manner.
The data collected by Hornof and Halverson (2003) are used
in the current research.

The EPIC Cognitive Architecture

A series of computational cognitive models described in this
study were built using the EPIC (Executive Process
Interactive Control) cognitive architecture (Kieras & Meyer,
1997). EPIC captures human perceptual, cognitive, and motor
processing constraints in a computational framework that is
used to build cognitive models. Into EPIC, we encoded (a) a
reproduction of the task environment, (b) the visual-
perceptual features associated with each of the screen objects,
such as the text feature, and (c) the cognitive strategies that
guide the visual search, encoded as production rules. These
components were added based on task analysis, human
performance capabilities, previous visual search model, and
parsimony.

After these components are encoded into the architecture,
EPIC executes the task, simulates the perceptual-motor
processing and interactions, and generates search time and
eye movement predictions. EPIC simulates ocular-motor
processing, including the fast ballistic eye movements known
as saccades, as well as the fixations during which the eyes are
stationary and information is perceived.

Evolving the Cognitive Strategy

This paper presents the several steps in the principled
evolution of a model of visual search. The motivation for
creating the model is the need for a computational model that
is flexible enough to predict performance on a variety of
menu-like visual layouts, and that can explicitly account for a
wider range of eye movement measures than previous
models.

The principled approach adopted here for building the
model was to make gradual improvements based on “low-
level” eye movement data (for example, fixation duration and
saccade distances). At each step in the evolution of the model,
a sub-strategy was added or a perceptual parameter was
changed to increase the fidelity of the model. Basic visual
search research or previous computational modeling
motivated each change. It should be noted that each strategy
or perceptual parameter change was considered “fixed” for
later iterations of the model.

This model-building procedure resulted in gradual
improvements, which we believe results in a model that meets
our goal of a flexible, reusable model that accounts for how
people search a visual layout. The following sections discuss
four substantial steps made in the evolution of our cognitive
model, starting with the motivation and explanation of the
baseline model.

Step 1: Start with the baseline model

This modeling endeavor started largely as an attempt to
integrate two pre-existing visual search models—the best-
fitting model for the (unlabeled) visual hierarchy layouts from
Hornof (2004) and the best-fitting final “mixed density”
models from Halverson and Hornof (2004). In an effort to
integrate the two, we started by finding the common elements
between the best-fitting models for each of the visual search
tasks. Interestingly, in the process of stripping down each of
the models to find the common elements of both models so
that they could be merged, we ended up with pretty much the
same purely random model promoted by Hornof (2004), and
the same purely random search strategy used in Halverson
and Hornof (2004). They were integrated and used to start
the exploratory modeling discussed here.

The new purely-random baseline model started with a
strategy in which saccade destinations were selected at
random from among potential targets. Beyond that, the
model imposed a minimal number of constraints, primarily
imposed by the EPIC cognitive architecture and task analysis,
including:

(a) Search proceeded without replacement. In other words,
objects were not selected as a saccade destination after their
text had been identified. Analysis of our eye movement data
suggested that people rarely fixated an object more than once.
A model with no memory for fixated locations or objects
would predict way too many fixations.

(b) Saccades were initiated after the fixated objects are
identified. This was a feature of the “mixed density” model
from Halverson and Hornof (2004). In EPIC, the visual
properties of objects are available at varying eccentricities.
For the fext property, the default availability radius is one
degree of visual angle from center of fixation. Once an object
enters the availability region of a property, that property
enters working memory after an amount of time determined
by two parameters: (i) transduction time (50 ms for text), the
time it takes from the information to reach sensory memory,
and (ii) recoding time (100 ms for text), the time it takes to
recognize the property. Given the strategy used in these
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models, these constraints directly affect when the next
saccade is initiated.

(c) EPIC’s oculomotor feature preparation time parameter
was changed to zero. Recent progress with the EPIC
cognitive architecture has found that oculomotor preparation
time may not be necessary or may occur in parallel with
saccade destination decisions (Kieras & Meyer, 2005).
Movement feature preparation time was previously
determined based on shared features (e.g. direction and
extent) with the previous motor movement. Initiation and
execution times are still required.

These three constraints persisted throughout all models
discussed in this paper.

Combining these constraints with the baseline random
strategy, the resulting model predicted only one eye
movement metric quite well, namely mean fixation duration.
Figure 2 shows the predicted and observed fixation durations
by layout size. The model predicts the mean fixation duration
with an average absolute error (AAE) of 7.8%. In that our
goal is an AAE of less than 10%, this is an acceptable error.

The model did a poor job of predicting other eye movement
data, including saccade distance, fixations-per-group,
fixations-per-trial, and scanpaths. Many of these
shortcomings result because the model does not accurately
predict trends in saccade destinations. Though a purely-
random search strategy is good first approximation for
predicting mean search times, a more refined strategy is
needed for a robust, reusable, general purpose model of visual
search.

Step 2: Refine the saccade destinations

As discussed previously, the two models whose integration
initially motivated this research used either task-specific or
purely random strategies. Step 2 pursued a more flexible
strategy. To this end, Step 2 worked to improve the
prediction of saccade destinations.

Two metrics were used to determine saccade destinations:
mean saccade distance and mean fixations per group. Saccade
distance measures the distance between contiguous fixations.
Fixations-per-group measures the number of contiguous
fixations within one group in the layout.
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Direct visual inspection of hundreds of individual eye
movements made by participants revealed two clear patterns
not accounted for by the Step 1 random model. First, once
participants had finished dwelling on a group, they tended not
to revisit that group until the remainder of the layout had been
searched (this was true 94% of the time). Second,
participants were more likely to saccade to nearby objects
rather than to distant objects. Step 2 introduces two
modifications that account for these behaviors.

To maintain forward progress in the search, a sub-strategy
was added to prohibit group revisits until all groups had been
searched. If two contiguous fixations land on two different
groups, then objects in the first of the two groups are no
longer potential saccade destinations until the entire layout
had been searched. This sub-strategy uses layout-specific
information, that objects are organized into groups, but we
suspect that most visual layouts will have some sort of natural
grouping that can be similarly used.

People do not search randomly. When searching, they are
more likely to saccade to objects that are relatively nearby
rather than objects across the layout. In visual search, saccade
destinations are based on proximity to the center of fixation
(e.g., Motter & Belky, 1998). Other models of visual search
prefer nearby objects as saccade destinations (e.g., Barbur,
Forsyth, & Wooding, 1990).

The Step 1 model was modified so that saccade
destinations were selected based on proximity to the center of
fixation. Objects in EPIC have a property, eccentricity, which
reflects the object’s distance (in degrees of visual angle) from
the center of fixation. The random saccade destination
selection strategy was changed to select the potential target
with the least eccentricity. To account for variability in the
human saccade distances, noise was also added to the
eccentricity to vary saccade distances, while at the same time
preferring nearby objects.

Saccade destinations are thus selected as follows: (a) After
each saccade, the eccentricity property is updated based on
the new eye position. (b) The eccentricity property is scaled
by the eccentricity fluctuation factor, which has a mean of
one and a standard deviation of 0.3. This scaling factor is
individually sampled for each object after each saccade. (c)
Objects whose text has not been identified and that were in
unvisited groups are marked as potential candidates for the
saccade destination. (d) The candidate object with the lowest
eccentricity property, after the scaling factor is applied, is
selected as the next saccade destination.

The standard deviation of the fluctuation factor was
determined by varying the fluctuation factor (by increments
no smaller than 0.01) to find the best fit of both the mean
saccade distance and mean fixations per group. We
recommend this parameter setting for future modeling.

Figures 3 and 4 show the Step 1 and 2 model predictions
for mean saccade distance and mean fixations per group. As
can be seen, the Step 2 model predicts the data much better.
The two modifications made to the model dramatically

Figure 2. Fixation duration observed (solid line) and predicted decreased the error in the predicted eye movement data.
by the Step 1 model (dashed line). AAE = 7.8% Error bars are

too small to be visible (standard errors < 15)

1430



10
:m; —e— Observed
(]
575 [~ Step 1
=
E wefees Step 2
g 7 [
=
% 2.5' / L
[
b4
<
w0 . . T T

1 2 4 6
Number of Groups

Figure 3. Saccade distance observed (circle), predicted by
the Step 1 model (squares), and predicted by the

Step 2 model (triangles).

Step 1 AAE = 112%, Step 2 AAE =5.8%

Error bars are too small to be visible (standard errors < .2)
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Figure 4. Fixations per group observed (circles), predicted
by the Step 1 model (squares), and predicted by the Step 2
model (triangles). Step 1 AAE = 42%, Step 2 AAE =4.6%
Error bars indicate £1 standard error.

The improvements made to the model in this step have
improved the fidelity of the model, while making the model
more reusable and flexible. The model requires only one
directly-extractable, task independent object feature—
location. However, the model still requires improvement. As
will be seen, the model still finds the target too quickly, even
though the model correctly predicts how long people dwell in
each group.

Step 3: Account for whole-task performance

Our goal is to produce a model that accounts for multiple eye
movement measures. This includes accounting for eye
movements at multiple scales. The previous iteration of the
model accounted for the number of fixations per group, which
can be viewed as accounting for a sub-task (searching each
group) of the whole task (searching the entire layout). We
next investigated means of improving the model at the
“whole-task” level.

Again, a qualitative analysis of the participants’ eye
movement behavior suggests what might be needed in the
model. It was observed that the participants sometimes
looked at or near the target but continued to search. This

suggests that the participants may be failing to recognize the
target occasionally. It should be noted that it is unlikely that
the participants did not react to the target because they had
forgotten the target, as the participants eventually found the
target and completed the task successfully.

Previous modeling research suggests that people do
occasionally fail to recognize fixated text. In Halverson and
Hornof’s (2004) “mixed density” model, a perceptual
parameter was introduced to explain an increase in the
likelihood of missing a target based as a function of the text
density. The modeling suggested that even in sparse text,
people fail to recognize the target with approximately a 10%
probability.

The model was modified to include a fext recoding failure
rate. Text recoding failure rate has only recently been added
to EPIC, and the default value is zero (i.e. no chance of
failing to identify text). The parameter represents the
probability that the text property of fixated visual objects will
be unknown.

This perceptual parameter was used in the current work for
two reasons. First, to explore ways to account for the
observation that participants missed the target occasionally.
Second, to potentially provide converging support for the
validity of using this parameter. If the current exploratory
modeling predicts observed eye movement data with a text
recoding failure rate similar to that used in the previous
modeling, this would not only support the use of the
parameter here, but also suggest a recommended default
value for the parameter for future modeling.

The text recoding failure rate was initially set 10%, the
value used in the previous modeling effort for sparse text
(Halverson & Hornof, 2004). This failure rate was varied by
1% increments until the model predicted the mean number of
fixations per trial. A value of 9% provided the best fit for the
number of fixations per trial, the eye movement measure used
to evaluate “whole-task™ level performance.

Figure 5 shows the observed and predicted number of
fixations per trial. As can be seen in the figure, the Step 2
model under-predicts the total number of fixations required to
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Figure 5. Fixations per trial observed (circles), predicted by
the Step 2 model (squares), and predicted by the Step 3
model (triangles). Step 2 AAE = 14.3%, Step 3 AAE =4.2%
Error bars indicate =1 standard error. Some error bars are
too small to be visible.
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find the target by 14%. This is not a bad prediction, but an
error of less than 5% would be ideal.

As shown in Figure 5, the Step 3 model predicts the
number of fixations per trial with an error of 4.2%. This is a
very good prediction. The decreased error and the similarity
between the best fitting text recoding failure rate found here
and the rate found in past research provides support for the
use of this perceptual parameter here. This finding suggests
that future modeling of menu-like search tasks should use a
text recoding failure rate of around 9-10%.

Step 3A: Increase visual working memory decay

An interesting interaction between small layouts and EPIC’s
visual working memory gave rise to a surprising prediction.
Occasionally the model would search a small layout without
finding the target (due to text recoding failures introduced in
Step 3) and stall. The model assumed that objects whose text
properties (regardless of a text recoding failure) existed in the
visual perceptual store were not candidate saccade
destinations. EPIC’s visual perceptual store retains the
properties of objects for 500 ms after the eyes moves.
Therefore, the text properties of all objects were known after
the second fixation and there were no candidate destinations
for a third saccade. A variety of solutions were pursued, but
only one was consistent with recent literature and did not
worsen eye movement predictions.

Woodman, Vogel, and Luck (2001) showed that when
VWM is occupied, visual search remains efficient. When
people are given a task that fills VWM with visual properties
like shape, and then perform a second task searching for a
shape, search rates are unaffected. One interpretation of these
findings is that VWM decays quickly for goal-irrelevant
information, like non-targets.

The model was modified by setting the perceptual store
property retaining-time parameter to 50 ms. We would
recommend this setting for future visual search models that
include small layout conditions.

Step 4: Add a global strategy
Step 4 adds a global search component to improve the
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Figure 6. Fixations per trial observed (solid lines) and
predicted by the Step 3 model (dashed lines).
AAE = 8.1%. Error bars indicate +1 standard error.
Some error bars are too small to be visible.

robustness of the model for predicting the frequency with
which various scanpaths are followed.

Figure 6 shows the number of fixations per trial as a
function of target group. (Figure 1 identifies the six groups as
A through F.) There is a slight bump in the data when the
target is located in group C. The purely local strategy for
selecting nearby objects as saccade destinations motivates the
model to reach group D before group C, which was not the
case with people. Though the effect is slight (with an overall
AAE of 8.1%), we believe this trend points to the need for
some sort of global component to the strategy.

In local strategies, saccade destinations are determined
based on what is encountered during the course of the search.
In global strategies, saccade destinations are planned out in
advance based on the task and stimuli.

A global component was added to the strategy such that the
model could develop a global “preference” for scanning
horizontally or vertically. A preferred scanning direction is
established after the model, using the local strategy, starts
searching horizontally or vertically. Once a direction is
established, it is preferred unless no more groups exist in that
direction.

Figure 7 shows that the global component slightly
improved the model’s prediction of fixations per trial. Most
important, the bump in the data for group C is diminished.

Figure 8 shows the three most frequently observed
scanpaths, as well as the predictions of the Step 3 and Step 4
models. People tended to start by going either down the first
column or across the top. As shown in the predictions, the
Step 3 model almost never goes across the top. However, the
Step 4 model increased the frequency.

The improvements made by adding the global strategy are
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Figure 7. Fixations per trial observed (solid lines) and
predicted by the Step 4 model (dashed lines).
AAE = 6.5%. Error bars indicate +1 standard error.
Some error bars are too small to be visible.
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Figure 8. The most commonly observed scanpaths in six-
group layouts and how often each path was taken by the
participants (observed) and the models (Step 3 and 4).
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Figure 9. Search time per trial observed (solid lines) and
predicted (dashed lines). AAE = 7.1%. Error bars
indicate +1 standard error. Some error bars are too small
to be visible.

subtle, but they add to the fidelity of the model. However, the
addition of the global strategy does not improve the
quantitative fit of the model substantially and the addition
may be considered overfitting as the additional production
rules introduce additional free parameters. Therefore, the Step
3 model may be a better candidate on which to build
successive flexible, reusable models of visual search that
account for more factors.

Figure 9 shows the observed and predicted search times of
the Step 4 model. The model predicts the observed search
time quite well. This is a validation of the principled approach
used to gradually improve the model using a variety of eye
movement data. Moreover, it is gratifying to find that the
model is able to make such accurate predictions without using
the more brittle strategies of its predecessors.

Conclusion

A flexible and reusable model of visual search was developed
that accounts for a wide variety of search data by (a)
saccading to nearby objects when the fixated text is
recognized, (b) positing a partial inspection of some objects
and an occasional failure to identify others, (c) remembering
more-or-less where but not what’s been searched, and (d)
accounting for people’s tendencies to follow regular
scanpaths with an element of a global strategy. The model
explains the observed saccade distances, the number of
fixations to each group in a layout, the total number of
fixations in a trial, the number of fixations to find an object
based on the object’s location in the layout, the fixation
duration, and to a slightly lesser extent the scanpaths that
people used. The prediction of such a wide variety of
measures bodes well for a priori prediction of visual search.

The model is flexible and reusable. The strategy is not
tuned to the visual layout of the task. The only features
required by the model are the location and identification (zext)
of the visual objects to be searched. If the visual layout is
divided into clearly distinguishable groups, the model can
utilize that information, but this division is not required. The
model is currently limited to the visual search of textual
layouts, but most aspects of the model are clearly
generalizable to other stimuli.

The integration of recent, relevant psychological
phenomena benefits the continued integrative development of
computational models and advances in basic psychological
research, and thus for Cognitive Science in general.
Phenomena include general saccadic selection behavior
(Motter & Belky, 1998), visual working memory (Woodman,
Vogel, & Luck, 2001), and the integration of both local and
global strategies. This work will continue with further
integration of cognitive models of visual search from various
cognitive architectures.
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