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Abstract 

A comparative cognitive model of two manipulations of a 
complex dual task in which 3D audio cueing was used to 
improve operator performance is presented.  The model is 
implemented within the EPIC cognitive architecture and 
describes extensions that were necessary to simulate gaze shifts 
and the allocation of attention between separated task displays.  
A simulation of meta-cognitive decision-making to explain 
unprompted, volitional shifts of attention and the effect of audio 
cueing on performance and the frequency of attention shifts are 
explored. 
 

Keywords:  cognitive modeling; EPIC; dual task; 3D 
auditory cueing; separated task displays; gaze shifts; 
volitional shifts of attention; simulated meta-cognitive 
decision-making; gamma distribution; sense of timing 
 

Introduction and Background 
System designers take numerous approaches to reduce the 
number of workstation operators necessary to accomplish 
complex decision-making tasks in Navy command-and-
control centers.  Approaches include (a) the automation of 
multiple tasks and (b) the adoption of supervisory rather than 
direct control.  As workstation operators are asked to manage 
an increasing number of tasks, reliable techniques are needed 
to manage operator attention.  The research presented here 
demonstrates how cognitive modeling can explain how 
operators manage conflicting attention demands and also how 
cognitive modeling can inform the design of human-machine 
interfaces that facilitate efficient and accurate multi-display, 
multi-task execution. 

The Navy has developed a prototype decision support 
workstation that features three flat-panel monitors centered in 
a 135° arc in front of the user (Osga, 2000).  With this 
configuration, the operator can access much data but loses 
peripheral access to all three monitors when his or her gaze is 
turned to look at either the right or left screen.  This loss can 
reduce the speed and accuracy of critical decisions (Brock et 
al., 2002; Brock et al., 2004). 

The Naval Research Laboratory (NRL) is developing 
techniques for directing attention in complex operational 
settings using three-dimensional (3D) or “spatialized” sound 
(Begault, 1994).  Properly designed 3D sounds can be used to 

convey a variety of task-related information, including the 
onset, location, and identity of critical events. 

Brock et al. (2004) demonstrated that the use of 3D sound 
can significantly improve dual-task performance.  The 
research presented here describes recent cognitive modeling 
work that has been done to explain the effects of audio cueing 
observed by Brock et al., and the effect of audio cueing on the 
allocation of attention between tasks.  The models are based 
on the human data observed by Brock et al. in (a) the “no 
sound” condition and (b) one particular sound condition (the 
“screen-centric” condition).   

Cognitive modeling is a research practice that endeavors to 
build computer programs that behave in some way like 
human beings.  The models presented here are implemented 
within the EPIC (Executive Process-Interactive Control) 
cognitive architecture (Kieras and Meyer, 1997), which is a 
computational framework for building models of human 
performance based on the constraints of human perceptual, 
cognitive, and motor processing. 

The cognitive modeling presented in this paper specifically 
explores (a) a simulation of meta-cognitive decision-making 
to explain the volitional shifts of attention, (b) performance 
aspects of task-related audio cueing, a somewhat new domain 
for cognitive modeling, and (c) extensions to the perceptual-
motor components of EPIC that were necessary to simulate a 
complex dual-display task. 

The Attention Management Study 

The Dual Task 
Figure 1 shows the physical layout of the dual task modeled 
in this paper.  The task is from Brock et al. (2004).  
Participants used a joystick to continuously track an evasive 
target on the right and, at the same time, used the keyboard to 
periodically assess and classify “blips” moving down the 
radar screen on the left.  The right task is “tracking” and the 
left task is “tactical.”  The task displays were separated by 90° 
of arc, such that the unattended display could not be seen with 
peripheral vision.  The task was originally developed by 
Ballas, Heitmeyer & Perez (1992) and is analogous in many 
ways to the level of multitask activity that future Navy 
workstation operators will be subjected to. 
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Figure 1:  The physical layout of the dual task. 

 
Whereas the tracking demands continuous attention, the 

tactical task can be accomplished with brief intermittent 
glances and bursts of activity.  The procedure for tactical 
assessment and classification is somewhat complex.  The 
tactical radar deals in three shapes of blips.  All initially 
appear as black, numbered icons, and move at varying slow 
speeds, and in different patterns, from the top to the bottom of 
the screen.  A few seconds after each blip first appears, its 
color is changed from black to red or blue or yellow.  This 
color-coding lasts for about ten seconds, and during this time, 
a two-keystroke combination must be entered—the blip’s 
number and its classification.  Red and blue blips are 
classified as, respectively, hostile and neutral.  Yellow blips 
must be classified based on their onscreen behavior and rules 
learned in advance.  After assessment (or ten seconds), the 
blip disappears. 

 
Auditory Cueing In some conditions (from Brock et al., 
2004), the tasks were augmented with 3D auditory cues.  This 
paper discusses models of the baseline “no sound” condition 
and one of the “sound” conditions (the screen-centric 
condition).  A unique sound loop was played for each of the 
three different blip shapes on the tactical radar screen.  Audio 
cues were sounded when blips were color-coded.  Only one 
audio cue was played at a time.  Thus, if a new blip became 
color-coded while another blip’s auditory cue was already 
playing, the new one had to wait until the previous blip was 
classified and/or disappeared.  The apparent 3D source of the 
sounds was located forward and 45° to the left of the 
orientation of participant’s head.  Headphones were used, but 
not head tracking. 

 
Empirical Measures of Performance The performance 
measures discussed here (originally presented in Brock et al., 
2004) are derived from (a) tactical-response timing data 
logged by the dual-task software, and (b) counts of participant 
gaze shifts between the left and right displays and the 
keyboard, logged by an experimenter on a Palm Pilot.  The 
actual observed shifts were head turns, which are assumed to 
correspond to gaze shifts and attentional shifts based on the 
large visual angle among the devices. 

Figure 2 shows the mean number of gaze shifts and tactical 
assessment response times in the sound and no-sound 

conditions.  Response time is the total time to classify a blip 
(with two keystrokes) after it changes color. 
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Figure 2:  The total number of gaze shifts (based on head 
turns) and the response times observed in the no-sound 

(baseline) and sound conditions.  (Note the nonzero y-axis.) 
 

As seen in Figure 2, audio cueing reduced the number of 
head turns that were needed, and at the same time improved 
the tactical assessment response times (with no difference in 
response accuracy).  Both differences are significant (p < 
.001).  These results demonstrate that screen-centric audio 
cues can improve complex dual-task performance. 

Table 1 shows counts of the attentional shifts made by 
participants, and provides a more detailed picture of how 
participants allocated their attention in the no-sound and 
sound conditions.  The no-sound condition, for example, 
required 44% more shifts from the right (tracking) display to 
left (tactical) display (174 compared to 121).  The data also 
indicate that, even in the sound condition, participants did not 
rely solely on audio cues to monitor the status of blips on the 
tactical radar screen.  Even though only 65 blips were 
presented in each manipulation, participants in the sound 
condition averaged 121 looks from right to left; this means 
that participants made, on average, 56 additional self-
motivated shifts to the tactical task.  These 56 inspections are 
perhaps analogous to the 174 self-motivated right-to-left 
shifts in the no-sound condition.  In each condition, this is an 
estimate of the total number of meta-cognitively-prompted 
volitional shifts from right to left. 

 
Table 1:  Counts of attentional shifts (based on head turns) 

observed in the no-sound and sound conditions. Location key: 
right = tracking and left = tactical. 

 
No-Sound - Mean Count of Attentional Shifts 

Shift from Right Left Keybd  
Right to 0 174 7 180 
Left to 170 0 27 197 
Keybd to 10 23 0 34 

 180 197 34 411 
 

Sound - Mean Count of Attentional Shifts 
Shift from Right Left Keybd  

Right to 0 121 6 127 
Left to 116 0 23 139 
Keybd to 11 19 0 29 

 127 139 29 295 
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The role and frequency of these meta-cognitive decisions to 
shift from tracking to tactical assessment is explored in the 
model through parametric manipulations of a gamma 
distribution.  The distribution is used to represent the time 
that elapses before the participant motivates an internal 
decision to switch back to the tactical task in the absence of 
any external motivator to do so. 

Modeling Dual-Task Performance 

The Modeling framework 
The EPIC cognitive architecture (Executive Process-
Interactive Control; Kieras and Meyer 1997) was used in this 
modeling effort.  EPIC is a unified theory of human 
perceptual, cognitive, and motor processing that provides a 
computational framework for modeling human information 
processing in simulated task environments.  Based on 
fundamental human processing capabilities and limitations, 
the architecture is designed to accurately capture the details of 
human performance in predictive cognitive models. 

Cognitive processing in EPIC is implemented as a 
production rule system that allows multiple rules to fire in 
parallel, and whose working memory maintains a declarative 
representation of the world.  Perceptual-motor processing is 
implemented as a set of simulated sensory and motor 
processing peripherals, running in parallel with cognition, 
whose organization, performance, and constraints are derived 
from the human performance literature. 

Models in EPIC are composed of three principal 
components: a reproduction of the interactive task 
environment; a set of perceptual features associated with the 
stimuli in the task environment; and a task performance 
strategy, implemented as a set of production rules.  Models 
are run in the context of a task simulation, with the task 
strategy guiding various motor activities as well as the focus 
of perceptual attention (via eye movements), which in turn 
informs cognition, which further acts on the task simulation 
through the execution of motor processing. 

 
Earlier, Related Modeling Work The EPIC framework was 
chosen a variety of reasons.  It was used to model a nearly 
identical, earlier version of the dual task that was displayed 
on a single screen (Kieras, Ballas, & Meyer, 2001), and this 
presented an opportunity to elaborate on a body of existing 
work.  However, EPIC was also chosen because its auditory 
processing is more complete that of other cognitive 
architectures, and because, in the core architecture, it 
accomplishes visual tasks by moving its simulated eyes, 
which corresponds tightly with our empirical observations of 
how people executed the dual task in the dual-screen 
configuration. 

In the prior version of the dual task, audio cueing was not 
used to assist in real-time attention management between 
subtasks, but to reduce an “automation deficit” that occurred 
when participants resumed the tactical task after a period 

during which that subtask was completed “automatically” by 
the computer (Ballas, et al., 1999). 

Similarly, the modeling work presented here examines a 
different set of issues than did the modeling work of Kieras et 
al.  The prior modeling effort focused on audio-visual 
localization performance and on the problem of explaining 
observed patterns of response time sequences corresponding 
to the negative effects of the automation deficit.  Also, in the 
prior work, switches of attention from tracking to tactical 
assessment in the model were motivated by the appearance of 
radar blips in peripheral vision.  In the new version of the task 
presented here, the two visual displays are far apart, and so 
switches of attention are motivated either by auditory cues or 
volitional decisions to shift attention. 
 
Architectural Extensions  Modeling the complexity of 
the current dual task required two extensions to EPIC. 

The first extension to EPIC was to add a new version of 
ocular motor movement that corresponds to both an eye and 
head movement.  This was needed to model gaze shifts 
between the two task displays, which are separated by 90° of 
arc.  Longer eye movements are generally accompanied by 
head movements (Corneil & Munoz, 1996), though the time 
course of these longer movements can be described by the 
same time course of smaller eye movements, and is linear for 
amplitudes from 5° to at least 90° (Becker, 1991).  The time 
course of the newly-programmed eye-and-head movement 
corresponds to the linear relation given by Carpenter (1988). 

The second modification to EPIC was to introduce, in 
effect, a “sense of timing.”  The architecture needed a way to 
maintain an internal sense of timing and priority of a subtask, 
which in this case was the timing associated with meta-
cognitively prompted volitional shifts of attention to the 
tactical task in the absence of any new perceptual stimuli.  
(Recall that 56 self-motivated shifts were observed in the 
sound condition, and 174 in the no-sound condition.)  This 
sense of timing was not needed when modeling earlier 
versions of the task because the two displays were adjacent 
and blips could be perceived peripherally. 

The sense of timing was introduced via a mechanism in the 
production rule system.  The timing command generates 
unprompted shifts of attention between tasks based on a 
generalized form a cumulative gamma distribution, which is 
characterized by McGill and Gibbon (1965) as useful for 
modeling multistage processes that are measured as a single 
reaction time.  The distribution is characterized by two free 
parameters that specify its shape and scale.  Manipulations of 
these parameters in the context of the model's comparative 
performance with and without audio cues are evaluated below 
in the discussion of the model's performance. 

The Model 
An EPIC model was constructed to simulate and predict how 
people perform the dual-display dual task.  The model’s 
organization largely follows the same hierarchical scheme 
developed by Kieras et al. (2001).  A top-level executive 
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process controls the execution of three sub-processes, two of 
which carry out the subtasks of tracking and tactical 
assessment.  The third sub-process performs a global 
monitoring role and updates working memory based the state 
of the radar display.  The functions of these three sub-
processes in the baseline model are described next, including 
how they have evolved from original model. 
 
The Tracking Task The new model’s tracking 
implementation remains an intentionally simple process that 
continuously follows the target with the eyes and manually 
pushes the cursor toward it.  Consistent with participant 
behavior discussed by Ballas et al. (1999), the model 
suspends tracking when it turns its attention to the tactical 
assessment task. 
 
The Monitoring Subtask  The monitoring subtask updates 
working memory with status changes in the environment.  
Most of the responsibilities are carried over from the previous 
model, although its role in the allocation of attention between 
the tasks has changed.  Formerly, this process ran in parallel 
with the tracking process and notified the dual-task executive 
of changes in the radar display to prompt a task switch.  In the 
current model, however, with no peripheral access to the 
radar display, the monitoring process is used to trigger timing 
commands every time the tracking task resumes.  These 
commands start EPIC’s new “sense of timing” clock which, 
based on a gamma distribution, stochastically determines an 
appropriate time in the near future to notify the dual-task 
executive that it is time to switch to the tactical task. 

As in the original model, the monitoring process also 
monitors the visual status of blips and notifies the dual-task 
executive as these events occur.  In the new model, the 
monitoring process also classifies blips as hostile or neutral. 
An analog of this classification function was present in the 
single-screen model, but its parameters were different.  
Independently established free parameters for the time needed 
to inspect the behavior each of the three blip types were used 
in lieu of modeling eye movements for which there was no 
empirical data.  An analysis of the participant response time 
data in Brock et al. (2004), however, suggests that, counter-
intuitively, response times for red and blue blips were roughly 
equivalent to those for yellow blips.  Thus, in the new model, 
all colors of blips are classified by the monitoring process 
using a single time parameter. 

 
The Tactical Assessment Task The tactical assessment task 
is very complex and operates at the same level as the tracking 
and monitoring sub-processes.  Unlike tracking and 
monitoring, though, tactical assessment is hierarchically 
organized as an executive sub-process.  It controls the 
execution the three sub-sub-processes that select, classify, and 
respond to blips.  Although the new model implements a 
number of changes here, only the blip selection sub-process 
differs substantially.  It now follows a more straightforward 
search logic that is based on a careful reanalysis of the visual 
selection task. 
 

A detailed description of the tactical subtask is beyond the 
scope of this paper.  The task is very complex, though it is 
modeled with great detail and fidelity.  Once the eyes arrive 
on the tactical radar display, a great many decisions are made 
and continue to be made throughout the subtask.  Decisions 
pertain to which blips to put the eyes on, when and whether to 
classify blips as neutral or hostile, when to move to another 
blip based on the color of the currently-fixated blip and other 
blips, when to move the eyes based on changes in blip status 
during the task, the manual motor process of entering blip 
classifications, and even eye movements to the keypad. 

The sub-processes include selection, classification, and 
response.  Consistent with the architecture’s constraints, 
though, much of the cognitive and motor processing for these 
sub-processes can overlap.  The response sub-process first 
waits for the monitoring process to classify the selected blip 
as hostile or neutral, and then uses this information in 
working memory to select the appropriate key and carry out 
the keystroke.  The response sub-process contains a simple 
probabilistic rule that causes the model to occasionally move 
its gaze to the keyboard while executing the keystroke.  This 
contributes to both the gaze shifts and increased response 
times that are observed in the no-sound condition. 

 
How the Model Responds to Audio Cues  The new model 
performs the dual task on dual screens both with and without 
sound.  To respond to audio cues, a rule was added to the top-
level executive process to listen for audio cues.  When a cue 
is detected, the tracking task is suspended and the gaze moves 
to tactical display.  It was not necessary to add rules to the 
blip selection sub-process to associate the cues with their 
corresponding blip shapes.  However, the rules in the sub-
process that try to classify a black blip before returning to the 
tracking task led to unrealistically fast performance in the 
sound condition.  Accordingly, this part of the selection 
strategy was removed for the sound condition.  The 
implications are interesting, and discussed in the next section 
on modeling results. 

Modeling results 
Once the task analysis was implemented and other aspects of 
the model’s structure were settled, its free parameters were 
derived and its performance strategy was adjusted for each 
condition.  The time required for blips to be classified as 
either hostile or neutral was calculated by running a version 
of the model in which only audio cues prompted looks to 
events on the tactical assessment display, and the timing of 
the classification procedure was set to zero.  The resulting 
response times represented the performance overhead 
associated with selecting and responding to blips.  The times 
were subtracted from the empirical mean for the screen-
centric sound condition.  The difference (670 ms) was used as 
the time required to classify all blips. 

The model’s response time performance in the sound 
condition with this fitted classification time parameter, 
though, was unrealistically fast.  In addition, it was spending 
too much time on the left screen classifying black blips.  This 
consequence of the modeling suggests that, in the sound 
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condition, participants did not spend time trying to classify 
black blips as they did in the no-sound condition.  This aspect 
of the tactical sub-strategy was thus removed for the sound 
condition. 

The shape and scale parameters of the gamma distribution 
used to simulate self-prompted shifts of attention in the 
baseline condition were determined manually.  A gamma 
probability density curve was fit to the frequency histogram 
of observed right-to-left gaze transition latencies, which were 
taken to represent the duration of dwell times on the tracking 
task.  The values of the shape and scale parameters of this 
fitted distribution were respectively 2.5 and 0.95.  The tail of 
this distribution was noticeably steeper than the tail of the 
empirical data.  An explanation for this discrepancy might be 
that there was a greater degree of variability in the 
experimenter's recording process for long latencies.  At this 
point, the fitted model for the no-sound condition was 
considered complete. 

Appropriate gamma distribution parameters were 
determined to motivate the 56 additional self-motivated shifts 
of attention in the sound condition.  The gamma function’s 
shape parameter is commonly interpreted as the nth 
occurrence of some event.  Taking this to be descriptive of an 
internal process that determines when a self-prompted look to 
the tactical decision task should be carried out, it can be 
reasoned that the same process is likely to apply in both the 
no-sound and sound conditions, only at different rates.  
Therefore, the shape parameter should be held constant, and 
only the scale parameter varied across conditions.  Using this 
reasoning to make the final fit, it was quickly determined that 
widening the scale parameter to 2.5 in a run of the model in 
the sound condition resulted in an average of 120 looks to the 
tactical assessment task.  This difference in the scale 
parameter effectively measures the increase in meta-cognitive 
volitional processing necessary when sound is removed from 
the task environment. 

Figure 3 compares the fitted model’s performance in the 
no-sound and sound conditions.  Each of the performance 
measures shown for the model is the mean of six randomly 
seeded runs, each of which was driven by a different tactical 
task scenario.  The model’s close fit with the mean number of 
gaze shifts in each condition is a direct consequence of the 
stochastic approach used to simulate self-prompted looks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows mean counts of the model’s gaze shifts 
among the two displays and the keyboard, along with the 
mean empirical counts from Table 1.  The most important of 
these shifts are the counts of right-to-left looks, which capture 
the model’s allocation of attention to the tactical assessment 
task.  As can be seen, this measure of the model’s 
performance is quite close to the empirical data. 

 
Table 2:  Predicted/observed counts of attentional shifts 

(based on head turns) in the no-sound and sound conditions. 
Location key: right = tracking and left = tactical. 

 
No-Sound - Mean Count of Attentional Shifts 

Shift from Right Left Keybd  
Right to 0 174/174 0/7 174/180 
Left to 168/170 0 25/27 193/197 
Keybd to 7/10 18/23 0 25/34 

 175/180 192/197 25/34 392/411 
 

Sound - Mean Count of Attentional Shifts 
Shift from Right Left Keybd  
Right to 0 120/121 0/6 120/127 
Left to 93/116 0 28/23 121/139 
Keybd to 27/11 0/19 0 27/29 

 120/127 120/139 28/29 268/295 
 

Discussion 
Two particularly interesting aspects of this model include (a) 
the difference blip assessment strategies necessary between 
the no-sound and sound conditions and (b) the model’s 
emergent behavior of looks away from the keypad. 

There are several reasons why participants might assess 
black blips much less frequently in the sound condition.  
Looks in the sound condition are in part driven by prompts in 
the task environment and, as a result, are generally more 
efficient.  If a participant turns away from a blip that is about 
to change color in this condition, he or she is alerted to this 
fact. In the no sound condition, however, the cost of turning 
back to the tracking task just before a blip changes color is 
much greater because the response time for that blip is more 
likely to be poor.  As a result, participants have incentive to 
dwell on the left screen longer when they feel a blip is getting 
close to changing color. 

The model’s emergent pattern of looks away from the 
keyboard is quite interesting.  Looks to the keyboard were 
modeled for fidelity. However, the implementation led to an 
unforeseen result:  The model reveals how looks away from 
the keyboard interact with the blip selection sub-process.  
When color-coded blips remain on the left screen, the model 
always returns to the tactical assessment task from the 
keyboard.  In all other circumstances, the model returns to the 
tracking task.  No attempt was made to motivate these moves.  
It is particularly interesting that in the no-sound condition, the 
proportion of gaze shifts away from the keyboard in either 
direction matches observed data.  This strengthens the 
likelihood that the blip selection sub-process used in this 
condition is close to what participants actually used.  It also 
follows that the corresponding disparity in the sound 

Figure 3:  The observed and predicted response times and 
total number of gaze shifts (based on head turns) for the no-

sound (baseline) and sound conditions. 
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condition suggests that the blip selection sub-process is more 
subtle.   

Eye-tracking data will enable us to directly examine aspects 
of the sub-strategies that participants use in the two 
conditions.  For instance, it will show how often, and in 
which conditions, participants spend time looking at black 
blips; whether time spent on a black blip directly benefits its 
corresponding response time; whether or not assessments that 
are interrupted effect response times; whether subjects spend 
time on the left screen after a gaze shift from the keyboard; 
and whether the left screen is only a brief stop for the eyes on 
their way back to the tracking task. 

Conclusion 
The long-term motivation for the modeling effort presented in 
this paper is to analyze and predict the costs and benefits of 
using 3D audio in the information displays of operational 
settings such as those the Navy expects to deploy in the next 
ten to fifteen years.  Although many aspects of the model’s 
implementation, its performance strategies, and the process of 
deriving appropriate values for its free parameters may not 
appear to comment directly on this goal, several important 
aspects of generally overlooked issues in the simulation of 
human performance are addressed here.  A computational 
model of the performance benefits associated with an 
uncluttered auditory information design is presented.  The 
model addresses the problem of usefully characterizing the 
parameters of self-regulated allocation of attention.  The 
model predicts the effect of system level strategies for 
ameliorating effort when concurrent demands are involved. 

Multi-task operational settings can be notoriously more 
complex than the dual task modeled here, but designers of 
supervisory control systems absolutely need to know the 
baseline requirements for the allocation of attention before 
they can design and implement effective attention 
management solutions.  In particular, the ground truth for 
modeling inter-task performance depends on knowing the 
demands of process combinations of unassisted access rates 
to information that must be acted upon, acceptable levels of 
error, and requirements for initiative and physical effort that 
can be quantified. 
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