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Abstract

A comparative cognitive model of two manipulations of a
complex dual task in which 3D audio cueing was used to
improve operator performance is presented. The model is
implemented within the EPIC cognitive architecture and
describes extensions that were necessary to simulate gaze shifts
and the allocation of attention between separated task displays.
A simulation of meta-cognitive decision-making to explain
unprompted, volitional shifts of attention and the effect of audio
cueing on performance and the frequency of attention shifts are
explored.
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auditory cueing; separated task displays; gaze shifts;
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Introduction and Background

System designers take numerous approaches to reduce the
number of workstation operators necessary to accomplish
complex decision-making tasks in Navy command-and-
control centers. Approaches include (a) the automation of
multiple tasks and (b) the adoption of supervisory rather than
direct control. As workstation operators are asked to manage
an increasing number of tasks, reliable techniques are needed
to manage operator attention. The research presented here
demonstrates how cognitive modeling can explain how
operators manage conflicting attention demands and also how
cognitive modeling can inform the design of human-machine
interfaces that facilitate efficient and accurate multi-display,
multi-task execution.

The Navy has developed a prototype decision support
workstation that features three flat-panel monitors centered in
a 135° arc in front of the user (Osga, 2000). With this
configuration, the operator can access much data but loses
peripheral access to all three monitors when his or her gaze is
turned to look at either the right or left screen. This loss can
reduce the speed and accuracy of critical decisions (Brock et
al., 2002; Brock et al., 2004).

The Naval Research Laboratory (NRL) is developing
techniques for directing attention in complex operational
settings using three-dimensional (3D) or “spatialized” sound
(Begault, 1994). Properly designed 3D sounds can be used to

convey a variety of task-related information, including the
onset, location, and identity of critical events.

Brock et al. (2004) demonstrated that the use of 3D sound
can significantly improve dual-task performance. The
research presented here describes recent cognitive modeling
work that has been done to explain the effects of audio cueing
observed by Brock et al., and the effect of audio cueing on the
allocation of attention between tasks. The models are based
on the human data observed by Brock et al. in (a) the “no
sound” condition and (b) one particular sound condition (the
“screen-centric” condition).

Cognitive modeling is a research practice that endeavors to
build computer programs that behave in some way like
human beings. The models presented here are implemented
within the EPIC (Executive Process-Interactive Control)
cognitive architecture (Kieras and Meyer, 1997), which is a
computational framework for building models of human
performance based on the constraints of human perceptual,
cognitive, and motor processing.

The cognitive modeling presented in this paper specifically
explores (a) a simulation of meta-cognitive decision-making
to explain the volitional shifts of attention, (b) performance
aspects of task-related audio cueing, a somewhat new domain
for cognitive modeling, and (c) extensions to the perceptual-
motor components of EPIC that were necessary to simulate a
complex dual-display task.

The Attention Management Study

The Dual Task

Figure 1 shows the physical layout of the dual task modeled
in this paper. The task is from Brock et al. (2004).
Participants used a joystick to continuously track an evasive
target on the right and, at the same time, used the keyboard to
periodically assess and classify “blips” moving down the
radar screen on the left. The right task is “tracking” and the
left task is “tactical.” The task displays were separated by 90°
of arc, such that the unattended display could not be seen with
peripheral vision. The task was originally developed by
Ballas, Heitmeyer & Perez (1992) and is analogous in many
ways to the level of multitask activity that future Navy
workstation operators will be subjected to.

1044



Tactical assessment task

Tracking task

joystick

Figure 1: The physical layout of the dual task.

Whereas the tracking demands continuous attention, the
tactical task can be accomplished with brief intermittent
glances and bursts of activity. The procedure for tactical
assessment and classification is somewhat complex. The
tactical radar deals in three shapes of blips. All initially
appear as black, numbered icons, and move at varying slow
speeds, and in different patterns, from the top to the bottom of
the screen. A few seconds after each blip first appears, its
color is changed from black to red or blue or yellow. This
color-coding lasts for about ten seconds, and during this time,
a two-keystroke combination must be entered—the blip’s
number and its classification. Red and blue blips are
classified as, respectively, hostile and neutral. Yellow blips
must be classified based on their onscreen behavior and rules
learned in advance. After assessment (or ten seconds), the
blip disappears.

Auditory Cueing In some conditions (from Brock et al.,
2004), the tasks were augmented with 3D auditory cues. This
paper discusses models of the baseline “no sound” condition
and one of the “sound” conditions (the screen-centric
condition). A unique sound loop was played for each of the
three different blip shapes on the tactical radar screen. Audio
cues were sounded when blips were color-coded. Only one
audio cue was played at a time. Thus, if a new blip became
color-coded while another blip’s auditory cue was already
playing, the new one had to wait until the previous blip was
classified and/or disappeared. The apparent 3D source of the
sounds was located forward and 45° to the left of the
orientation of participant’s head. Headphones were used, but
not head tracking.

Empirical Measures of Performance The performance
measures discussed here (originally presented in Brock et al.,
2004) are derived from (a) tactical-response timing data
logged by the dual-task software, and (b) counts of participant
gaze shifts between the left and right displays and the
keyboard, logged by an experimenter on a Palm Pilot. The
actual observed shifts were head turns, which are assumed to
correspond to gaze shifts and attentional shifts based on the
large visual angle among the devices.

Figure 2 shows the mean number of gaze shifts and tactical
assessment response times in the sound and no-sound

conditions. Response time is the total time to classify a blip
(with two keystrokes) after it changes color.
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Figure 2: The total number of gaze shifts (based on head
turns) and the response times observed in the no-sound
(baseline) and sound conditions. (Note the nonzero y-axis.)

As seen in Figure 2, audio cueing reduced the number of
head turns that were needed, and at the same time improved
the tactical assessment response times (with no difference in
response accuracy). Both differences are significant (p <
.001). These results demonstrate that screen-centric audio
cues can improve complex dual-task performance.

Table 1 shows counts of the attentional shifts made by
participants, and provides a more detailed picture of how
participants allocated their attention in the no-sound and
sound conditions. The no-sound condition, for example,
required 44% more shifts from the right (tracking) display to
left (tactical) display (174 compared to 121). The data also
indicate that, even in the sound condition, participants did not
rely solely on audio cues to monitor the status of blips on the
tactical radar screen. Even though only 65 blips were
presented in each manipulation, participants in the sound
condition averaged 121 looks from right to left; this means
that participants made, on average, 56 additional self-
motivated shifts to the tactical task. These 56 inspections are
perhaps analogous to the 174 self-motivated right-to-left
shifts in the no-sound condition. In each condition, this is an
estimate of the total number of meta-cognitively-prompted
volitional shifts from right to left.

Table 1: Counts of attentional shifts (based on head turns)
observed in the no-sound and sound conditions. Location key:
right = tracking and left = tactical.

No-Sound - Mean Count of Attentional Shifts

Shift from Right Left Keybd
Right to 0 174 7 180
Left to 170 0 27 197
Keybd to 10 23 0 34
180 197 34 411

Sound - Mean Count of Attentional Shifts

Shift from Right Left Keybd
Right to 0 121 6 127
Left to 116 0 23 139
Keybd to 11 19 0 29
127 139 29 295
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The role and frequency of these meta-cognitive decisions to
shift from tracking to tactical assessment is explored in the
model through parametric manipulations of a gamma
distribution. The distribution is used to represent the time
that elapses before the participant motivates an internal
decision to switch back to the tactical task in the absence of
any external motivator to do so.

Modeling Dual-Task Performance

The Modeling framework

The EPIC cognitive architecture (Executive Process-
Interactive Control; Kieras and Meyer 1997) was used in this
modeling effort. EPIC is a unified theory of human
perceptual, cognitive, and motor processing that provides a
computational framework for modeling human information
processing in simulated task environments. Based on
fundamental human processing capabilities and limitations,
the architecture is designed to accurately capture the details of
human performance in predictive cognitive models.

Cognitive processing in EPIC is implemented as a
production rule system that allows multiple rules to fire in
parallel, and whose working memory maintains a declarative
representation of the world. Perceptual-motor processing is
implemented as a set of simulated sensory and motor
processing peripherals, running in parallel with cognition,
whose organization, performance, and constraints are derived
from the human performance literature.

Models in EPIC are composed of three principal
components: a reproduction of the interactive task
environment; a set of perceptual features associated with the
stimuli in the task environment; and a task performance
strategy, implemented as a set of production rules. Models
are run in the context of a task simulation, with the task
strategy guiding various motor activities as well as the focus
of perceptual attention (via eye movements), which in turn
informs cognition, which further acts on the task simulation
through the execution of motor processing.

Earlier, Related Modeling Work The EPIC framework was
chosen a variety of reasons. It was used to model a nearly
identical, earlier version of the dual task that was displayed
on a single screen (Kieras, Ballas, & Meyer, 2001), and this
presented an opportunity to elaborate on a body of existing
work. However, EPIC was also chosen because its auditory
processing is more complete that of other cognitive
architectures, and because, in the core architecture, it
accomplishes visual tasks by moving its simulated eyes,
which corresponds tightly with our empirical observations of
how people executed the dual task in the dual-screen
configuration.

In the prior version of the dual task, audio cueing was not
used to assist in real-time attention management between
subtasks, but to reduce an “automation deficit” that occurred
when participants resumed the tactical task after a period

during which that subtask was completed “automatically” by
the computer (Ballas, et al., 1999).

Similarly, the modeling work presented here examines a
different set of issues than did the modeling work of Kieras et
al. The prior modeling effort focused on audio-visual
localization performance and on the problem of explaining
observed patterns of response time sequences corresponding
to the negative effects of the automation deficit. Also, in the
prior work, switches of attention from tracking to tactical
assessment in the model were motivated by the appearance of
radar blips in peripheral vision. In the new version of the task
presented here, the two visual displays are far apart, and so
switches of attention are motivated either by auditory cues or
volitional decisions to shift attention.

Architectural Extensions Modeling the complexity of
the current dual task required two extensions to EPIC.

The first extension to EPIC was to add a new version of
ocular motor movement that corresponds to both an eye and
head movement. This was needed to model gaze shifts
between the two task displays, which are separated by 90° of
arc. Longer eye movements are generally accompanied by
head movements (Corneil & Munoz, 1996), though the time
course of these longer movements can be described by the
same time course of smaller eye movements, and is linear for
amplitudes from 5° to at least 90° (Becker, 1991). The time
course of the newly-programmed eye-and-head movement
corresponds to the linear relation given by Carpenter (1988).

The second modification to EPIC was to introduce, in
effect, a “sense of timing.” The architecture needed a way to
maintain an internal sense of timing and priority of a subtask,
which in this case was the timing associated with meta-
cognitively prompted volitional shifts of attention to the
tactical task in the absence of any new perceptual stimuli.
(Recall that 56 self-motivated shifts were observed in the
sound condition, and 174 in the no-sound condition.) This
sense of timing was not needed when modeling earlier
versions of the task because the two displays were adjacent
and blips could be perceived peripherally.

The sense of timing was introduced via a mechanism in the
production rule system. The timing command generates
unprompted shifts of attention between tasks based on a
generalized form a cumulative gamma distribution, which is
characterized by McGill and Gibbon (1965) as useful for
modeling multistage processes that are measured as a single
reaction time. The distribution is characterized by two free
parameters that specify its shape and scale. Manipulations of
these parameters in the context of the model's comparative
performance with and without audio cues are evaluated below
in the discussion of the model's performance.

The Model

An EPIC model was constructed to simulate and predict how
people perform the dual-display dual task. The model’s
organization largely follows the same hierarchical scheme
developed by Kieras et al. (2001). A top-level executive
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process controls the execution of three sub-processes, two of
which carry out the subtasks of tracking and tactical
assessment.  The third sub-process performs a global
monitoring role and updates working memory based the state
of the radar display. The functions of these three sub-
processes in the baseline model are described next, including
how they have evolved from original model.

The Tracking Task The new model’s tracking
implementation remains an intentionally simple process that
continuously follows the target with the eyes and manually
pushes the cursor toward it. Consistent with participant
behavior discussed by Ballas et al. (1999), the model
suspends tracking when it turns its attention to the tactical
assessment task.

The Monitoring Subtask The monitoring subtask updates
working memory with status changes in the environment.
Most of the responsibilities are carried over from the previous
model, although its role in the allocation of attention between
the tasks has changed. Formerly, this process ran in parallel
with the tracking process and notified the dual-task executive
of changes in the radar display to prompt a task switch. In the
current model, however, with no peripheral access to the
radar display, the monitoring process is used to trigger timing
commands every time the tracking task resumes. These
commands start EPIC’s new “sense of timing” clock which,
based on a gamma distribution, stochastically determines an
appropriate time in the near future to notify the dual-task
executive that it is time to switch to the tactical task.

As in the original model, the monitoring process also
monitors the visual status of blips and notifies the dual-task
executive as these events occur. In the new model, the
monitoring process also classifies blips as hostile or neutral.
An analog of this classification function was present in the
single-screen model, but its parameters were different.
Independently established free parameters for the time needed
to inspect the behavior each of the three blip types were used
in lieu of modeling eye movements for which there was no
empirical data. An analysis of the participant response time
data in Brock et al. (2004), however, suggests that, counter-
intuitively, response times for red and blue blips were roughly
equivalent to those for yellow blips. Thus, in the new model,
all colors of blips are classified by the monitoring process
using a single time parameter.

The Tactical Assessment Task The tactical assessment task
is very complex and operates at the same level as the tracking
and monitoring sub-processes. Unlike tracking and
monitoring, though, tactical assessment is hierarchically
organized as an executive sub-process. It controls the
execution the three sub-sub-processes that select, classify, and
respond to blips. Although the new model implements a
number of changes here, only the blip selection sub-process
differs substantially. It now follows a more straightforward
search logic that is based on a careful reanalysis of the visual
selection task.

A detailed description of the tactical subtask is beyond the
scope of this paper. The task is very complex, though it is
modeled with great detail and fidelity. Once the eyes arrive
on the tactical radar display, a great many decisions are made
and continue to be made throughout the subtask. Decisions
pertain to which blips to put the eyes on, when and whether to
classify blips as neutral or hostile, when to move to another
blip based on the color of the currently-fixated blip and other
blips, when to move the eyes based on changes in blip status
during the task, the manual motor process of entering blip
classifications, and even eye movements to the keypad.

The sub-processes include selection, classification, and
response.  Consistent with the architecture’s constraints,
though, much of the cognitive and motor processing for these
sub-processes can overlap. The response sub-process first
waits for the monitoring process to classify the selected blip
as hostile or neutral, and then uses this information in
working memory to select the appropriate key and carry out
the keystroke. The response sub-process contains a simple
probabilistic rule that causes the model to occasionally move
its gaze to the keyboard while executing the keystroke. This
contributes to both the gaze shifts and increased response
times that are observed in the no-sound condition.

How the Model Responds to Audio Cues The new model
performs the dual task on dual screens both with and without
sound. To respond to audio cues, a rule was added to the top-
level executive process to listen for audio cues. When a cue
is detected, the tracking task is suspended and the gaze moves
to tactical display. It was not necessary to add rules to the
blip selection sub-process to associate the cues with their
corresponding blip shapes. However, the rules in the sub-
process that try to classify a black blip before returning to the
tracking task led to unrealistically fast performance in the
sound condition. Accordingly, this part of the selection
strategy was removed for the sound condition. The
implications are interesting, and discussed in the next section
on modeling results.

Modeling results

Once the task analysis was implemented and other aspects of
the model’s structure were settled, its free parameters were
derived and its performance strategy was adjusted for each
condition. The time required for blips to be classified as
either hostile or neutral was calculated by running a version
of the model in which only audio cues prompted looks to
events on the tactical assessment display, and the timing of
the classification procedure was set to zero. The resulting
response times represented the performance overhead
associated with selecting and responding to blips. The times
were subtracted from the empirical mean for the screen-
centric sound condition. The difference (670 ms) was used as
the time required to classify all blips.

The model’s response time performance in the sound
condition with this fitted classification time parameter,
though, was unrealistically fast. In addition, it was spending
too much time on the left screen classifying black blips. This
consequence of the modeling suggests that, in the sound
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condition, participants did not spend time trying to classify
black blips as they did in the no-sound condition. This aspect
of the tactical sub-strategy was thus removed for the sound
condition.

The shape and scale parameters of the gamma distribution
used to simulate self-prompted shifts of attention in the
baseline condition were determined manually. A gamma
probability density curve was fit to the frequency histogram
of observed right-to-left gaze transition latencies, which were
taken to represent the duration of dwell times on the tracking
task. The values of the shape and scale parameters of this
fitted distribution were respectively 2.5 and 0.95. The tail of
this distribution was noticeably steeper than the tail of the
empirical data. An explanation for this discrepancy might be
that there was a greater degree of wvariability in the
experimenter's recording process for long latencies. At this
point, the fitted model for the no-sound condition was
considered complete.

Appropriate gamma  distribution  parameters were
determined to motivate the 56 additional self-motivated shifts
of attention in the sound condition. The gamma function’s
shape parameter is commonly interpreted as the nth
occurrence of some event. Taking this to be descriptive of an
internal process that determines when a self-prompted look to
the tactical decision task should be carried out, it can be
reasoned that the same process is likely to apply in both the
no-sound and sound conditions, only at different rates.
Therefore, the shape parameter should be held constant, and
only the scale parameter varied across conditions. Using this
reasoning to make the final fit, it was quickly determined that
widening the scale parameter to 2.5 in a run of the model in
the sound condition resulted in an average of 120 looks to the
tactical assessment task. This difference in the scale
parameter effectively measures the increase in meta-cognitive
volitional processing necessary when sound is removed from
the task environment.

Figure 3 compares the fitted model’s performance in the
no-sound and sound conditions. Each of the performance
measures shown for the model is the mean of six randomly
seeded runs, each of which was driven by a different tactical
task scenario. The model’s close fit with the mean number of
gaze shifts in each condition is a direct consequence of the
stochastic approach used to simulate self-prompted looks.
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Figure 3: The observed and predicted response times and
total number of gaze shifts (based on head turns) for the no-
sound (baseline) and sound conditions.

Table 2 shows mean counts of the model’s gaze shifts
among the two displays and the keyboard, along with the
mean empirical counts from Table 1. The most important of
these shifts are the counts of right-to-left looks, which capture
the model’s allocation of attention to the tactical assessment
task. As can be seen, this measure of the model’s
performance is quite close to the empirical data.

Table 2: Predicted/observed counts of attentional shifts
(based on head turns) in the no-sound and sound conditions.
Location key: right = tracking and left = tactical.

No-Sound - Mean Count of Attentional Shifts

Shift from Right Left Keybd

Right to 0 174/174 0/7 | 174/180

Left to 168/170 0 25/27 | 193/197

Keybd to 7/10 18/23 0 25/34
175/180 192/197 25/34  392/411

Sound - Mean Count of Attentional Shifts

Shift from Right Left Keybd

Right to 0 120/121 0/6 | 120/127

Left to 93/116 0 28/23 | 121/139

Keybd to 27/11 0/19 0 27/29
120/127 120/139 28/29 268/295

Discussion

Two particularly interesting aspects of this model include (a)
the difference blip assessment strategies necessary between
the no-sound and sound conditions and (b) the model’s
emergent behavior of looks away from the keypad.

There are several reasons why participants might assess
black blips much less frequently in the sound condition.
Looks in the sound condition are in part driven by prompts in
the task environment and, as a result, are generally more
efficient. If a participant turns away from a blip that is about
to change color in this condition, he or she is alerted to this
fact. In the no sound condition, however, the cost of turning
back to the tracking task just before a blip changes color is
much greater because the response time for that blip is more
likely to be poor. As a result, participants have incentive to
dwell on the left screen longer when they feel a blip is getting
close to changing color.

The model’s emergent pattern of looks away from the
keyboard is quite interesting. Looks fo the keyboard were
modeled for fidelity. However, the implementation led to an
unforeseen result: The model reveals how looks away from
the keyboard interact with the blip selection sub-process.
When color-coded blips remain on the left screen, the model
always returns to the tactical assessment task from the
keyboard. In all other circumstances, the model returns to the
tracking task. No attempt was made to motivate these moves.
It is particularly interesting that in the no-sound condition, the
proportion of gaze shifts away from the keyboard in either
direction matches observed data. This strengthens the
likelihood that the blip selection sub-process used in this
condition is close to what participants actually used. It also
follows that the corresponding disparity in the sound
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condition suggests that the blip selection sub-process is more
subtle.

Eye-tracking data will enable us to directly examine aspects
of the sub-strategies that participants use in the two
conditions. For instance, it will show how often, and in
which conditions, participants spend time looking at black
blips; whether time spent on a black blip directly benefits its
corresponding response time; whether or not assessments that
are interrupted effect response times; whether subjects spend
time on the left screen after a gaze shift from the keyboard,;
and whether the left screen is only a brief stop for the eyes on
their way back to the tracking task.

Conclusion

The long-term motivation for the modeling effort presented in
this paper is to analyze and predict the costs and benefits of
using 3D audio in the information displays of operational
settings such as those the Navy expects to deploy in the next
ten to fifteen years. Although many aspects of the model’s
implementation, its performance strategies, and the process of
deriving appropriate values for its free parameters may not
appear to comment directly on this goal, several important
aspects of generally overlooked issues in the simulation of
human performance are addressed here. A computational
model of the performance benefits associated with an
uncluttered auditory information design is presented. The
model addresses the problem of usefully characterizing the
parameters of self-regulated allocation of attention. The
model predicts the effect of system level strategies for
ameliorating effort when concurrent demands are involved.

Multi-task operational settings can be notoriously more
complex than the dual task modeled here, but designers of
supervisory control systems absolutely need to know the
baseline requirements for the allocation of attention before
they can design and implement effective attention
management solutions. In particular, the ground truth for
modeling inter-task performance depends on knowing the
demands of process combinations of unassisted access rates
to information that must be acted upon, acceptable levels of
error, and requirements for initiative and physical effort that
can be quantified.
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