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Abstract

In eye tracking research, there is almost always a disparity between a participant’s actual 

gaze location and the location recorded by the eye tracker.  In this paper, we propose a mean shift 

error correction method that can reliably reduce the systematic error—which tends to stay 

constant over time—and restore the fixations to their true locations.  We show that the method is 

reliable when the visual objects of the experiment are arranged in an irregular manner, such as 

not on a grid in which all fixations could be shifted to adjacent locations using the same 

directional adjustment.  Using the mean shift method, the disparity between fixations and their 

nearest objects are calculated and plotted on a graph in terms of their x and y deviations.  The 

highest density point in this graph, calculated using the mean shift algorithm, is shown to 

correctly capture the magnitude and direction of the systematic error.  This paper presents the 

method, an extended demonstration, and a validation of the efficacy of the error correction 

technique.
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Introduction

In usability and psychological studies, researchers often want to know users’ and 

participants’ internal states of mind in order to understand the efficiency of the interfaces or how 

humans respond to particular stimuli.  States of mind can either be inferred by analyzing a user’s 

external sequence of actions such as mouse-clicks and key-presses, or they can be revealed 

through verbal reporting.  When using the latter method, the users are asked to say whatever they 

are looking at, thinking, doing, and feeling.  The advantage of the verbal reporting method is that 

it can provide abundant direct information regarding a user’s cognitive processes (Newell & 

Simon, 1972).  But the method also has many drawbacks, e.g., the verbalization might interfere 

with task processing and hence delay a user’s response time (Ericcson & Simon, 1980).  

Recording a user’s observable interactions with a device is less intrusive and avoids the problems 

associated with verbal reports.  But there is rarely a precise mapping between people’s internal 

cognitive processes and mouse clicks or key presses.  For example, there might be several 

approaches to solve an algebra equations, and if researchers only recorded the mouse clicks and 

key presses, it may be difficult to figure out which approach people used.

As eye trackers become more accurate, researchers increasingly record eye movements as 

a source of behavioral data (Jacob & Karn, 2003).  This particular type of data provides special 

insight into people’s internal cognitive processes.  Eye movement data has two advantages over 

the traditional behavioral data of reaction time and accuracy.  The first advantage is that eye 

movements are closely related to one important aspect of human information processing—visual 

attention.  Studies have shown that, although people can attend to stimuli that are not in the 

foveal vision (also known as covert attention), when doing real-world tasks, they tend to move 
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their eyes to things that they are attending to (Findlay & Gilchrist, 2003).  None of the traditional 

behavioral data can map so closely between external actions and internal states of mind.  The 

second advantage of eye movement data is that the duration of a fixation (in which the gaze is 

maintained around a single location) generally ranges from 150 ms to 600 ms, which provides 

for many tasks a much smaller grain size of temporal data points than provided by mouse clicks, 

key presses, or reaction time data.  Smaller time scales isolate individual strategic decisions and 

hence permit researchers to more easily infer specific strategies that people adopt (Newell, 

1990).  For example, eye movement data for solving an algebra equation can show the order in 

which the numbers and variables are fixated, and how long each symbol was studied, which in 

turn reveal task strategies that participants adopted (Salvucci & Anderson, 2001).  Due to the 

above two advantages that eye movement data has over traditional measures, eye tracking is used 

increasingly in usability studies to replace or complement verbal reports (Burke, Hornof, Nilsen 

& Gorman, 2005; Goldberg et al., 2002).

Eye movement data, no matter how well it is collected, cannot always be assigned to 

specific objects in a display.  In some tasks, in which participants can acquire the necessary 

features of an object and complete a task without directly looking at the object, an eye movement 

will sometimes land at an intermediate location between the target and a non-target stimulus—a 

location referred to as the “center of gravity” (Findlay, 1982).  If a task is designed such that 

people are not motivated or required to put their gazes directly on objects, then fixations cannot 

be assigned to objects.  However, when participants are motivated to look directly at a target, 

such as to pick up detailed text information to complete a task, then it is reasonable to assign 

fixations to objects. 
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When a task is designed such that eye movements are likely to land directly on objects, 

there remains the fundamental instrumentation, data collection, and analysis problem—eye 

movement data are inherently noisy.  Unlike mice, which are directly controlled by users and 

thus reflect the actual locations that users are pointing to, eye trackers estimate people’s gaze 

locations through indirect measures.  For example, video-based eye trackers, which are most 

widely used in usability studies, work by reflecting infrared light onto the corneal, and use the 

vector between the pupil-center and the corneal reflection to calculate gaze locations.  The 

computer vision algorithms used in this procedure are not perfect and errors occur.  As well, 

some eye trackers still cannot handle head movements very well (Li, Babcock & Parkhurst, 

2006). 

This paper specifically embraces and addresses the error introduced to eye movement 

data by the eye tracking device.  There are generally three types of eye tracking errors (Hornof & 

Halverson, 2002).  First, the eye tracker may not be able to acquire an image of the eyes (e.g. 

when the users are not sitting at an appropriate distance), which results in complete data loss.  

Second, random error occur due to inaccurate estimations of gaze locations.  These random 

errors are often less than 0.5º of visual angle (the angle that a viewed object subtends at the eye) 

and can be reduced by averaging the gaze points (LC Technologies, 2000).  The last type of eye 

tracking data error—systematic errors or bias errors—result from bad calibrations, head 

movements, astigmatism and other sources, and stay constant from time to time (LC 

Technologies, 2000).  Systematic errors can sometimes reach many degrees of visual angle.  The 

good news is that systematic errors can be systematically removed with techniques such as that 

presented here.
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The remainder of the article will discuss the issues of systematic error, including its 

influences on eye movement data analysis; some previous methods that can deal with this error; 

and a new method which can reliably reduce systematic error when the visual stimuli are 

arranged in an irregular manner.

Systematic Error in Eye Movement Data

Figure 1 illustrates what systematic error looks like.  The data are from a test of the Tobii 

T60 eye tracker, which has a reported accuracy of 0.5º of visual angle and is widely used in 

usability studies.  In the test, the participant was asked to look at the four corners of the rectangle 

consecutively.  But unlike a typical experiment, the participant was asked to adjust her head 

position in order to test the sensitivity of the tracking accuracy to head movements.  As can be 

seen in Figure 1, the four fixations are all somewhat above the corners by a similar amount of 

disparity.  The systematic errors that can be seen in the figure is very large—roughly 2.3º of 

visual angle on average, well over the manufacture’s stated accuracy.  The figure shows a typical 

pattern in data with systematic errors—the recorded eye movement data are all altered by a 

similar vector.

Although systematic error is common in eye tracking data, it is rarely reported in any 

form (as in Blignaut, Beelders & So, 2008; Smith, Ho, Ark & Zhai, 2000).  Yet, in any scientific 

measurement it is critical to know the accuracy of the measuring instrument.  If no error report is 

provided based on the actual data collected, it is difficult to determine whether the study 

examined, explored, or realized the severity of the error, and whether the data are truly accurate.  

The error may not be a problem in usability studies in which the areas of interests (AOIs) extend 
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to a large area (e.g. 8º of visual angle) and are separated by a large distance.  But in studies that 

pertain to reading, visual search of dense displays, and cockpit usability evaluation, the visual 

stimuli (such as labels and buttons) and the space between them tend to be only about 1º to 3º of 

visual angle.  In these circumstances, it is hard to know precisely which objects were fixated.  If 

the systematic error is as large as 2º of visual angle, a fixation is likely to be incorrectly 

interpreted on an object adjacent to the one that was actually looked at.  For example, in Figure 

1, if only the lower two fixations are recorded or the task requirement—look at four corners—is 

not known, one would think that the lower two fixations were on the top corners because they 

appear closer to the top corners.  However, they are in fact on the bottom corners, just shifted by 

systematic error.  Thus, it is perhaps impossible to draw any reliable conclusions in an eye 

tracking study without first addressing the systematic error.  Ignoring the error can dramatically 

affect the validity of empirical and theoretical claims made based on the eye tracking data.

When researchers indeed find systematic error in their data, or realize that it is possible 

that such error might occur in their experiments, they tend to address the error in two ways.  

First, they exclude the eye tracking data from the trials in which they have found error.  Many 

studies adopt this approach.  For instance, Mello-Thoms, Nodine & Kundel (2002) conducted an 

eye tracking experiment to examine how radiologists search breast cancer.  They found in some 

trials, such as shown in Figure 2, the lesion did not attract any fixations, whereas the dark 

background was fixated for a fairly long time.  The eye movement data of such trials were 

excluded from the analysis.  Although Mello-Thoms et al. did not attribute these data to 

systematic error in the eye tracker, it is likely this is the source, because there are no stimuli on 

the dark background that could attract and maintain visual attention for such a long time.  One 
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might argue that the participants may have used covert attention here, but task constraints and 

human physiology would motivate fixations directly on the relevant visual objects (Findlay & 

Gilchrist, 2003).

The second approach that researchers typically use to reduce the impact of systematic 

error is to recalibrate their eye trackers periodically.  This is often done, mid-experiment, by first 

using a simple calibration check to determine if there is a large disparity between the stimulus 

and the fixation location.  If there is, then a full recalibration is invoked.  This method is typically 

employed in experiments that require highly accurate data, such as in reading studies.  For 

example, Juhasz, Liversedge, White, and Rayner (2006) reported that “calibration was checked 

for each eye individually after every two trials and recalibated as necessary.”  A similar 

procedure was adopted in Abrams & Jonides (1988).

Although the above two methods—discarding data and intermediary calibration checks—

are widely applied, they clearly have drawbacks and limitations.  The first approach, removing 

the problematic data, often results in throwing away information needed to complete the 

experimental design and to draw valid conclusions.  Also, determining whether systematic error 

occurred relies on researchers’ subjective judgments, which can be influenced by their own 

biases and understanding of the task.  The second method of dealing with eye tracking systematic 

errors—recalibrating at regular intervals—cannot be applied in many studies in which the user’s 

performance, such as task completion time, could be adversely affected by interruptions.  For 

example, a continuous task such as driving may last for several minutes and hence may not be 

interruptible without interfering with the driver’s attention on the main task.  Also, in many 

usability studies, there are numerous dependencies among a series of tasks such that interruptions 
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would introduce uncontrolled variability, influence a user’s performance, and adversely impact 

the validity of the study.  For example, when doing an air traffic control task, participants 

maintain a lot of context information in their memory.  Recalibration could cause them to lose 

this information and hence impair their performance.  Even in experiments with frequent 

recalibrations, the accuracy of the eye movement data still cannot be guaranteed to be perfect.  

Clearly, an objective and principled technique to reduce or remove systematic error is preferred 

and needed.

In this paper, we propose a post hoc method to reduce the systematic error in eye 

movement data.  Because the error correction is done after collecting data, it would not interfere 

with task execution.  This method also provides an objective measure of the accuracy of the raw 

data.

Eye Movement Data Analysis and Error Correction

This section introduces two methods that have been previously proposed to deal with 

error in eye movement data.  The first method calculates a fixation’s true location using not only 

the fixation’s recorded location but also the fixation’s role in task execution (Salvucci & 

Anderson, 2001).  The second method studies the nature of the systematic error and reduces it 

accordingly (Hornof & Halverson, 2002).  The error correction technique presented in this paper 

follows the general approach of the second.
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Eye Movement Data Analysis Procedure

Before delving into the details of the two error correction methods, we shall first revisit 

the two basic stages of automated eye movement data analysis.  This brief introduction provides 

a context that helps to show when the error correction should be carried out and how much work 

should be done to rigorously analyze eye movement data.

Fixation detection.  The first stage of eye movement data analysis is to group the raw 

gaze samples into fixations.  The raw data collected by eye trackers are sampled at a constant 

rate, often 60 Hz.  In some experiments, researchers can work directly with the raw gaze 

samples.  But generally, the samples are grouped into fixations.  There are several algorithms for 

detecting fixations (Salvucci & Goldberg, 2000).  The dispersion-based and velocity-based 

algorithm are the two main ones.  The dispersion-based algorithm has two parameters: maximum 

dispersion size and minimum fixation duration.  The velocity-based algorithm has one parameter: 

the velocity threshold.  When analyzing data, it is wise to try a range of values for these 

parameters to determine the optimum settings for different tasks.  Karsh & Breitenbach (1983) 

provide an excellent illustration of how different parameter settings of the dispersion-based 

algorithm can dramatically affect the fixation detection outcome.

Fixation assignment.  The second stage of automated eye movement analysis is to find 

each fixation’s target object, i.e. to assign fixations to their intended stimuli.  The most 

commonly used fixation-assignment method is to map each fixation to its nearest object.  The 

idea behind this method is easy to understand:  The closer a fixation is to an object, the better the 

features of the object can be perceived.  However, when the eye movement data have systematic 

error, this nearest-object assignment method could very likely make mistakes, because the 
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fixations are not at their actual locations.  For example, if this fixation assignment method is used 

for the eye movement data in Figure 1, both two fixations on the left would be assigned to the 

top-left corner of the rectangle, and the two fixations on the right would be assigned to the top-

right corner.  Here, the systematic error has caused two wrong assignments or mappings.

Error Correction Based on Hidden Markov Models

Using hidden Markov models, Salvucci and Anderson (2001) designed a fixation 

assignment method that is more resistant to the effect of eye tracking error than the nearest-

object assignment method, but the method has a few drawbacks.  In this method, the strategies 

that might be used to successfully complete the task, which can be obtained by task analysis, are 

formally coded into a hidden Markov model.  Then the fixation sequences are compared with the  

probabilistic, hypothesized fixation sequences in the hidden Markov model to obtain fixation 

assignments.  Two factors determine a fixation’s assignment: (a) the fixation location and (b) the 

probability that the fixation would be on a stimulus at a point in time according to the model.  

Thus, even if a fixation is further from its intended stimulus than it is from another stimulus, 

perhaps due to the systematic error, it will still be assigned to the intended visual stimulus if this 

match yields a higher probability in the hidden Markov model.  One of the important 

contributions of Salvucci and Anderson’s method is that it takes advantage of a powerful 

mathematic tool, hidden Markov modeling, to formally represent possible strategies.  However, 

it is complex to implement a hidden Markov model and sometimes impossible to decide what 

transition probabilities should be used.  There is little evidence in the literature that this approach 

is routinely used in any eye tracking studies, even for those subsequently conducted by the 
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creators of the technique themselves.  The error correction method presented here offers an 

easier-to-use alternative.

Error Correction Based on Required Fixation Locations

This section discusses Hornof & Halverson’s (2002) error correction method, including 

the concept of required fixation locations as well as some limitations of this method.  The error 

correction method presented in this paper takes a similar approach, but addresses different 

situations in which the required fixation locations are not well-defined, such as when stimuli 

move constantly.  Similarities include:  First, both methods reduce the systematic error before the 

fixation assignment stage; this way, the nearest-object fixation assignment method would less 

likely make wrong assignments. Second, both methods extract the size and direction of the 

systematic error by studying the disparities between fixations and their intended locations.  The 

difference is that Hornof & Halverson’s method chooses the fixations more conservatively and 

thus has some limitations as discussed later, whereas the technique presented here can estimate 

the intended locations for most of the fixations.

In Hornof & Halverson (2002), the authors thoroughly studied the nature of systematic 

errors in a set of eye tracking data collected from a visual search experiment.  They found that 

the systematic error tends to be constant within a region of the display for each participant.  

Specifically, the magnitude of the disparities between the target visual stimuli and the 

corresponding fixations were “somewhat evenly distributed around 40 pixels (about 1º of visual 

angle) and that most were between 15 and 65 pixels”.  The variation in the magnitude of the 

disparity was even smaller if broken down by participant.  Horizontal and vertical disparities 
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remained somewhat constant for each participant.  Thus, systematic error was not randomly 

distributed across all directions or sizes but was, as the name implies, systematic.  The error was 

illustrated with a vector plot (see Figure 3) that forms each participant’s error signature, in which 

the vectors change gradually across the display area.

Because the systematic error is relatively constant within a region, it is possible to reduce 

the error for each region—and even each point—individually.  The key idea of Hornof and 

Halverson (2002) is that the effect of systematic error on each recorded fixation can be offset by 

adjusting the fixation location based on the weighted average of the error vectors that are closest 

to that recorded fixation, with heavier weights assigned to closer error vector.  For example, in 

Figure 3, the eye movement data that are close to each column would be corrected mostly based 

on the vectors of the nearest column.  Thus, the eye movement data for fixations near the left 

column should be shifted upward, and those near the middle and right column should be moved 

up and to the right.  

To obtain an accurate estimate of the direction and size of the systematic error, the 

disparities used to generate the error signatures must capture the difference between recorded 

fixations and their true intended stimuli, rather than just the closest and potentially unrelated 

stimuli.  These correct mappings are not easy to acquire considering that the uncorrected data 

may have large systematic errors.  To solve this problem, Hornof and Halverson (2002) 

developed the concept of required fixation locations (RFLs), which are locations on the screen 

that the analyst can be relatively certain that a participant fixated at a specific point in time, 

provided that the participant completed the trial accurately.  Some RFLs are easy to find.  For 

example, an RFL can be a set of crosshairs that a participant is specifically instructed to fixate.  
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However, not all tasks permit such explicit RFLs.  Researchers need to conduct thoughtful and 

accurate task analyses to find opportunities in which participants are implicitly required to fixate 

an RFL.  For instance, for a participant to correctly key-in a small number that is displayed on a 

visual target, the participant must fixate that target at some point in the trial.  In Hornof and 

Halverson’s visual search experiment, the to-be-found target items served as implicit RFLs.  It 

was reasonable to assume, based on task design (such as monetary rewards for fast responses, 

and no time pressure between trials), that participants were looking at the target when they 

clicked on it with the mouse. 

Hornof and Halverson’s RFL technique successfully reduced systematic error for a visual 

search experiment in which all visual stimuli were fixed on a grid.  As shown in Figure 4, the eye 

movement data after error correction (in black) is more plausible than the raw data (in gray) 

given the assumption of active vision (that the point-of-gaze is directed to visually-attended 

objects), because all of the corrected fixations now land on the labels.  Note that the eye 

movement data shown in Figure 4 were corrected only using the disparities in the final fixation 

of each trial (in Figure 4, the large fixation near the RUB label).  After error correction, across 

the experiment, the size of the systematic error reduced from 1.1º to about 0.73º of visual angle.  

Considering that the labels in their experiment only subtend 1º of visual angle, and that there is 

no space between vertically adjacent labels, reducing systematic error by 0.37º could have been 

critical for the subsequent data analysis.

Hornof and Halverson’s method could potentially be used in a wide range of eye tracking 

studies, but it has four limitations.  First, it still relies on a researcher’s subjective judgement to 

determine the potential RFLs.  In Hornof and Halverson’s visual search experiment, the RFLs are 
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the targets that were being clicked by the mouse.  This way of finding RFLs will not always be 

practical or possible because some tasks may not need a mouse at all.  Second, the way that they 

chose RFLs is based on a reasonable task analysis—people tend to look at the objects that they 

select—but the method is a bit conservative in that it limits RFLs to items selected with a mouse 

while under time pressure.  Other ways of choosing RFLs will be needed for  different tasks, but 

a tradeoff exists—the more confident researchers want to be about the true locations of fixations, 

the fewer RFLs they can identify.  Third, defining RFLs for moving visual stimuli is even harder 

because it requires knowing what objects participants may look at and at exactly what time 

would they look at them.  Fourth, the existing RFL technique does not reliably correct eye 

movement data when the systematic error changes over time.  Because of the above limitations, 

exploration is needed to find more opportunities not for required fixation locations but for 

probable fixation locations.

With regards to the problem of not reliably correcting errors that change over time, 

Hornof & Halverson (2002) stated: “An interesting question is whether we could take the 

analysis further and determine how a participant’s error signature changes over time—from 

calibration to calibration or even from trial to trial.” (p. 600)  The assumption that error 

signatures stay constant may hold for short experiments, but it is not clear how the systematic 

errors will change for long experiments.  The fact that eye tracking accuracy deteriorates over 

time (such as implied in experiments that invoke recalibration at regular intervals) suggests that 

error signatures should also change over time.  One reason that Hornof and Halverson did not 

address this issue is perhaps because detecting a change in an error signature across a period of 

time would require a substantial number of RFLs across the task display for numerous windows 
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of time and, as discussed before, Hornof and Halverson chose their RFLs conservatively and 

hence somewhat sparsely.

Hornof and Halverson’s RFL approach is particularly well-suited for tasks with regularly 

arranged visual objects, such as on a grid, whereas the method described below works best when 

facing the complementary situation—in which visual objects appear at unsystematic, irregular 

locations and perhaps even move across the display during a task.  One thing to notice about this 

new method is that, because it uses probable (rather than required) fixation locations to 

determine systematic error, the method is not well-suited for regularly arranged objects that 

could be shifted, with a single constant directional shift, to new locations that overlap with other 

objects.  For such layouts, Hornof and Halverson’s complementary RFL technique would work 

better.  The next section describes the context task in which the new error correction method is 

developed, the Naval Research Laboratory dual task.

The Experiment with Moving Visual Stimuli

This section describes the Naval Research Laboratory (NRL) dual task experiment, which 

was the context in which the new error correction technique was developed to address the four 

limitations of the existing RFL technique discussed in the previous section.  The NRL dual task 

experiment has many moving visual stimuli, and hence it is very difficult to apply the existing 

RFL technique as-is to the eye tracking data from the experiment.  However, good eye tracking 

data for the task could reveal important details and insights regarding fundamental human 

information processing.  
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The NRL dual task experiment consists of two subtasks performed in parallel: the 

classification task and the tracking task.  Figure 5 shows an overview of the task display.  In the 

classification task, the participants examine blips (the small icons on the left display in Figure 5) 

that move down the screen, and key-in the blip number (the digit displayed on the icon) followed 

by “H” or “N” for a hostile or neutral classification.  The classification must be keyed-in after the 

blip changes from black to green, red or yellow, indicating that it is active and “ready to be 

classified.”  The hostility can be determined by studying the blip’s color:  Red indicates hostile 

and green indicates neutral; if the blip is yellow, the participant needs to study its shape, speed 

and direction to determine its hostility.  Fifty-seven blips are grouped into 16 waves, in which 1, 

2, 4, 6, or 8 blips are visible at the same time.  In the tracking task (on the right display in Figure 

5), the participant simply uses a joystick to keep the circle on the moving target.  

Figure 5 shows how the two task displays are arranged on a single monitor, with the 

classification task displayed on the left and the tracking task displayed on the right.  Other 

conditions such as the presence of sound and peripheral visibility are manipulated, but they are 

not terribly relevant to the development or evaluation of the eye movement data correction 

method.  See Hornof, Zhang & Halverson (2010) for a more detailed description of the 

experiment.

Twelve participants from the University of Oregon and surrounding communities 

successfully completed the experiment.  They completed four sessions of the experiment on each 

of three consecutive days.  Participants were financially motivated to perform as quickly as 

possible while maintaing very high accuracy.  Given the practice and motivation, participants’ 

performance by day three approach that of an expert.
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The eye tracking instrumentation settings were kept as consistent and reliable as possible 

to reduce systematic error.  The screen resolution was set to 1280x1024.  A chinrest was used to 

maintain a constant eye position 610 mm from the display.  One degree of visual angle extended 

to about 40 pixels on the display.  The size of blip icons was 32x32 pixels, i.e. 0.8ºx0.8º of visual 

angle.  Blip movements were designed to maintain a 2º separation.  Eye movements were 

recorded using an LC Technologies dual camera eye tracker, which has a sampling rate of 120 

Hz.  Each session of the experiment took about 8 minutes on average to complete.  Because the 

task is continuous across these 8 minutes, the eye tracker cannot be recalibated during a session.  

Despite all of these efforts to reduce systematic error, when collecting eye movement data for 

such a long duration without recalibration, systematic error is still likely to occur.

The first stage of automated eye movement data analysis—fixation detection—was 

carried out with parameter studies as discussed in the previous section.  The dispersion based 

fixation detection algorithm was used to find fixations.  The first parameter of the algorithm, 

minimum fixation duration, was set to 100 ms, as suggested by Karsh & Breitenbach (1983).  

For the second parameter, several dispersion window thresholds were tested, and 0.7º of visual 

angle was found to be the best.  This threshold value is small enough to characterize a smooth 

pursuit in the tracking task as a sequence of short fixations rather than as one long fixation as 

would happen with a larger dispersion threshold.  The threshold is large enough to correctly 

identify a fixation as a single fixation in the classification task instead of breaking it up to several 

small fixations.  These observations were made using the eye movement visualization software 

VizFix1 developed in the Cognitive Modeling and Eye Tracking Lab at the University of Oregon.
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Although the new error correction technique is developed in the context of this specific 

experiment, the resulting error correction method is generalizable.  The moving stimuli in the 

classification task present a difficult challenge for data analysis and error correction as would 

any moving stimuli.  Because the blips appeared at different locations and moved in different 

directions with different speeds, the technique entails a general approach to handle moving 

objects.  (Of course, the approach can also be adapted for experiments with static visual stimuli.)  

In the following sections, we present the details of the error correction method and demonstrate 

how it is applied to the eye tracking data of this experiment. 

A General Method for Removing Systematic Error

The post hoc error correction method presented here consists of two steps: mapping 

fixations to their probable locations, and calculating the error signature by distinguishing correct 

mappings from incorrect mappings.  The first step—mapping fixations to their probable 

locations—must be done by a generalizable method if the error correction technique is to be 

easily adapted to any eye tracking experiment.  Because the mappings may not be one hundred 

percent accurate (some fixations could be assigned to wrong locations), the second step needs a 

robust algorithm to determine which mappings are correct so that the error signature can be 

calculated from only those mappings.

Mapping Fixations to Their Probable Locations

A nearest-object fixation assignment method is developed to identify the probable 

location of each fixation.  This method maps each fixation to its closest stimulus and uses the 
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center of the stimulus as the probable intended location, provided that the distance between them 

does not exceed a threshold.  The threshold parameter helps exclude rare situations in which a 

short fixation was not on any stimulus but just landed on the blank background.  Another way to 

think about the threshold is that it is the longest distance from an object and the point of gaze 

such that the high resolution vision at the point of gaze can still encode the object.  To estimate 

this distance, researchers should consider two factors—the theoretical longest distance from the 

point-of-gaze at which an object can be discerned, and the maximum size of the systematic error.  

The first factor depends on the feature to be encoded and the size of the object (Kieras, 2010).  

The second factor—the maximum size of the systematic error—should be considered because in 

the uncorrected data, the distance between a fixation and its intended location is extended by the 

systematic error.  The sum of the two factors is the maximum possible distance between a 

fixation and its intended stimulus in the uncorrected data.  In the NRL dual task experiment, the 

participant needs to study the small digit (less than 0.8º) on the blip.  Because the small character 

is only easily discriminable in the fovea, the first factor—the theoretical longest distance 

between a fixation and its target object—is set to 1º (Kieras & Meyer, 1997).  After examining 

the data visualization, the maximum systematic error was estimated to be roughly 3º.  Thus, the 

longest distance between a fixation and its target object is set to 4º in the NRL dual task 

experiment data.

There are two reasons to use the nearest-object fixation assignment method to find the 

probable locations of fixations.  First, the method is applicable to virtually all experiments 

without the need of careful task analysis.  Second, because nearly all fixations are assigned to 

objects, the method can generate a substantial number of mappings which enable a more finely-
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tuned error correction for different screen regions and time periods.  Also, a more reliable error 

signature can be acquired by incorporating more disparities from the mappings.

The downside of the nearest-object fixation assignment method is that it can assign many 

incorrect mappings due to systematic error—the very error that the technique is designed to 

reduce.  However, it is exactly for this reason that the second step of the error correction 

procedure is introduced—to exclude the effect of the incorrect mappings.  Note that at the error 

correction stage, fixations are not really assigned to visual objects.  These mappings are merely 

used to determine the pattern of the systematic error.  The actual fixation assignment will be 

carried out after reducing the error.  

Visualizing Disparities to Find Their Pattern

Visualizing disparities is not a required step for applying the error correction method, but 

it helps to reveal the patterns of disparities and is thus useful for developing the method, 

especially for finding an appropriate algorithm to exclude the effect of incorrect mappings.  

Figure 6 shows one way to visualize the disparities by plotting them in terms of their x 

and y deviations.  The origin (0, 0) here denotes that a fixation is at the exact location of its 

assigned object.  Notice in Figure 6, there is a cluster of dots around (10, 35) which only 

occupies a small area.  Although there is no clear boundary between the cluster and other dots, 

the cluster is apparently much denser than other area.  The graph suggests that a large portion of 

the fixations in that session are off their assigned objects by roughly 10 pixels horizontally and 

35 pixels vertically.  This pattern, that one small area is crowded with dots and other dots are 
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sparsely scattered over the graph, also appears in other sessions of the experiment, which 

suggests that there might be a common cause for the dense cluster.

The cause for the cluster is the key to separating the correct mappings from the incorrect 

mappings.  There are two factors that contribute to forming the cluster.  First, because the 

disparities from the correct mappings reflect the size and direction of the systematic error, they 

tend to be similar to each other.  Second, because the objects appear at irregular locations and 

move constantly, a configuration of stimuli that caused an incorrect mapping is likely to be 

dissimilar from all others that occur during a session; thus, the incorrect mappings tend to 

generate disparities with many different directions and sizes across a session.  The first factor 

causes the concentration of the correct disparities and the second factor causes the dispersion of 

the incorrect disparities.  This suggests that the correct disparities can be separated from the 

incorrect disparities by identifying which disparities are in the dense cluster.

Note, however, that the second factor that contributes to the clusters revealing the errors

—that incorrect mappings tend to produce disparities with different directions and sizes—is not 

satisfied if the objects are arranged regularly and can be shifted to new locations that overlap 

with original locations with a single constant adjustment.  For example, if objects are arranged 

on a grid, and the eye tracking error shifts all fixations one item down on the grid, then all 

fixations would be incorrectly assigned to one object down.  These incorrect mappings would 

generate disparities that are similar to each other, and the dense clusters in the graph would be 

formed by the incorrect disparities rather than correct disparities.  But if the second factor is 

satisfied, and the incorrect mappings cause divergent disparities, as in experiments in which the 
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object locations are unsystematic, then the center of the dense cluster will be a good estimation 

of the systematic error.

Locating the center of the cluster in the disparity graph is a hard problem because many 

disparities are randomly distributed, but it would be incorrect to use the centroid of all the dots 

instead.  In Figure 6, a red dot marks the centroid.  However, the centroid is not at the center of 

the cluster.  This is because the disparities from wrong mappings are not evenly distributed 

around the center of the cluster.  Taking the average of all disparities would mean treating each 

as equally important regardless of whether they are from correct or incorrect mappings.  In 

Figure 6, there are more disparities on the right side of the graph, some of which are from wrong 

mappings.  The centroid is affected by these disparities and is somewhat to the right of the center 

of the cluster.  The effect of the wrong mappings here may not be significant, but it could be if a 

large portion of the mappings are wrong.

Because the cluster in a disparity graph usually has the highest density, locating its center 

can be considered as a global mode-finding problem, for which established solutions exist.  For 

example, Figure 7 shows the same disparities as in Figure 6, with contours connecting points that  

have equal densities.  As the space between adjacent contours gets smaller, the density of the 

disparities becomes higher.  The highest density in Figure 7 is the center of the cluster.  The 

assumption that the disparities from all the correct mappings form the highest density in the 

disparity graph should be correct even when the majority of the disparities are from wrong 

mappings, because the wrong disparities tend to be scattered all over the graph and thus have 

lower densities.
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The global mode-finding problem has already been studied in other areas, and the error 

correction method presented here adopts one of the existing solutions—the annealed mean shift 

algorithm (Shen, Brooks & Hengel, 2007).  The following section first presents the standard 

mean shift procedure, which is used to find the local modes, and then discusses how the annealed 

mean shift algorithm can reliably find the global mode.

Applying The Mean Shift Algorithm to Identify The Error Signature

A procedure called the mean shift algorithm which is used in computer vision for feature 

space analysis (Comaniciu & Meer, 2002) can be adapted to solve the problem of identifying the 

error signature in eye movement data.  Although the disparities in recorded fixations do not 

follow a certain distribution, the mean shift algorithm can still work because it does not rely on a 

particular distribution.  The mean shift method is derived from a nonparametric density 

estimator, the kernel density estimator.  Because nonparametric statistics can work with any 

distribution, it enables the error correction technique to rely on fewer assumptions and to be 

more robust.

The kernel density estimation method works by estimating the density at a given location 

from its neighboring points.  The size of the “neighborhood” is controlled by a bandwidth matrix 

H and the weights associated with the neighboring points are determined by the kernel function.  

In practice, the bandwidth matrix H is often simplified, resulting in the following kernel density 

estimator:
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.
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2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
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where k(·) is the profile of the kernel K(·) and ck is a nor-
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and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1,M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.
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where the xi terms are n data points in the d-dimensional space Rd, h is a scalar derived from the 

simplified bandwidth matrix H, k(⋄) is the profile of the actual kernel function, and ck is a 

normalization constant.  Two kernel functions have been widely applied, the Epanechnikov 

kernel and the multivariate normal kernel.  Given a d-dimensional point x, the above formula 

returns the density estimation at that point.  

Once the density function is acquired through the kernel density estimation procedure, 

the local modes (local maximum points) can be found by setting the gradient equal to zero.  This 

is equivalent to setting the following term to zero:

where g(x) = –k´(x), and mG(x) is the mean shift vector.  Starting from any random location, the 

following scheme can be applied iteratively to stop at a local maximum point:

For a more detailed discussion of the standard mean shift procedure, see Comaniciu & Meer 

(2002).  

The standard mean shift procedure has been proven to reliably find local mode points, but 

a better method is needed in order to find the global mode, as is required here to determine the 

error signature.  In the context of eye movement error correction, a local mode point could 

potentially be the center of a small cluster formed by wrong disparities, and if the mean shift 

procedure stops at such a point instead of the global mode, it would generate a wrong error 
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.
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signature.  To combat this, we use the annealed mean shift algorithm, presented by Shen, Brooks 

& Hengel (2007), which finds the global mode reliably.

The annealed mean shift procedure finds the global mode by applying multiple passes of 

the standard mean shift process with a sequence of decreasing bandwidths to gradually zoom in 

on the global mode.  Initially a very large bandwidth hM is used, which can be selected to cover 

all the data points.  Applying the standard mean shift procedure using this bandwidth would 

likely stop somewhere near the centroid because the large hM basically treats every point equally 

(or nearly equally if using the multivariate normal kernel).  Then the mean shift procedure is 

applied again but with a smaller bandwidth.  This time, instead of starting from a random point, 

the procedure starts from the local mode point obtained from the last mean shift process.  

Because in many cases, the local mode point that is obtained by using a large bandwidth is very 

close to the global mode, starting from this local mode would allow the procedure to at least get 

closer to the global mode.  By iterating the above procedure many times while decreasing the 

bandwidth, the method can generate an increasingly accurate estimate of the global mode.  Shen, 

Brooks and Hengel have applied this algorithm to the problems of visual tracking and object 

localization.  They empirically showed that the algorithm can reliably find the true global mode 

even when the starting position of mean shift is far from the global maximum.  The process is 

formally defined in Figure 2 of Shen et al. (2007).

In order to apply the annealed mean shift algorithm to eye movement data error 

correction, the parameters of the algorithm need to be set appropriately.  The first and also the 

largest bandwidth hM should be set as the the maximum distance between disparity points such 

that a circle with this bandwidth can cover all the disparities regardless of where the center of the 
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circle is in the disparity graph.  In this way, the initial pass of the mean shift procedure should 

stop somewhere near the centroid which would be close to the global mode.  The smallest 

bandwidth should be set as the estimated variation in systematic errors (the radius of the cluster) 

because, in the final pass of the mean shift procedure, only good estimation of the cluster size 

would lead to correct estimation of the cluster center.  For the NRL dual task eye tracking data, 

the smallest bandwidth is set to 1º of visual angle for all sessions.  For the number of iterations 

M, it is certainly better to run more iterations so that the procedure can smoothly converge to the 

global mode.  For the NRL dual task experiment data, M is set to 10 for all sessions.

To summarize, the error correction method has two steps:  First, use the nearest-object 

fixation assignment method to generate a large number of mappings and disparities; second, use 

the annealed mean shift procedure to find the global mode from the disparities.  The vector from 

the origin to the global mode is the signature of the systematic error.  The eye movement data is 

then shifted toward their true locations by subtracting the error signature.  The next section 

presents the validation of the technique in the context of NRL dual task experiment.

Validation of The Method

The error correction method discussed above was applied to the eye movement data on 

the classification task display of the NRL dual task experiment.  Specifically, for each session, 

the global mode of the disparities was found using the annealed mean shift procedure, and the 

eye movement data across the whole classification task display were shifted based on the error 

signature—the vector from (0, 0) to the global mode.  This section demonstrates the 

effectiveness of the error correction method, first directly and qualitatively with visualizations 
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that illustrate the improvement, and second with quantitative and objective measures of the 

improvement.

Visualizations of Corrected Data

The visualizations of eye movement data, before and after error correction, are compared 

using VizFix.  Figure 8 shows such an example.  The screenshot is taken at a single point in time 

so that the moving blips are shown as still images.  The small circles represent the fixation from 

the raw data (white) and the same fixation after error correction (purple).  In this wave of the 

session, there are two blips to be classified—a black diamond and a red oval.  (The digits on the 

blips are not shown here.)  Since the oval-shaped blip just changed from black to red, it is ready 

to be classified, and the participant is motivated to look at it immediately.  Thus, the fixation 

location is more believable after error correction than before.  Further, without error correction, it  

is hard to tell on which blip the uncorrected fixation (white circle) landed because it is roughly 

equidistant from both blips.

The visualizations of the entire wave further suggest that the error correction method is 

effective.  Figure 9 (top frame) shows the wave containing the blips shown in Figure 8.  All of 

the uncorrected fixations (white circles) are shifted to the new locations (purple circles) by the 

same error correction vector.  Although the uncorrected fixations are close to the white blips, 

they are unlikely intended for them for two reasons:  First, in the NRL dual task experiment, 

there is no benefit to look at the white blips because they have already been classified; second, at 

the time the fixations occurred, the blips have not yet changed to white.  The summary 

visualization cannot show the temporal dimension of the wave, but after examining the playback 
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of the wave, these uncorrected fixations were found to occur at the same time when the blips 

were red, yellow or green, but were just a little far from them.  Hence, the locations of the 

corrected fixations are more likely.  The same pattern occurred in Figure 9 (bottom frame), but 

the effect is more prominent: The uncorrected fixations are far from any blip location, whereas 

the corrected fixations are all near green or yellow icons.  Thus, all fixations are shifted to more 

believable locations—the locations of the red, yellow, or green icons, which suggests that the 

post error correction worked effectively.  

The visualizations of forty-seven of the forty-eight sessions confirmed the effectiveness 

of the error correction method.  Figure 10, however, shows a wave from the odd forty-eighth 

session in which the error correction actually increased systematic error.  The error correction 

reduced the error for Wave 11 (shown in Figure 9 bottom frame), but increased the error for 

Wave 1 (Figure 10) from the same session.  In Figure 10, the uncorrected fixations are closer to 

the green, yellow and red icons, whereas the locations of the corrected fixations are clearly 

wrong.  The fact that the error correction only worked for the later part of the session suggests 

that systematic error patterns changed at some point in time during the session.  The error 

signature is very small or nonexistent at the beginning of the session, but at some point increased 

to roughly 0.5º horizontal and 2.0º vertical.  It is possible to extend the error correction method to  

identify error signatures that change over time; the solution is discussed later in Possible 

Extensions section.

IMPROVING EYE TRACKING ACCURACY WITH PROBABLE FIXATION LOCATIONS

- 29 -



Objective Validation

The above visualizations help to show the effect of post hoc error correction intuitively, 

but quantitative and objective validation is needed.  The effect of the error correction method is 

measured in two ways: (a) the mean distance between fixations and their intended targets and (b) 

the number of incorrect mappings.  The validation that follows demonstrates that the error 

correction method is effective and robust in terms of both two measures.

Ground truth mappings. To acquire the above two measurements— the mean distance 

between fixations and their intended targets and the number of incorrect mappings—it is 

necessary to know which fixation-target mappings are truly correct.  In other words, it would be 

useful to know the ground truth of exactly where people were looking.  It turns out that, based on 

careful task analysis, it is possible to identify ground truth mappings for a small subset of the 

fixations in this experiment.  Several constraints are established regarding the temporal relation 

between a fixation and its target blip, the overall data quality and the circumstances when the 

blip is fixated, and these constraints (detailed in the Appendix) can be used to programmatically 

identify the ground truth mappings.

It might seem that, if ground truth mappings can be found directly, there is no need for 

the mean shift error correction technique.  However, the way that the ground truth mappings are 

identified (a) requires a careful task analysis of this specific experiment, and (b) can only find the 

mappings for a small subset of all fixations (for some sessions of the NRL dual task experiment, 

the program did not find any).  Whereas the mean shift error correction method can correct the 
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entire set of eye tracking data of any experiment.  As will be seen below, a partial set of ground 

truth mappings are sufficient to evaluate the error correction method.

Ground truth mappings were identified for 23% of the fixations on the classification task 

display.  Specifically, 1237 ground truth mappings out of 5426 fixations have been found in 42 

sessions. Only the data from Day 3 were used in the evaluation (see the Appendix for the reason 

of this restriction), and 6 out of 48 session were not included because no ground truth mappings 

were found for them. 

Comparison to corrected data.  The error correction method can reduce systematic 

error down to nearly 0º.  The decrease in the systematic error can be examined by comparing the 

disparities of the correct mappings in the uncorrected data with those in the corrected data.  

Because the disparities of different sessions may have different directions, taking their average 

directly would perhaps cancel out some disparities and is thus not an appropriate measure.  A 

more effective measure is to only consider the magnitude of disparity.  In other words, the 

absolute distance between a fixation and its mapped object.  The average magnitude of the 

disparities across 42 sessions is 1º of visual angle for uncorrected data, and 0.5º of visual angle 

for corrected data.  The 0.5º average magnitude of the disparities in the corrected data might be 

caused by the normal variation in the absolute distance between a fixation and a target object, 

considering that foveal vision is about 1º of visual angle.  The remaining 0.5º deviation in the 

uncorrected data, however, is likely to be caused by the eye tracking systematic error, and they 

are removed after applying the mean shift error correction method.  
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Figure 11 and 12 illustrate the horizontal and vertical components of the disparities in the 

uncorrected and corrected data.  Only forty-two of the forty-eight sessions are shown because six 

yielded no ground truth mappings.  As can be seen in Figure 11, the size of the disparities varies 

dramatically in the uncorrected data.  Many of the median deviations, especially the vertical 

deviations, reached 1º to 2º of visual angle.  However, as can be seen in Figure 12, the median 

deviations of the corrected data align at 0º (except for the last session in which the error signature 

changed over time; this session will be addressed below).  The median deviations of over two 

thirds of sessions in the corrected data are now within 0.1º, and all (except for that of the odd 

forty-second session) are within 0.2º.  Compared to the uncorrected data, the median deviations 

were reduced by more than 0.5º for half of the sessions, and they were reduced by more than 1º 

for thirty percent of sessions.  This result demonstrates that no matter how large the systematic 

error, as long as the error signature did not change over time, the method successfully removes 

nearly all error.  

The ground truth mappings are also compared against the mappings that were generated 

by applying the nearest-object fixation-assignment method to the uncorrected and corrected data 

set, and the result shows that the mappings from the corrected data set are more accurate.  In the 

uncorrected data, 97% of the fixations that have ground truth mappings were correctly assigned 

to their intended targets.  But for the data after error correction, the percentage of correct 

mappings increased to 99.4%.  Thus, for the fixations of the ground truth mappings, the error 

correction brought 2.4% accuracy improvement in terms of fixation assignments.  Note that in 

this experiment, the accuracy of the uncorrected data seems already high.  This is partly due to 

the effort in the instrument setup to keep the systematic error as small as possible.  It is also 
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because the distance between the visual stimuli was kept relatively large (2º in the blips’ start 

positions), which makes this experiment more resistant to small systematic error (less than 1º).  

Such design details might not be feasible in other studies, and hence the improvement brought by 

of the error correction method would be greater for them.

Although there are only a few wrong mappings in this experiment (3% in the uncorrected 

data), post error correction is still critical for the subsequent data analysis.  This is because that 

the number of wrong mappings varied dramatically for different sessions; and for some sessions, 

they account for much more than 3%.  For example, 15% of the mappings are wrong for the data 

of one participant.  This high error rate is likely to influence the data analysis for this participant.  

Moreover, the difference in the number of wrong mappings for different participants might create 

illusory individual difference in the analysis.

Both the eye movement visualizations and the quantitative measures corroborate the 

effectiveness of the error correction method.  When the error signature stay constant within a 

session, the method works effectively and reduces the systematic error down to nearly 0º.  In the 

following section, we show how to extend the method to incorporate dynamic error signatures.

Possible Extensions

This section presents two possible ways to extend the error correction method to handle 

situations in which systematic error can change (a) over time and (b) across regions.  Each 

extension is applied as follows:  (1) Run the core error correction procedure for all fixations to 

remove the majority of the systematic error; (2) group fixations based on time or regions; and (3) 

apply the error correction method again for each group.  It is necessary to first run the core 
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method because it will remove a large part of the systematic error which will allow the extension 

to start with a better set of initial mappings.

Error Signatures Over Time

A key step for removing systematic error that changes over time is to identify at what 

point in time the error signature changed.  One way is to go through eye movement 

visualizations such as shown in Figure 9 and 10 to check whether all corrected fixation locations 

are believable.  For instance, we used VizFix to examine the problematic session (P20, Day 3, 

Session 2) and found that the distance between corrected fixations and possible targets increased 

for the first three waves of that session.  Examining eye movement visualizations is an effective 

way for researchers to directly see the patterns of the data, but it can be time-consuming when 

the data set is very large.  One challenge of analyzing eye movement data is to develop 

visualization and analysis techniques so that such trends can be found quickly and easily.

Figure 13(a) shows a variant of the disparity graph that can be used to identify the 

shifting of the error signature over time.  The figure incorporates the temporal order of the 

disparities shown in the disparity plot alongside in Figure 13(b).  As can be seen, after applying 

the initial error correction method for all fixations, most of the disparities are now centered at (0, 

0).  That is, most of the fixations are now within 1º to their intended targets.  Some disparities are 

relatively far from the cluster, such as those below y = –100.  From Figure 13(b), it is difficult to 

determine whether the disparities below y = –100 correspond to another error signature or they 

merely come from incorrect mappings.  However, from Figure 13(a), we can see that these 

disparities are adjacent to each other not only in space, but also in time.  If they are from 
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incorrect mappings, they would occur randomly from time to time instead of all happening 

within a short time period.  Thus, they are more likely to be caused by a different error signature 

for a short span of time. 

After identifying the point in time at which systematic error changed, the fixations can be 

divided by the time-shift points, and the error correction procedure can be applied again for each 

group of fixations independently.  For instance, from Figure 13(a), we found that the systematic 

error changed around 90 seconds after the session started.  Thus, the fixations are divided into 

two groups at the 90 seconds mark.  Figure 14 shows the disparities of the two groups, before 

another pass of error correction based on time.  For the first group (Figure 14, top panel), the 

mean shift algorithm found the error signature to be –0.95 pixels horizontal and –108.06 pixels 

vertical; for the second group, the error signature is 0.85 pixels horizontal and 5.77 pixels 

vertical.  After applying the two error signatures, the median disparities of the ground truth 

mappings in that session changed from 5.71 to 6.66 pixels in horizontal direction, and from 

-106.39 to -1.95 pixels in vertical direction.  This fixes the odd Session 42 box plot in Figure 12, 

and the error correction now works for all forty-eight sessions.

The temporal disparity graph (Figure 13a) is very useful for detecting changing error 

signatures, and may be an appropriate visualization technique to consider applying every time 

that the error correction method is used, to look for time-based shifts in error signatures.  

Error Signatures Across Multiple Regions

After the core error correction procedure is applied to remove the majority of systematic 

error, visualizations of the corrected fixations can also be studied to decide whether the 
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systematic error differ across regions.  To explore such a possibility in the context of the NRL 

dual task experiment, we divided the classification task display into three regions.  Figure 15 

shows the three regions, each of which covers a third of the display: top-left, top-right and 

bottom.  These regions were selected for two reasons.  First, the task display has a fairly large 

area (16ºx13º of visual angle), and after going through the eye movement data visualizations, the 

disparities were found to be somewhat different for the three regions.  Second, the number of 

fixations in each of the three regions is similar, which provides a roughly equivalent number of 

disparities for identifying the error signature in each region.  Figure 16 shows an example of the 

disparities form the three regions.  Note that the three cluster centers are all around (0, 0), which 

suggests that this additional region-based correction might not be needed for this session.

The region-based error correction provides a slight improvement over the original 

corrected data.  Figure 17 shows the mean absolute deviations of the three data sets: uncorrected, 

corrected with the core method, and corrected by regions.  As can be seen, the mean absolute 

deviations are generally large in the uncorrected data.  For the two corrected data sets, the mean 

absolute deviations and their variations are much smaller, but there is not much difference 

between them.  The measure—the number of correct mappings—shows that the error correction 

by region provides no accuracy improvement; the additional correction identifies only one new 

correct mapping, and seven previously correct fixations were lost.  The fixation loss happened 

because eye movement shifts across the region boundaries separated gaze points that initially 

comprised fixations at the region boundaries.  Considering that the correction by regions did not 

provide much improvement in accuracy, for this experiment it is better to just use the initial error 

correction with the extension of error signatures that change over time.
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In summary, the error correction method presented here can reliably identify the true 

error signature for experiments with or without moving objects, and it can also be extended to 

find the changing error signatures across different screen regions or different time windows.  The 

core error correction method, in which only a single error signature was applied to the whole 

display, works sufficiently well.  In order to clean up systematic error that changes over time, 

researchers can visually examine the temporal disparity graph to look for a shifting point of the 

error signature.  For the NRL dual task experiment data, there seems to be little benefit by doing 

an additional pass of error correction for subregions, but it might be needed for larger displays.

Unlike Hornof and Halverson’s RFL technique, the core error correction method 

presented here applies a single error vector across the whole display.  This single-vector 

approach might be less accurate considering that systematic error can vary across different areas.  

However, it is difficult to obtain multiple error vectors that cover many regions in an experiment 

with stimuli that appear at non-fixed locations.  Also, the method presented here provides a way 

to the fixations to their intended targets without careful task analysis, making it valuable for 

many eye tracking experiments.

Conclusion

When doing scientific research, instrumentation error needs to be studied and considered, 

but this important practice is not followed in eye tracking studies.  Many eye tracking studies, for 

example, overestimate the accuracy of the eye tracker used in the study.  This paper discusses the 

adverse influence of systematic errors in eye tracking and presents a general and robust method 

for post hoc error correction to improve the accuracy of eye movement data.  The error 
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correction method harnesses the special pattern that has been found in the fixation-target 

disparity plot, i.e. the disparities of the correct fixation-target mappings tend to form a cluster in 

the plot whereas disparities of incorrect mappings tend to be randomly distributed.  By using the 

annealed mean shift procedure, the method is able to find the center of the cluster, which 

becomes the error signature of the systematic error.  The error signature is then used to shift the 

eye movement data to their true locations.  

The error correction method can be easily generalized because it requires little task 

analysis.  Because it is task independent, it can be adapted to various experiments without much 

effort.  There is a minor assumption about this method though, and researchers should be 

cautious to consider whether the assumption is met.  The technique assumes that a sufficient 

number (perhaps more than thirty percent) of correct mappings can be obtained from the 

uncorrected data to allow their disparities to form the highest density cluster.  If the correct 

mappings are only a small subset (e.g. less than ten percent) of the data, the density of their 

disparities might be lower than the density of the disparities from incorrect mappings, and hence 

the vector from the origin to the global mode would not be the correct error signature.  This is 

why, as mentioned before, that the presented error correction method requires the experiment 

visual layout to be irregular such that no matter how the entire set of objects are shifted, most of 

their resulting locations do not overlap with the original locations.  When the visual objects are 

arranged regularly (e.g. the grid based layout in Hornof & Halverson’s visual search experiment), 

a situation—the relative locations of a fixation and its surrounding objects—that causes an 

incorrect assignment is likely to reappear at many other locations or points in time, creating 

many similar incorrect disparities that might form a higher density cluster than the one formed 
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by the correct disparities.  However, in such cases, researchers might still use Hornof and 

Halverson’s RFL technique to trim down the systematic error to an acceptable size (e.g. less than 

half of the distance between objects) for the method presented here to do finer error correction.

There are three possible directions in which this method can be further improved.  First, 

because the algorithm always returns a result no matter what the underlying data distribution is, 

it would be useful to add a cluster density threshold to the algorithm such that the algorithm 

would only report the result when the density of the located cluster exceeds the threshold.  This 

threshold can help rule out some odd situations in which no dense cluster exists in the graph.  

Second,  it would be useful to have some algorithms to automatically find the regions or periods 

of time in which the error signature changes.  Currently, this step still requires researchers to 

make their own judgements by examining the data visualizations.  Third, the method can be 

modified to work with the raw gaze sample data rather than fixations to generate the disparity 

graphs.  Because there would be many more gaze samples, the method might become more 

robust.  

Applying a post hoc error correction method to eye movement data requires a certain 

dedication to the science and art of eye tracking, especially if it is applied with the level of rigor 

as described here.  For this experiment, numerous parameter studies were conducted to 

determine, for example, how many different error signatures should be calculated for the 

temporal periods of an eight-minute task and for different spatial regions of the display.  It is 

much easier to simply report the eye tracker accuracy reported by the manufacturer, and from 

then on to ignore any possible error in the eye tracking data or, if error happens to be noticed in 

some trials, to just discard those trials.  However, we believe that a bold, daring, and honest look 
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at eye movement data and a commitment to attacking error is critical for the advancement of eye 

tracking research and application.
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Appendix

Ground Truth Mapping Rules

The following constraints were applied to identify the “ground truth” blips that 

participants fixated.  These mappings were used to evaluate the improvement in accuracy of the 

eye movement data after error correction.

1.  Only eye movement data from the last day were used.  Because on the last day, 

participants acquired expert strategies for doing the dual task, the performance were more stable 

and predictable.

2.  Only waves with more than 98% valid eye movement data rate were used.  Losing 

more than 2% eye movement data would bring uncertainty to the process of finding ground truth 

mappings.

3.  The blip must have been correctly classified.  If a blip was correctly classified, there 

should be at least one fixation on the blip to get its ID number.

4.  During the time of the fixation, there should be only one active blip (ready to be 

classified) on the classification task display.  Two or more active blips might compete for visual 

attention, hence bringing uncertainty.

5.  The fixation following the fixation under examination should be on the tactical task 

display.  This is a strategy that all participants adopted.  Immediately after perceiving an active 

blip, they return back to the tracking task and then key in the classification.  We use this rule to 

avoid undershoot and overshoot fixations because after such fixations, there is generally another 

fixation on the target blip as opposed to on the tracking task display.
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6.  The fixation should be the longest fixation on the classification display during its 

associated blip’s active time.  This is because that the longest fixation was almost certainly 

perceiving a blip’s classification.

7.  The distance between the fixation and its associated blip should be no more than 4º of 

visual angle.
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Footnotes


 1 VizFix was designed to visualize eye movement data and visual stimuli for many types 

of experiments.  It can replay an experimental session with real-time eye movement data 

superimposed on the display.  It can also provide a summary visualization for a period of time.  

Currently, the summary visualization shows the fixation scan path, but it is possible to 

incorporate other visualization methods such as a heat map.  The dispersion-based fixation-

detection algorithm was implemented in VizFix.  Researchers can easily adjust its two 

parameters and use it to detect fixations in eye movement data.  To use VizFix for any eye 

tracking experiment, a plug-in is needed to translate the experimental data format into VizFix’s 

own data format.  In addition to the plug-in built for the data from the NRL dual task experiment, 

presented here, we have also built a program to import eye movement data generated by the E-

Prime Tobii extension.  VizFix can be used to define AOIs and generate a range of statistics from 

eye movement data.  The software and source code can be downloaded from VizFix website, 

which can be found at http://www.cs.uoregon.edu/research/cm-hci/VizFix/.
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Figure 1.  The participant looked at the four corners of the rectangle, but the eye tracking data 

are all above the corners due to systematic errors.  Circles represent fixations.
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Figure 2.  Fixations superimposed on a breast  image.  Small circles represent fixations, the light 

circle indicates the location of lesion, and the bright circle indicates a prolonged (> 1000 ms) 

dwell.  Image from Mello-Thoms, Nodine & Kundel (2002).
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Figure 3.  A screenshot of visual search targets with one participant’s error signatures (the vector 

plot).  Notice that the error signature gradually changes across different display locations.  Image 

from Hornof & Halverson (2002).
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Figure 4.  Light gray circles indicate fixation data recorded by the eye tracker, and the black 

circles indicate the data after error correction. Circle diameter represents fixation duration.  

Image from Hornof & Halverson (2002).
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Figure 5.  An overview of the components and input devices of the dual task experiment.  Image 

from Hornof & Zhang (2010).

Task-Constrained Interleaving of Perceptual and Motor Processes

in a Time-Critical Dual Task as Revealed Through Eye Tracking

Anthony J. Hornof (hornof@cs.uoregon.edu)
Yunfeng Zhang (zywind@cs.uoregon.edu)

Computer and Information Science, University of Oregon
Eugene, OR 97403 USA

Abstract

A multimodal dual task experiment that contributed to the 
original development and tuning of the EPIC cognitive 
architecture is revised and revisited with the collection of new 
high  fidelity human performance data, most notably detailed 
eye movement data, that  reveal the complex overlapping of 
perceptual and motor processes within and between the two 
competing tasks.  The data permit a new detailed evaluation 
of assumptions made in previous models of the task, and 
contribute to the development  of new models that explore 
opportunities for overlapping visual-perceptual, auditory-
perceptual, ocular-motor, and manual-motor activities.  Three 
models are presented:   (a) A hierarchical, task-switching 
model in which each task  locks out the other;  the model 
explains reaction time but does not account for eye movement 
data.  (b) A maximum-overlap perceptually-driven model that 
maximizes parallel processing and predicts the trends in the 
eye movement data, but  performs too quickly.  (c) A 
moderately-overlapped perceptually-driven model that 
introduces task-motivated constraints  and predicts both 
reaction time and eye movement data.  The best-fitting model 
demonstrates the complex task-constrained interleaving of 
perceptual and motor processes in a time-pressured dual task.

Keywords: Cognitive strategies, EPIC cognitive architecture, 
eye tracking, multimodal dual task, multitasking.

Introduction

A critical task domain for the research enterprise of 
cognitive modeling—the practice of building computer 
programs that account for aspects of human information 
processing—is that of multimodal (auditory and visual) 
multitasking.  Psychologists and cognitive modelers puzzle 
over the question of how people engage in two or more 
time-pressured tasks that compete for perceptual,  cognitive, 
and motor processes, such as for air-traffic control or in-car 
navigation (Byrne & Anderson, 2001; Howes, Lewis, & 
Vera, 2009; Meyer & Kieras,  1997; Salvucci & Taatgen, 
2008).  Gaining an understanding and ability to predict 
aspects of multimodal multitasking is of critical scientific 
and practical importance.  This paper advances an 
understanding of such tasks by presenting cognitive models 
of time-critical multimodal multitasking and evaluates these 
models in great detail using eye tracking data.

The Time-Critical Multimodal Dual Task

An earlier version of the experiment that forms the basis of 
this theoretical exploration was conducted in the early 1990s 
at the Naval Research Laboratory (NRL) (Ballas, 
Heitmeyer, & Perez, 1992).  The experiment produced 

human speed and accuracy data that proved useful for 
developing detailed computational cognitive models of dual 
task performance (Kieras, Ballas, & Meyer, 2001).   In the 
NRL dual task, participants use a joystick to track a moving 
target on one display and, in parallel, key-in responses to 
objects that appear on a secondary “radar” display.   This 
paper presents an experiment that extends the original NRL 
dual task in numerous important ways, including that (a) eye 
movements are recorded, (b) eye tracking is used in some 
conditions to hide objects on the not-currently-looked-at 
display, (c) auditory cues relate more directly to required 
responses, and (d) participants are rigorously trained, 
financially motivated, and given extensive feedback so that 
performance approaches that of an expert.

Figure 1 shows an overview of the two displays used in 
the multimodal dual task modeled in this paper.   Two tasks 
(or subtasks) were performed in parallel: a tracking task and 
a radar classification task.  The tracking task consisted of 
keeping a small circle on a moving target using a joystick.  
When the circle was positioned as such, it turned green, and 
the participant was financially rewarded at a constant rate.  
The classification task consisted of monitoring groups of 
small icons or “blips” (fifty-seven blips across an nine-
minute scenario) that moved down the screen, and keying-in 
the blip number and “hostile” or “neutral” as soon as the 
blip changed from black to red, green, or yellow, indicating 
that it was “ready to classify”.  At the point a blip ready to 
classify, a financial bonus was awarded though it diminished 
at a constant rate until the blip was keyed-in, or classified.  
Red blips were hostile; green were neutral; yellow blips 
were classified based on their shape, speed, and direction, 
following practiced rules.

Submitted to ICCM 2010 – International Conference on Cognitive Modeling – Please do not cite or distribute.

1

Figure 1: An overview of the visual and auditory displays 
and input devices used in the multimodal dual task.
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Figure 6.  Black dots represent disparities from one session of the NRL dual task experiment.  

The coordinates of a disparity indicate how far away  the fixation is from its nearest object in 

terms of horizontal and vertical distances.  The vector from (0, 0) to the center of the cluster is 

the error signature for the eye movement data of this session, which is similar to the error 

signatures shown in Figure 3.  The red dot indicates the centroid of all the disparities.  Since it is 

not at the center of the cluster, it cannot be used to form an accurate error signature.  This is why 

the mean shift algorithm is needed.
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Figure 7.  Densities of the disparities in Figure 6.  Blue contours connect equal density  points.  

The cluster center has the greatest density, and the vector from (0, 0) to the center is likely to be 

the error signature.
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Figure 8.  The locations of a fixation before error correction (white circle) and after error 

correction (purple circle on the tip  of the red blip).  A gray circle with the radius of 1º of visual 

angle is drawn around each blip.  The solid arrow shows the error signature applied for this 

session.  The error correction procedure shifted the fixation horizontally by 0.64º, and vertically 

by 1.83º.  The location of the purple circle is more believable because it is on an active blip.
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Figure 9.  Summary  visualizations of two waves for the eye movement data before (white 

circles) and after (purple circles) error correction.  The top frame shows two blips classified by 

P11 (Participant 11, Day 3, Session 2, Wave 4).  The bottom frame shows four blips classified by 

P20 (Day 3, Session 2, Wave 11).  The locations of the moving blips are shown as a series of 

icons.  For each sampled location, a circle with the radius of 1º of visual angle is shown around 

it.  As can be seen, each blip started as black; changed to yellow, red or green as it moving down; 

and then changed to white after it was classified.  Based on task constraints, most of the fixations 

should be intended to the yellow, red or green sampled locations.  The arrows represent error 

signatures.  (The purple and white lines going off the right edge are eye movements to or from 

the tracking display.)
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Figure 10.  The summary visualization of Wave 1 of the same session as shown in Figure 9 

(bottom frame).  Given task constraints, the raw fixations (white circles) are more probable than 

the corrected fixations (purple circles).  The same error signature as in Figure 9 (bottom) is used 

for this wave.  In this one out of the forty-eight sessions, the corrected data, in some waves, was 

worse than the raw data.
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Figure 11.  The horizontal and vertical components of the disparity between the uncorrected 

fixations and their intended locations as determined by  ground truth mappings.  Each box shows 

the quartiles of the deviation in each session.  The median deviation is marked by a line in the 

box.  The black dots mark the outliers.
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Figure 12.  The horizontal and vertical components of the disparity between the error-corrected 

fixations and their intended locations as determined by ground truth mappings.
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   (a)       (b)

Figure 13.  Horizontal and vertical disparity between each recorded fixation location and the 

closest target after applying the initial error correction for all fixations of P20, Day 3, Session 2.  

Graph (a) adds additional temporal orderings to the disparities shown in graph (b).  Each line 

segment connects a pair of successive disparities.  Color denotes the time the fixation occurred, 

with time moving from blue to red.  Forty pixels is equal to 1º of visual angle.
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Figure 14.  Disparities of P20, Day 3, Session 2, grouped by time windows, before correcting 

again for each window.  The first panel shows disparities for fixations before 90 seconds, and 

second panel shows the disparities for fixations after 90 seconds.
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Figure 15.  The classification task display was divided into three regions and an additional pass 

of error correction was applied to each region individually.
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Figure 16.  Each panel shows the disparities (black dots) from each of the three regions.
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Figure 17.  The range of mean absolution deviation for each session in different data sets.
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