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IMPROVING EYE TRACKING ACCURACY WITH PROBABLE FIXATION LOCATIONS

Abstract

In eye tracking research, there is almost always a disparity between a participant’s actual
gaze location and the location recorded by the eye tracker. In this paper, we propose a mean shift
error correction method that can reliably reduce the systematic error—which tends to stay
constant over time—and restore the fixations to their true locations. We show that the method is
reliable when the visual objects of the experiment are arranged in an irregular manner, such as
not on a grid in which all fixations could be shifted to adjacent locations using the same
directional adjustment. Using the mean shift method, the disparity between fixations and their
nearest objects are calculated and plotted on a graph in terms of their x and y deviations. The
highest density point in this graph, calculated using the mean shift algorithm, is shown to
correctly capture the magnitude and direction of the systematic error. This paper presents the
method, an extended demonstration, and a validation of the efficacy of the error correction

technique.
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Introduction

In usability and psychological studies, researchers often want to know users’ and
participants’ internal states of mind in order to understand the efficiency of the interfaces or how
humans respond to particular stimuli. States of mind can either be inferred by analyzing a user’s
external sequence of actions such as mouse-clicks and key-presses, or they can be revealed
through verbal reporting. When using the latter method, the users are asked to say whatever they
are looking at, thinking, doing, and feeling. The advantage of the verbal reporting method is that
it can provide abundant direct information regarding a user’s cognitive processes (Newell &
Simon, 1972). But the method also has many drawbacks, e.g., the verbalization might interfere
with task processing and hence delay a user’s response time (Ericcson & Simon, 1980).
Recording a user’s observable interactions with a device is less intrusive and avoids the problems
associated with verbal reports. But there is rarely a precise mapping between people’s internal
cognitive processes and mouse clicks or key presses. For example, there might be several
approaches to solve an algebra equations, and if researchers only recorded the mouse clicks and
key presses, it may be difficult to figure out which approach people used.

As eye trackers become more accurate, researchers increasingly record eye movements as
a source of behavioral data (Jacob & Karn, 2003). This particular type of data provides special
insight into people’s internal cognitive processes. Eye movement data has two advantages over
the traditional behavioral data of reaction time and accuracy. The first advantage is that eye
movements are closely related to one important aspect of human information processing—visual
attention. Studies have shown that, although people can attend to stimuli that are not in the

foveal vision (also known as covert attention), when doing real-world tasks, they tend to move
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their eyes to things that they are attending to (Findlay & Gilchrist, 2003). None of the traditional
behavioral data can map so closely between external actions and internal states of mind. The
second advantage of eye movement data is that the duration of a fixation (in which the gaze is
maintained around a single location) generally ranges from 150 ms to 600 ms, which provides
for many tasks a much smaller grain size of temporal data points than provided by mouse clicks,
key presses, or reaction time data. Smaller time scales isolate individual strategic decisions and
hence permit researchers to more easily infer specific strategies that people adopt (Newell,
1990). For example, eye movement data for solving an algebra equation can show the order in
which the numbers and variables are fixated, and how long each symbol was studied, which in
turn reveal task strategies that participants adopted (Salvucci & Anderson, 2001). Due to the
above two advantages that eye movement data has over traditional measures, eye tracking is used
increasingly in usability studies to replace or complement verbal reports (Burke, Hornof, Nilsen
& Gorman, 2005; Goldberg et al., 2002).

Eye movement data, no matter how well it is collected, cannot always be assigned to
specific objects in a display. In some tasks, in which participants can acquire the necessary
features of an object and complete a task without directly looking at the object, an eye movement
will sometimes land at an intermediate location between the target and a non-target stimulus—a
location referred to as the “center of gravity” (Findlay, 1982). If a task is designed such that
people are not motivated or required to put their gazes directly on objects, then fixations cannot
be assigned to objects. However, when participants are motivated to look directly at a target,
such as to pick up detailed text information to complete a task, then it is reasonable to assign

fixations to objects.
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When a task is designed such that eye movements are likely to land directly on objects,
there remains the fundamental instrumentation, data collection, and analysis problem—eye
movement data are inherently noisy. Unlike mice, which are directly controlled by users and
thus reflect the actual locations that users are pointing to, eye trackers estimate people’s gaze
locations through indirect measures. For example, video-based eye trackers, which are most
widely used in usability studies, work by reflecting infrared light onto the corneal, and use the
vector between the pupil-center and the corneal reflection to calculate gaze locations. The
computer vision algorithms used in this procedure are not perfect and errors occur. As well,
some eye trackers still cannot handle head movements very well (Li, Babcock & Parkhurst,
20006).

This paper specifically embraces and addresses the error introduced to eye movement
data by the eye tracking device. There are generally three types of eye tracking errors (Hornof &
Halverson, 2002). First, the eye tracker may not be able to acquire an image of the eyes (e.g.
when the users are not sitting at an appropriate distance), which results in complete data loss.
Second, random error occur due to inaccurate estimations of gaze locations. These random
errors are often less than 0.5° of visual angle (the angle that a viewed object subtends at the eye)
and can be reduced by averaging the gaze points (LC Technologies, 2000). The last type of eye
tracking data error—systematic errors or bias errors—result from bad calibrations, head
movements, astigmatism and other sources, and stay constant from time to time (LC
Technologies, 2000). Systematic errors can sometimes reach many degrees of visual angle. The
good news is that systematic errors can be systematically removed with techniques such as that

presented here.
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The remainder of the article will discuss the issues of systematic error, including its
influences on eye movement data analysis; some previous methods that can deal with this error;
and a new method which can reliably reduce systematic error when the visual stimuli are

arranged in an irregular manner.

Systematic Error in Eye Movement Data

Figure 1 illustrates what systematic error looks like. The data are from a test of the Tobii
T60 eye tracker, which has a reported accuracy of 0.5° of visual angle and is widely used in
usability studies. In the test, the participant was asked to look at the four corners of the rectangle
consecutively. But unlike a typical experiment, the participant was asked to adjust her head
position in order to test the sensitivity of the tracking accuracy to head movements. As can be
seen in Figure 1, the four fixations are all somewhat above the corners by a similar amount of
disparity. The systematic errors that can be seen in the figure is very large—roughly 2.3° of
visual angle on average, well over the manufacture’s stated accuracy. The figure shows a typical
pattern in data with systematic errors—the recorded eye movement data are all altered by a
similar vector.

Although systematic error is common in eye tracking data, it is rarely reported in any
form (as in Blignaut, Beelders & So, 2008; Smith, Ho, Ark & Zhai, 2000). Yet, in any scientific
measurement it is critical to know the accuracy of the measuring instrument. If no error report is
provided based on the actual data collected, it is difficult to determine whether the study
examined, explored, or realized the severity of the error, and whether the data are truly accurate.

The error may not be a problem in usability studies in which the areas of interests (AOIs) extend



IMPROVING EYE TRACKING ACCURACY WITH PROBABLE FIXATION LOCATIONS

to a large area (e.g. 8° of visual angle) and are separated by a large distance. But in studies that
pertain to reading, visual search of dense displays, and cockpit usability evaluation, the visual
stimuli (such as labels and buttons) and the space between them tend to be only about 1° to 3° of
visual angle. In these circumstances, it is hard to know precisely which objects were fixated. If
the systematic error is as large as 2° of visual angle, a fixation is likely to be incorrectly
interpreted on an object adjacent to the one that was actually looked at. For example, in Figure
1, if only the lower two fixations are recorded or the task requirement—Ilook at four corners—is
not known, one would think that the lower two fixations were on the top corners because they
appear closer to the top corners. However, they are in fact on the bottom corners, just shifted by
systematic error. Thus, it is perhaps impossible to draw any reliable conclusions in an eye
tracking study without first addressing the systematic error. Ignoring the error can dramatically
affect the validity of empirical and theoretical claims made based on the eye tracking data.
When researchers indeed find systematic error in their data, or realize that it is possible
that such error might occur in their experiments, they tend to address the error in two ways.
First, they exclude the eye tracking data from the trials in which they have found error. Many
studies adopt this approach. For instance, Mello-Thoms, Nodine & Kundel (2002) conducted an
eye tracking experiment to examine how radiologists search breast cancer. They found in some
trials, such as shown in Figure 2, the lesion did not attract any fixations, whereas the dark
background was fixated for a fairly long time. The eye movement data of such trials were
excluded from the analysis. Although Mello-Thoms et al. did not attribute these data to
systematic error in the eye tracker, it is likely this is the source, because there are no stimuli on

the dark background that could attract and maintain visual attention for such a long time. One
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might argue that the participants may have used covert attention here, but task constraints and
human physiology would motivate fixations directly on the relevant visual objects (Findlay &
Gilchrist, 2003).

The second approach that researchers typically use to reduce the impact of systematic
error is to recalibrate their eye trackers periodically. This is often done, mid-experiment, by first
using a simple calibration check to determine if there is a large disparity between the stimulus
and the fixation location. If there is, then a full recalibration is invoked. This method is typically
employed in experiments that require highly accurate data, such as in reading studies. For
example, Juhasz, Liversedge, White, and Rayner (2006) reported that “calibration was checked
for each eye individually after every two trials and recalibated as necessary.” A similar
procedure was adopted in Abrams & Jonides (1988).

Although the above two methods—discarding data and intermediary calibration checks—
are widely applied, they clearly have drawbacks and limitations. The first approach, removing
the problematic data, often results in throwing away information needed to complete the
experimental design and to draw valid conclusions. Also, determining whether systematic error
occurred relies on researchers’ subjective judgments, which can be influenced by their own
biases and understanding of the task. The second method of dealing with eye tracking systematic
errors—recalibrating at regular intervals—cannot be applied in many studies in which the user’s
performance, such as task completion time, could be adversely affected by interruptions. For
example, a continuous task such as driving may last for several minutes and hence may not be
interruptible without interfering with the driver’s attention on the main task. Also, in many

usability studies, there are numerous dependencies among a series of tasks such that interruptions
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would introduce uncontrolled variability, influence a user’s performance, and adversely impact
the validity of the study. For example, when doing an air traffic control task, participants
maintain a lot of context information in their memory. Recalibration could cause them to lose
this information and hence impair their performance. Even in experiments with frequent
recalibrations, the accuracy of the eye movement data still cannot be guaranteed to be perfect.
Clearly, an objective and principled technique to reduce or remove systematic error is preferred
and needed.

In this paper, we propose a post hoc method to reduce the systematic error in eye
movement data. Because the error correction is done after collecting data, it would not interfere
with task execution. This method also provides an objective measure of the accuracy of the raw

data.

Eye Movement Data Analysis and Error Correction
This section introduces two methods that have been previously proposed to deal with
error in eye movement data. The first method calculates a fixation’s true location using not only
the fixation’s recorded location but also the fixation’s role in task execution (Salvucci &
Anderson, 2001). The second method studies the nature of the systematic error and reduces it
accordingly (Hornof & Halverson, 2002). The error correction technique presented in this paper

follows the general approach of the second.
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Eye Movement Data Analysis Procedure

Before delving into the details of the two error correction methods, we shall first revisit
the two basic stages of automated eye movement data analysis. This brief introduction provides
a context that helps to show when the error correction should be carried out and how much work
should be done to rigorously analyze eye movement data.

Fixation detection. The first stage of eye movement data analysis is to group the raw
gaze samples into fixations. The raw data collected by eye trackers are sampled at a constant
rate, often 60 Hz. In some experiments, researchers can work directly with the raw gaze
samples. But generally, the samples are grouped into fixations. There are several algorithms for
detecting fixations (Salvucci & Goldberg, 2000). The dispersion-based and velocity-based
algorithm are the two main ones. The dispersion-based algorithm has two parameters: maximum
dispersion size and minimum fixation duration. The velocity-based algorithm has one parameter:
the velocity threshold. When analyzing data, it is wise to try a range of values for these
parameters to determine the optimum settings for different tasks. Karsh & Breitenbach (1983)
provide an excellent illustration of how different parameter settings of the dispersion-based
algorithm can dramatically affect the fixation detection outcome.

Fixation assignment. The second stage of automated eye movement analysis is to find
each fixation’s target object, i.e. to assign fixations to their intended stimuli. The most
commonly used fixation-assignment method is to map each fixation to its nearest object. The
idea behind this method is easy to understand: The closer a fixation is to an object, the better the
features of the object can be perceived. However, when the eye movement data have systematic

error, this nearest-object assignment method could very likely make mistakes, because the
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fixations are not at their actual locations. For example, if this fixation assignment method is used
for the eye movement data in Figure 1, both two fixations on the left would be assigned to the
top-left corner of the rectangle, and the two fixations on the right would be assigned to the top-

right corner. Here, the systematic error has caused two wrong assignments or mappings.

Error Correction Based on Hidden Markov Models

Using hidden Markov models, Salvucci and Anderson (2001) designed a fixation
assignment method that is more resistant to the effect of eye tracking error than the nearest-
object assignment method, but the method has a few drawbacks. In this method, the strategies
that might be used to successfully complete the task, which can be obtained by task analysis, are
formally coded into a hidden Markov model. Then the fixation sequences are compared with the
probabilistic, hypothesized fixation sequences in the hidden Markov model to obtain fixation
assignments. Two factors determine a fixation’s assignment: (a) the fixation location and (b) the
probability that the fixation would be on a stimulus at a point in time according to the model.
Thus, even if a fixation is further from its intended stimulus than it is from another stimulus,
perhaps due to the systematic error, it will still be assigned to the intended visual stimulus if this
match yields a higher probability in the hidden Markov model. One of the important
contributions of Salvucci and Anderson’s method is that it takes advantage of a powerful
mathematic tool, hidden Markov modeling, to formally represent possible strategies. However,
it is complex to implement a hidden Markov model and sometimes impossible to decide what
transition probabilities should be used. There is little evidence in the literature that this approach

is routinely used in any eye tracking studies, even for those subsequently conducted by the
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creators of the technique themselves. The error correction method presented here offers an

easier-to-use alternative.

Error Correction Based on Required Fixation Locations

This section discusses Hornof & Halverson’s (2002) error correction method, including
the concept of required fixation locations as well as some limitations of this method. The error
correction method presented in this paper takes a similar approach, but addresses different
situations in which the required fixation locations are not well-defined, such as when stimuli
move constantly. Similarities include: First, both methods reduce the systematic error before the
fixation assignment stage; this way, the nearest-object fixation assignment method would less
likely make wrong assignments. Second, both methods extract the size and direction of the
systematic error by studying the disparities between fixations and their intended locations. The
difference is that Hornof & Halverson’s method chooses the fixations more conservatively and
thus has some limitations as discussed later, whereas the technique presented here can estimate
the intended locations for most of the fixations.

In Hornof & Halverson (2002), the authors thoroughly studied the nature of systematic
errors in a set of eye tracking data collected from a visual search experiment. They found that
the systematic error tends to be constant within a region of the display for each participant.
Specifically, the magnitude of the disparities between the target visual stimuli and the
corresponding fixations were “somewhat evenly distributed around 40 pixels (about 1° of visual
angle) and that most were between 15 and 65 pixels”. The variation in the magnitude of the

disparity was even smaller if broken down by participant. Horizontal and vertical disparities
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remained somewhat constant for each participant. Thus, systematic error was not randomly
distributed across all directions or sizes but was, as the name implies, systematic. The error was
illustrated with a vector plot (see Figure 3) that forms each participant’s error signature, in which
the vectors change gradually across the display area.

Because the systematic error is relatively constant within a region, it is possible to reduce
the error for each region—and even each point—individually. The key idea of Hornof and
Halverson (2002) is that the effect of systematic error on each recorded fixation can be offset by
adjusting the fixation location based on the weighted average of the error vectors that are closest
to that recorded fixation, with heavier weights assigned to closer error vector. For example, in
Figure 3, the eye movement data that are close to each column would be corrected mostly based
on the vectors of the nearest column. Thus, the eye movement data for fixations near the left
column should be shifted upward, and those near the middle and right column should be moved
up and to the right.

To obtain an accurate estimate of the direction and size of the systematic error, the
disparities used to generate the error signatures must capture the difference between recorded
fixations and their true intended stimuli, rather than just the closest and potentially unrelated
stimuli. These correct mappings are not easy to acquire considering that the uncorrected data
may have large systematic errors. To solve this problem, Hornof and Halverson (2002)
developed the concept of required fixation locations (RFLs), which are locations on the screen
that the analyst can be relatively certain that a participant fixated at a specific point in time,
provided that the participant completed the trial accurately. Some RFLs are easy to find. For

example, an RFL can be a set of crosshairs that a participant is specifically instructed to fixate.
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However, not all tasks permit such explicit RFLs. Researchers need to conduct thoughtful and
accurate task analyses to find opportunities in which participants are implicitly required to fixate
an RFL. For instance, for a participant to correctly key-in a small number that is displayed on a
visual target, the participant must fixate that target at some point in the trial. In Hornof and
Halverson’s visual search experiment, the to-be-found target items served as implicit RFLs. It
was reasonable to assume, based on task design (such as monetary rewards for fast responses,
and no time pressure between trials), that participants were looking at the target when they
clicked on it with the mouse.

Hornof and Halverson’s RFL technique successfully reduced systematic error for a visual
search experiment in which all visual stimuli were fixed on a grid. As shown in Figure 4, the eye
movement data after error correction (in black) is more plausible than the raw data (in gray)
given the assumption of active vision (that the point-of-gaze is directed to visually-attended
objects), because all of the corrected fixations now land on the labels. Note that the eye
movement data shown in Figure 4 were corrected only using the disparities in the final fixation
of each trial (in Figure 4, the large fixation near the RUB label). After error correction, across
the experiment, the size of the systematic error reduced from 1.1° to about 0.73° of visual angle.
Considering that the labels in their experiment only subtend 1° of visual angle, and that there is
no space between vertically adjacent labels, reducing systematic error by 0.37° could have been
critical for the subsequent data analysis.

Hornof and Halverson’s method could potentially be used in a wide range of eye tracking
studies, but it has four limitations. First, it still relies on a researcher’s subjective judgement to

determine the potential RFLs. In Hornof and Halverson’s visual search experiment, the RFLs are

- 14 -



IMPROVING EYE TRACKING ACCURACY WITH PROBABLE FIXATION LOCATIONS

the targets that were being clicked by the mouse. This way of finding RFLs will not always be
practical or possible because some tasks may not need a mouse at all. Second, the way that they
chose RFLs is based on a reasonable task analysis—people tend to look at the objects that they
select—but the method is a bit conservative in that it limits RFLs to items selected with a mouse
while under time pressure. Other ways of choosing RFLs will be needed for different tasks, but
a tradeoff exists—the more confident researchers want to be about the true locations of fixations,
the fewer RFLs they can identify. Third, defining RFLs for moving visual stimuli is even harder
because it requires knowing what objects participants may look at and at exactly what time
would they look at them. Fourth, the existing RFL technique does not reliably correct eye
movement data when the systematic error changes over time. Because of the above limitations,
exploration is needed to find more opportunities not for required fixation locations but for
probable fixation locations.

With regards to the problem of not reliably correcting errors that change over time,
Hornof & Halverson (2002) stated: “An interesting question is whether we could take the
analysis further and determine how a participant’s error signature changes over time—from
calibration to calibration or even from trial to trial.” (p. 600) The assumption that error
signatures stay constant may hold for short experiments, but it is not clear how the systematic
errors will change for long experiments. The fact that eye tracking accuracy deteriorates over
time (such as implied in experiments that invoke recalibration at regular intervals) suggests that
error signatures should also change over time. One reason that Hornof and Halverson did not
address this issue is perhaps because detecting a change in an error signature across a period of

time would require a substantial number of RFLs across the task display for numerous windows
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of time and, as discussed before, Hornof and Halverson chose their RFLs conservatively and
hence somewhat sparsely.

Hornof and Halverson’s RFL approach is particularly well-suited for tasks with regularly
arranged visual objects, such as on a grid, whereas the method described below works best when
facing the complementary situation—in which visual objects appear at unsystematic, irregular
locations and perhaps even move across the display during a task. One thing to notice about this
new method is that, because it uses probable (rather than required) fixation locations to
determine systematic error, the method is not well-suited for regularly arranged objects that
could be shifted, with a single constant directional shift, to new locations that overlap with other
objects. For such layouts, Hornof and Halverson’s complementary RFL technique would work
better. The next section describes the context task in which the new error correction method is

developed, the Naval Research Laboratory dual task.

The Experiment with Moving Visual Stimuli
This section describes the Naval Research Laboratory (NRL) dual task experiment, which
was the context in which the new error correction technique was developed to address the four
limitations of the existing RFL technique discussed in the previous section. The NRL dual task
experiment has many moving visual stimuli, and hence it is very difficult to apply the existing
RFL technique as-is to the eye tracking data from the experiment. However, good eye tracking
data for the task could reveal important details and insights regarding fundamental human

information processing.
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The NRL dual task experiment consists of two subtasks performed in parallel: the
classification task and the tracking task. Figure 5 shows an overview of the task display. In the
classification task, the participants examine blips (the small icons on the left display in Figure 5)
that move down the screen, and key-in the blip number (the digit displayed on the icon) followed
by “H” or “N” for a hostile or neutral classification. The classification must be keyed-in after the
blip changes from black to green, red or yellow, indicating that it is active and “ready to be
classified.” The hostility can be determined by studying the blip’s color: Red indicates hostile
and green indicates neutral; if the blip is yellow, the participant needs to study its shape, speed
and direction to determine its hostility. Fifty-seven blips are grouped into 16 waves, in which 1,
2,4, 6, or 8 blips are visible at the same time. In the tracking task (on the right display in Figure
5), the participant simply uses a joystick to keep the circle on the moving target.

Figure 5 shows how the two task displays are arranged on a single monitor, with the
classification task displayed on the left and the tracking task displayed on the right. Other
conditions such as the presence of sound and peripheral visibility are manipulated, but they are
not terribly relevant to the development or evaluation of the eye movement data correction
method. See Hornof, Zhang & Halverson (2010) for a more detailed description of the
experiment.

Twelve participants from the University of Oregon and surrounding communities
successfully completed the experiment. They completed four sessions of the experiment on each
of three consecutive days. Participants were financially motivated to perform as quickly as
possible while maintaing very high accuracy. Given the practice and motivation, participants’

performance by day three approach that of an expert.
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The eye tracking instrumentation settings were kept as consistent and reliable as possible
to reduce systematic error. The screen resolution was set to 1280x1024. A chinrest was used to
maintain a constant eye position 610 mm from the display. One degree of visual angle extended
to about 40 pixels on the display. The size of blip icons was 32x32 pixels, i.e. 0.8°x0.8° of visual
angle. Blip movements were designed to maintain a 2° separation. Eye movements were
recorded using an LC Technologies dual camera eye tracker, which has a sampling rate of 120
Hz. Each session of the experiment took about 8 minutes on average to complete. Because the
task is continuous across these 8 minutes, the eye tracker cannot be recalibated during a session.
Despite all of these efforts to reduce systematic error, when collecting eye movement data for
such a long duration without recalibration, systematic error is still likely to occur.

The first stage of automated eye movement data analysis—fixation detection—was
carried out with parameter studies as discussed in the previous section. The dispersion based
fixation detection algorithm was used to find fixations. The first parameter of the algorithm,
minimum fixation duration, was set to 100 ms, as suggested by Karsh & Breitenbach (1983).

For the second parameter, several dispersion window thresholds were tested, and 0.7° of visual
angle was found to be the best. This threshold value is small enough to characterize a smooth
pursuit in the tracking task as a sequence of short fixations rather than as one long fixation as
would happen with a larger dispersion threshold. The threshold is large enough to correctly
identify a fixation as a single fixation in the classification task instead of breaking it up to several
small fixations. These observations were made using the eye movement visualization software

VizFix! developed in the Cognitive Modeling and Eye Tracking Lab at the University of Oregon.
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Although the new error correction technique is developed in the context of this specific
experiment, the resulting error correction method is generalizable. The moving stimuli in the
classification task present a difficult challenge for data analysis and error correction as would
any moving stimuli. Because the blips appeared at different locations and moved in different
directions with different speeds, the technique entails a general approach to handle moving
objects. (Of course, the approach can also be adapted for experiments with static visual stimuli.)
In the following sections, we present the details of the error correction method and demonstrate

how it is applied to the eye tracking data of this experiment.

A General Method for Removing Systematic Error

The post hoc error correction method presented here consists of two steps: mapping
fixations to their probable locations, and calculating the error signature by distinguishing correct
mappings from incorrect mappings. The first step—mapping fixations to their probable
locations—must be done by a generalizable method if the error correction technique is to be
easily adapted to any eye tracking experiment. Because the mappings may not be one hundred
percent accurate (some fixations could be assigned to wrong locations), the second step needs a
robust algorithm to determine which mappings are correct so that the error signature can be

calculated from only those mappings.

Mapping Fixations to Their Probable Locations
A nearest-object fixation assignment method is developed to identify the probable

location of each fixation. This method maps each fixation to its closest stimulus and uses the
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center of the stimulus as the probable intended location, provided that the distance between them
does not exceed a threshold. The threshold parameter helps exclude rare situations in which a
short fixation was not on any stimulus but just landed on the blank background. Another way to
think about the threshold is that it is the longest distance from an object and the point of gaze
such that the high resolution vision at the point of gaze can still encode the object. To estimate
this distance, researchers should consider two factors—the theoretical longest distance from the
point-of-gaze at which an object can be discerned, and the maximum size of the systematic error.
The first factor depends on the feature to be encoded and the size of the object (Kieras, 2010).
The second factor—the maximum size of the systematic error—should be considered because in
the uncorrected data, the distance between a fixation and its intended location is extended by the
systematic error. The sum of the two factors is the maximum possible distance between a
fixation and its intended stimulus in the uncorrected data. In the NRL dual task experiment, the
participant needs to study the small digit (less than 0.8°) on the blip. Because the small character
is only easily discriminable in the fovea, the first factor—the theoretical longest distance
between a fixation and its target object—is set to 1° (Kieras & Meyer, 1997). After examining
the data visualization, the maximum systematic error was estimated to be roughly 3°. Thus, the
longest distance between a fixation and its target object is set to 4° in the NRL dual task
experiment data.

There are two reasons to use the nearest-object fixation assignment method to find the
probable locations of fixations. First, the method is applicable to virtually all experiments
without the need of careful task analysis. Second, because nearly all fixations are assigned to

objects, the method can generate a substantial number of mappings which enable a more finely-
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tuned error correction for different screen regions and time periods. Also, a more reliable error
signature can be acquired by incorporating more disparities from the mappings.

The downside of the nearest-object fixation assignment method is that it can assign many
incorrect mappings due to systematic error—the very error that the technique is designed to
reduce. However, it is exactly for this reason that the second step of the error correction
procedure is introduced—to exclude the effect of the incorrect mappings. Note that at the error
correction stage, fixations are not really assigned to visual objects. These mappings are merely
used to determine the pattern of the systematic error. The actual fixation assignment will be

carried out after reducing the error.

Visualizing Disparities to Find Their Pattern

Visualizing disparities is not a required step for applying the error correction method, but
it helps to reveal the patterns of disparities and is thus useful for developing the method,
especially for finding an appropriate algorithm to exclude the effect of incorrect mappings.

Figure 6 shows one way to visualize the disparities by plotting them in terms of their x
and y deviations. The origin (0, 0) here denotes that a fixation is at the exact location of its
assigned object. Notice in Figure 6, there is a cluster of dots around (10, 35) which only
occupies a small area. Although there is no clear boundary between the cluster and other dots,
the cluster is apparently much denser than other area. The graph suggests that a large portion of
the fixations in that session are off their assigned objects by roughly 10 pixels horizontally and

35 pixels vertically. This pattern, that one small area is crowded with dots and other dots are
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sparsely scattered over the graph, also appears in other sessions of the experiment, which
suggests that there might be a common cause for the dense cluster.

The cause for the cluster is the key to separating the correct mappings from the incorrect
mappings. There are two factors that contribute to forming the cluster. First, because the
disparities from the correct mappings reflect the size and direction of the systematic error, they
tend to be similar to each other. Second, because the objects appear at irregular locations and
move constantly, a configuration of stimuli that caused an incorrect mapping is likely to be
dissimilar from all others that occur during a session; thus, the incorrect mappings tend to
generate disparities with many different directions and sizes across a session. The first factor
causes the concentration of the correct disparities and the second factor causes the dispersion of
the incorrect disparities. This suggests that the correct disparities can be separated from the
incorrect disparities by identifying which disparities are in the dense cluster.

Note, however, that the second factor that contributes to the clusters revealing the errors
—that incorrect mappings tend to produce disparities with different directions and sizes—is not
satisfied if the objects are arranged regularly and can be shifted to new locations that overlap
with original locations with a single constant adjustment. For example, if objects are arranged
on a grid, and the eye tracking error shifts all fixations one item down on the grid, then all
fixations would be incorrectly assigned to one object down. These incorrect mappings would
generate disparities that are similar to each other, and the dense clusters in the graph would be
formed by the incorrect disparities rather than correct disparities. But if the second factor is

satisfied, and the incorrect mappings cause divergent disparities, as in experiments in which the
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object locations are unsystematic, then the center of the dense cluster will be a good estimation
of the systematic error.

Locating the center of the cluster in the disparity graph is a hard problem because many
disparities are randomly distributed, but it would be incorrect to use the centroid of all the dots
instead. In Figure 6, a red dot marks the centroid. However, the centroid is not at the center of
the cluster. This is because the disparities from wrong mappings are not evenly distributed
around the center of the cluster. Taking the average of all disparities would mean treating each
as equally important regardless of whether they are from correct or incorrect mappings. In
Figure 6, there are more disparities on the right side of the graph, some of which are from wrong
mappings. The centroid is affected by these disparities and is somewhat to the right of the center
of the cluster. The effect of the wrong mappings here may not be significant, but it could be if a
large portion of the mappings are wrong.

Because the cluster in a disparity graph usually has the highest density, locating its center
can be considered as a global mode-finding problem, for which established solutions exist. For
example, Figure 7 shows the same disparities as in Figure 6, with contours connecting points that
have equal densities. As the space between adjacent contours gets smaller, the density of the
disparities becomes higher. The highest density in Figure 7 is the center of the cluster. The
assumption that the disparities from all the correct mappings form the highest density in the
disparity graph should be correct even when the majority of the disparities are from wrong
mappings, because the wrong disparities tend to be scattered all over the graph and thus have

lower densities.
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The global mode-finding problem has already been studied in other areas, and the error
correction method presented here adopts one of the existing solutions—the annealed mean shift
algorithm (Shen, Brooks & Hengel, 2007). The following section first presents the standard
mean shift procedure, which is used to find the local modes, and then discusses how the annealed

mean shift algorithm can reliably find the global mode.

Applying The Mean Shift Algorithm to Identify The Error Signature

A procedure called the mean shift algorithm which is used in computer vision for feature
space analysis (Comaniciu & Meer, 2002) can be adapted to solve the problem of identifying the
error signature in eye movement data. Although the disparities in recorded fixations do not
follow a certain distribution, the mean shift algorithm can still work because it does not rely on a
particular distribution. The mean shift method is derived from a nonparametric density
estimator, the kernel density estimator. Because nonparametric statistics can work with any
distribution, it enables the error correction technique to rely on fewer assumptions and to be
more robust.

The kernel density estimation method works by estimating the density at a given location
from its neighboring points. The size of the “neighborhood” is controlled by a bandwidth matrix
H and the weights associated with the neighboring points are determined by the kernel function.
In practice, the bandwidth matrix H is often simplified, resulting in the following kernel density

estimator:
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where the X; terms are n data points in the d-dimensional space R%  is a scalar derived from the
simplified bandwidth matrix H, k() is the profile of the actual kernel function, and cx is a
normalization constant. Two kernel functions have been widely applied, the Epanechnikov
kernel and the multivariate normal kernel. Given a d-dimensional point X, the above formula
returns the density estimation at that point.

Once the density function is acquired through the kernel density estimation procedure,
the local modes (local maximum points) can be found by setting the gradient equal to zero. This

is equivalent to setting the following term to zero:

o < Sk (=)
S (=)

where g(x) = —k’(x), and mg(x) is the mean shift vector. Starting from any random location, the

following scheme can be applied iteratively to stop at a local maximum point:

S ([2527)
X — - B .
S (1=2)7)

For a more detailed discussion of the standard mean shift procedure, see Comaniciu & Meer
(2002).

The standard mean shift procedure has been proven to reliably find local mode points, but
a better method is needed in order to find the global mode, as is required here to determine the
error signature. In the context of eye movement error correction, a local mode point could
potentially be the center of a small cluster formed by wrong disparities, and if the mean shift

procedure stops at such a point instead of the global mode, it would generate a wrong error
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signature. To combat this, we use the annealed mean shift algorithm, presented by Shen, Brooks
& Hengel (2007), which finds the global mode reliably.

The annealed mean shift procedure finds the global mode by applying multiple passes of
the standard mean shift process with a sequence of decreasing bandwidths to gradually zoom in
on the global mode. Initially a very large bandwidth /., is used, which can be selected to cover
all the data points. Applying the standard mean shift procedure using this bandwidth would
likely stop somewhere near the centroid because the large /s basically treats every point equally
(or nearly equally if using the multivariate normal kernel). Then the mean shift procedure is
applied again but with a smaller bandwidth. This time, instead of starting from a random point,
the procedure starts from the local mode point obtained from the last mean shift process.
Because in many cases, the local mode point that is obtained by using a large bandwidth is very
close to the global mode, starting from this local mode would allow the procedure to at least get
closer to the global mode. By iterating the above procedure many times while decreasing the
bandwidth, the method can generate an increasingly accurate estimate of the global mode. Shen,
Brooks and Hengel have applied this algorithm to the problems of visual tracking and object
localization. They empirically showed that the algorithm can reliably find the true global mode
even when the starting position of mean shift is far from the global maximum. The process is
formally defined in Figure 2 of Shen et al. (2007).

In order to apply the annealed mean shift algorithm to eye movement data error
correction, the parameters of the algorithm need to be set appropriately. The first and also the
largest bandwidth /s should be set as the the maximum distance between disparity points such

that a circle with this bandwidth can cover all the disparities regardless of where the center of the
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circle is in the disparity graph. In this way, the initial pass of the mean shift procedure should
stop somewhere near the centroid which would be close to the global mode. The smallest
bandwidth should be set as the estimated variation in systematic errors (the radius of the cluster)
because, in the final pass of the mean shift procedure, only good estimation of the cluster size
would lead to correct estimation of the cluster center. For the NRL dual task eye tracking data,
the smallest bandwidth is set to 1° of visual angle for all sessions. For the number of iterations
M, it is certainly better to run more iterations so that the procedure can smoothly converge to the
global mode. For the NRL dual task experiment data, M is set to 10 for all sessions.

To summarize, the error correction method has two steps: First, use the nearest-object
fixation assignment method to generate a large number of mappings and disparities; second, use
the annealed mean shift procedure to find the global mode from the disparities. The vector from
the origin to the global mode is the signature of the systematic error. The eye movement data is
then shifted toward their true locations by subtracting the error signature. The next section

presents the validation of the technique in the context of NRL dual task experiment.

Validation of The Method
The error correction method discussed above was applied to the eye movement data on
the classification task display of the NRL dual task experiment. Specifically, for each session,
the global mode of the disparities was found using the annealed mean shift procedure, and the
eye movement data across the whole classification task display were shifted based on the error
signature—the vector from (0, 0) to the global mode. This section demonstrates the

effectiveness of the error correction method, first directly and qualitatively with visualizations
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that illustrate the improvement, and second with quantitative and objective measures of the

improvement.

Visualizations of Corrected Data

The visualizations of eye movement data, before and after error correction, are compared
using VizFix. Figure 8 shows such an example. The screenshot is taken at a single point in time
so that the moving blips are shown as still images. The small circles represent the fixation from
the raw data (white) and the same fixation after error correction (purple). In this wave of the
session, there are two blips to be classified—a black diamond and a red oval. (The digits on the
blips are not shown here.) Since the oval-shaped blip just changed from black to red, it is ready
to be classified, and the participant is motivated to look at it immediately. Thus, the fixation
location is more believable after error correction than before. Further, without error correction, it
is hard to tell on which blip the uncorrected fixation (white circle) landed because it is roughly
equidistant from both blips.

The visualizations of the entire wave further suggest that the error correction method is
effective. Figure 9 (top frame) shows the wave containing the blips shown in Figure 8. All of
the uncorrected fixations (white circles) are shifted to the new locations (purple circles) by the
same error correction vector. Although the uncorrected fixations are close to the white blips,
they are unlikely intended for them for two reasons: First, in the NRL dual task experiment,
there is no benefit to look at the white blips because they have already been classified; second, at
the time the fixations occurred, the blips have not yet changed to white. The summary

visualization cannot show the temporal dimension of the wave, but after examining the playback
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of the wave, these uncorrected fixations were found to occur at the same time when the blips
were red, yellow or green, but were just a little far from them. Hence, the locations of the
corrected fixations are more likely. The same pattern occurred in Figure 9 (bottom frame), but
the effect is more prominent: The uncorrected fixations are far from any blip location, whereas
the corrected fixations are all near green or yellow icons. Thus, all fixations are shifted to more
believable locations—the locations of the red, yellow, or green icons, which suggests that the
post error correction worked effectively.

The visualizations of forty-seven of the forty-eight sessions confirmed the effectiveness
of the error correction method. Figure 10, however, shows a wave from the odd forty-eighth
session in which the error correction actually increased systematic error. The error correction
reduced the error for Wave 11 (shown in Figure 9 bottom frame), but increased the error for
Wave 1 (Figure 10) from the same session. In Figure 10, the uncorrected fixations are closer to
the green, yellow and red icons, whereas the locations of the corrected fixations are clearly
wrong. The fact that the error correction only worked for the later part of the session suggests
that systematic error patterns changed at some point in time during the session. The error
signature is very small or nonexistent at the beginning of the session, but at some point increased
to roughly 0.5° horizontal and 2.0° vertical. It is possible to extend the error correction method to
identify error signatures that change over time; the solution is discussed later in Possible

Extensions section.
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Objective Validation

The above visualizations help to show the effect of post hoc error correction intuitively,
but quantitative and objective validation is needed. The effect of the error correction method is
measured in two ways: (a) the mean distance between fixations and their intended targets and (b)
the number of incorrect mappings. The validation that follows demonstrates that the error

correction method is effective and robust in terms of both two measures.

Ground truth mappings. To acquire the above two measurements— the mean distance
between fixations and their intended targets and the number of incorrect mappings—it is
necessary to know which fixation-target mappings are truly correct. In other words, it would be
useful to know the ground truth of exactly where people were looking. It turns out that, based on
careful task analysis, it is possible to identify ground truth mappings for a small subset of the
fixations in this experiment. Several constraints are established regarding the temporal relation
between a fixation and its target blip, the overall data quality and the circumstances when the
blip is fixated, and these constraints (detailed in the Appendix) can be used to programmatically
identify the ground truth mappings.

It might seem that, if ground truth mappings can be found directly, there is no need for
the mean shift error correction technique. However, the way that the ground truth mappings are
identified (a) requires a careful task analysis of this specific experiment, and (b) can only find the
mappings for a small subset of all fixations (for some sessions of the NRL dual task experiment,

the program did not find any). Whereas the mean shift error correction method can correct the

-30 -



IMPROVING EYE TRACKING ACCURACY WITH PROBABLE FIXATION LOCATIONS

entire set of eye tracking data of any experiment. As will be seen below, a partial set of ground
truth mappings are sufficient to evaluate the error correction method.

Ground truth mappings were identified for 23% of the fixations on the classification task
display. Specifically, 1237 ground truth mappings out of 5426 fixations have been found in 42
sessions. Only the data from Day 3 were used in the evaluation (see the Appendix for the reason
of this restriction), and 6 out of 48 session were not included because no ground truth mappings

were found for them.

Comparison to corrected data. The error correction method can reduce systematic
error down to nearly 0°. The decrease in the systematic error can be examined by comparing the
disparities of the correct mappings in the uncorrected data with those in the corrected data.
Because the disparities of different sessions may have different directions, taking their average
directly would perhaps cancel out some disparities and is thus not an appropriate measure. A
more effective measure is to only consider the magnitude of disparity. In other words, the
absolute distance between a fixation and its mapped object. The average magnitude of the
disparities across 42 sessions is 1° of visual angle for uncorrected data, and 0.5° of visual angle
for corrected data. The 0.5° average magnitude of the disparities in the corrected data might be
caused by the normal variation in the absolute distance between a fixation and a target object,
considering that foveal vision is about 1° of visual angle. The remaining 0.5° deviation in the
uncorrected data, however, is likely to be caused by the eye tracking systematic error, and they

are removed after applying the mean shift error correction method.
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Figure 11 and 12 illustrate the horizontal and vertical components of the disparities in the
uncorrected and corrected data. Only forty-two of the forty-eight sessions are shown because six
yielded no ground truth mappings. As can be seen in Figure 11, the size of the disparities varies
dramatically in the uncorrected data. Many of the median deviations, especially the vertical
deviations, reached 1° to 2° of visual angle. However, as can be seen in Figure 12, the median
deviations of the corrected data align at 0° (except for the last session in which the error signature
changed over time; this session will be addressed below). The median deviations of over two
thirds of sessions in the corrected data are now within 0.1°, and all (except for that of the odd
forty-second session) are within 0.2°. Compared to the uncorrected data, the median deviations
were reduced by more than 0.5° for half of the sessions, and they were reduced by more than 1°
for thirty percent of sessions. This result demonstrates that no matter how large the systematic
error, as long as the error signature did not change over time, the method successfully removes
nearly all error.

The ground truth mappings are also compared against the mappings that were generated
by applying the nearest-object fixation-assignment method to the uncorrected and corrected data
set, and the result shows that the mappings from the corrected data set are more accurate. In the
uncorrected data, 97% of the fixations that have ground truth mappings were correctly assigned
to their intended targets. But for the data after error correction, the percentage of correct
mappings increased to 99.4%. Thus, for the fixations of the ground truth mappings, the error
correction brought 2.4% accuracy improvement in terms of fixation assignments. Note that in
this experiment, the accuracy of the uncorrected data seems already high. This is partly due to

the effort in the instrument setup to keep the systematic error as small as possible. It is also
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because the distance between the visual stimuli was kept relatively large (2° in the blips’ start
positions), which makes this experiment more resistant to small systematic error (less than 1°).
Such design details might not be feasible in other studies, and hence the improvement brought by
of the error correction method would be greater for them.

Although there are only a few wrong mappings in this experiment (3% in the uncorrected
data), post error correction is still critical for the subsequent data analysis. This is because that
the number of wrong mappings varied dramatically for different sessions; and for some sessions,
they account for much more than 3%. For example, 15% of the mappings are wrong for the data
of one participant. This high error rate is likely to influence the data analysis for this participant.
Moreover, the difference in the number of wrong mappings for different participants might create
illusory individual difference in the analysis.

Both the eye movement visualizations and the quantitative measures corroborate the
effectiveness of the error correction method. When the error signature stay constant within a
session, the method works effectively and reduces the systematic error down to nearly 0°. In the

following section, we show how to extend the method to incorporate dynamic error signatures.

Possible Extensions
This section presents two possible ways to extend the error correction method to handle
situations in which systematic error can change (a) over time and (b) across regions. Each
extension is applied as follows: (1) Run the core error correction procedure for all fixations to
remove the majority of the systematic error; (2) group fixations based on time or regions; and (3)

apply the error correction method again for each group. It is necessary to first run the core
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method because it will remove a large part of the systematic error which will allow the extension

to start with a better set of initial mappings.

Error Signatures Over Time

A key step for removing systematic error that changes over time is to identify at what
point in time the error signature changed. One way is to go through eye movement
visualizations such as shown in Figure 9 and 10 to check whether all corrected fixation locations
are believable. For instance, we used VizFix to examine the problematic session (P20, Day 3,
Session 2) and found that the distance between corrected fixations and possible targets increased
for the first three waves of that session. Examining eye movement visualizations is an effective
way for researchers to directly see the patterns of the data, but it can be time-consuming when
the data set is very large. One challenge of analyzing eye movement data is to develop
visualization and analysis techniques so that such trends can be found quickly and easily.

Figure 13(a) shows a variant of the disparity graph that can be used to identify the
shifting of the error signature over time. The figure incorporates the temporal order of the
disparities shown in the disparity plot alongside in Figure 13(b). As can be seen, after applying
the initial error correction method for all fixations, most of the disparities are now centered at (0,
0). That is, most of the fixations are now within 1° to their intended targets. Some disparities are
relatively far from the cluster, such as those below y =—100. From Figure 13(b), it is difficult to
determine whether the disparities below y = —100 correspond to another error signature or they
merely come from incorrect mappings. However, from Figure 13(a), we can see that these

disparities are adjacent to each other not only in space, but also in time. If they are from
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incorrect mappings, they would occur randomly from time to time instead of all happening
within a short time period. Thus, they are more likely to be caused by a different error signature
for a short span of time.

After identifying the point in time at which systematic error changed, the fixations can be
divided by the time-shift points, and the error correction procedure can be applied again for each
group of fixations independently. For instance, from Figure 13(a), we found that the systematic
error changed around 90 seconds after the session started. Thus, the fixations are divided into
two groups at the 90 seconds mark. Figure 14 shows the disparities of the two groups, before
another pass of error correction based on time. For the first group (Figure 14, top panel), the
mean shift algorithm found the error signature to be —0.95 pixels horizontal and —108.06 pixels
vertical; for the second group, the error signature is 0.85 pixels horizontal and 5.77 pixels
vertical. After applying the two error signatures, the median disparities of the ground truth
mappings in that session changed from 5.71 to 6.66 pixels in horizontal direction, and from
-106.39 to -1.95 pixels in vertical direction. This fixes the odd Session 42 box plot in Figure 12,
and the error correction now works for all forty-eight sessions.

The temporal disparity graph (Figure 13a) is very useful for detecting changing error
signatures, and may be an appropriate visualization technique to consider applying every time

that the error correction method is used, to look for time-based shifts in error signatures.

Error Signatures Across Multiple Regions
After the core error correction procedure is applied to remove the majority of systematic

error, visualizations of the corrected fixations can also be studied to decide whether the
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systematic error differ across regions. To explore such a possibility in the context of the NRL
dual task experiment, we divided the classification task display into three regions. Figure 15
shows the three regions, each of which covers a third of the display: top-left, top-right and
bottom. These regions were selected for two reasons. First, the task display has a fairly large
area (16°x13° of visual angle), and after going through the eye movement data visualizations, the
disparities were found to be somewhat different for the three regions. Second, the number of
fixations in each of the three regions is similar, which provides a roughly equivalent number of
disparities for identifying the error signature in each region. Figure 16 shows an example of the
disparities form the three regions. Note that the three cluster centers are all around (0, 0), which
suggests that this additional region-based correction might not be needed for this session.

The region-based error correction provides a slight improvement over the original
corrected data. Figure 17 shows the mean absolute deviations of the three data sets: uncorrected,
corrected with the core method, and corrected by regions. As can be seen, the mean absolute
deviations are generally large in the uncorrected data. For the two corrected data sets, the mean
absolute deviations and their variations are much smaller, but there is not much difference
between them. The measure—the number of correct mappings—shows that the error correction
by region provides no accuracy improvement; the additional correction identifies only one new
correct mapping, and seven previously correct fixations were lost. The fixation loss happened
because eye movement shifts across the region boundaries separated gaze points that initially
comprised fixations at the region boundaries. Considering that the correction by regions did not
provide much improvement in accuracy, for this experiment it is better to just use the initial error

correction with the extension of error signatures that change over time.
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In summary, the error correction method presented here can reliably identify the true
error signature for experiments with or without moving objects, and it can also be extended to
find the changing error signatures across different screen regions or different time windows. The
core error correction method, in which only a single error signature was applied to the whole
display, works sufficiently well. In order to clean up systematic error that changes over time,
researchers can visually examine the temporal disparity graph to look for a shifting point of the
error signature. For the NRL dual task experiment data, there seems to be little benefit by doing
an additional pass of error correction for subregions, but it might be needed for larger displays.

Unlike Hornof and Halverson’s RFL technique, the core error correction method
presented here applies a single error vector across the whole display. This single-vector
approach might be less accurate considering that systematic error can vary across different areas.
However, it is difficult to obtain multiple error vectors that cover many regions in an experiment
with stimuli that appear at non-fixed locations. Also, the method presented here provides a way
to the fixations to their intended targets without careful task analysis, making it valuable for

many eye tracking experiments.

Conclusion
When doing scientific research, instrumentation error needs to be studied and considered,
but this important practice is not followed in eye tracking studies. Many eye tracking studies, for
example, overestimate the accuracy of the eye tracker used in the study. This paper discusses the
adverse influence of systematic errors in eye tracking and presents a general and robust method

for post hoc error correction to improve the accuracy of eye movement data. The error
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correction method harnesses the special pattern that has been found in the fixation-target
disparity plot, i.e. the disparities of the correct fixation-target mappings tend to form a cluster in
the plot whereas disparities of incorrect mappings tend to be randomly distributed. By using the
annealed mean shift procedure, the method is able to find the center of the cluster, which
becomes the error signature of the systematic error. The error signature is then used to shift the
eye movement data to their true locations.

The error correction method can be easily generalized because it requires little task
analysis. Because it is task independent, it can be adapted to various experiments without much
effort. There is a minor assumption about this method though, and researchers should be
cautious to consider whether the assumption is met. The technique assumes that a sufficient
number (perhaps more than thirty percent) of correct mappings can be obtained from the
uncorrected data to allow their disparities to form the highest density cluster. If the correct
mappings are only a small subset (e.g. less than ten percent) of the data, the density of their
disparities might be lower than the density of the disparities from incorrect mappings, and hence
the vector from the origin to the global mode would not be the correct error signature. This is
why, as mentioned before, that the presented error correction method requires the experiment
visual layout to be irregular such that no matter how the entire set of objects are shifted, most of
their resulting locations do not overlap with the original locations. When the visual objects are
arranged regularly (e.g. the grid based layout in Hornof & Halverson’s visual search experiment),
a situation—the relative locations of a fixation and its surrounding objects—that causes an
incorrect assignment is likely to reappear at many other locations or points in time, creating

many similar incorrect disparities that might form a higher density cluster than the one formed
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by the correct disparities. However, in such cases, researchers might still use Hornof and
Halverson’s RFL technique to trim down the systematic error to an acceptable size (e.g. less than
half of the distance between objects) for the method presented here to do finer error correction.

There are three possible directions in which this method can be further improved. First,
because the algorithm always returns a result no matter what the underlying data distribution is,
it would be useful to add a cluster density threshold to the algorithm such that the algorithm
would only report the result when the density of the located cluster exceeds the threshold. This
threshold can help rule out some odd situations in which no dense cluster exists in the graph.
Second, it would be useful to have some algorithms to automatically find the regions or periods
of time in which the error signature changes. Currently, this step still requires researchers to
make their own judgements by examining the data visualizations. Third, the method can be
modified to work with the raw gaze sample data rather than fixations to generate the disparity
graphs. Because there would be many more gaze samples, the method might become more
robust.

Applying a post hoc error correction method to eye movement data requires a certain
dedication to the science and art of eye tracking, especially if it is applied with the level of rigor
as described here. For this experiment, numerous parameter studies were conducted to
determine, for example, how many different error signatures should be calculated for the
temporal periods of an eight-minute task and for different spatial regions of the display. It is
much easier to simply report the eye tracker accuracy reported by the manufacturer, and from
then on to ignore any possible error in the eye tracking data or, if error happens to be noticed in

some trials, to just discard those trials. However, we believe that a bold, daring, and honest look
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at eye movement data and a commitment to attacking error is critical for the advancement of eye

tracking research and application.
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Appendix
Ground Truth Mapping Rules

The following constraints were applied to identify the “ground truth” blips that
participants fixated. These mappings were used to evaluate the improvement in accuracy of the
eye movement data after error correction.

1. Only eye movement data from the last day were used. Because on the last day,
participants acquired expert strategies for doing the dual task, the performance were more stable
and predictable.

2. Only waves with more than 98% valid eye movement data rate were used. Losing
more than 2% eye movement data would bring uncertainty to the process of finding ground truth
mappings.

3. The blip must have been correctly classified. If a blip was correctly classified, there
should be at least one fixation on the blip to get its ID number.

4. During the time of the fixation, there should be only one active blip (ready to be
classified) on the classification task display. Two or more active blips might compete for visual
attention, hence bringing uncertainty.

5. The fixation following the fixation under examination should be on the tactical task
display. This is a strategy that all participants adopted. Immediately after perceiving an active
blip, they return back to the tracking task and then key in the classification. We use this rule to
avoid undershoot and overshoot fixations because after such fixations, there is generally another

fixation on the target blip as opposed to on the tracking task display.
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6. The fixation should be the longest fixation on the classification display during its
associated blip’s active time. This is because that the longest fixation was almost certainly
perceiving a blip’s classification.

7. The distance between the fixation and its associated blip should be no more than 4° of

visual angle.
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Footnotes

1 VizFix was designed to visualize eye movement data and visual stimuli for many types
of experiments. It can replay an experimental session with real-time eye movement data
superimposed on the display. It can also provide a summary visualization for a period of time.
Currently, the summary visualization shows the fixation scan path, but it is possible to
incorporate other visualization methods such as a heat map. The dispersion-based fixation-
detection algorithm was implemented in VizFix. Researchers can easily adjust its two
parameters and use it to detect fixations in eye movement data. To use VizFix for any eye
tracking experiment, a plug-in is needed to translate the experimental data format into VizFix’s
own data format. In addition to the plug-in built for the data from the NRL dual task experiment,
presented here, we have also built a program to import eye movement data generated by the E-
Prime Tobii extension. VizFix can be used to define AOIs and generate a range of statistics from

eye movement data. The software and source code can be downloaded from VizFix website,

which can be found at http://www.cs.uoregon.edu/research/cm-hci/VizFix/.
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e

Figure 1. The participant looked at the four corners of the rectangle, but the eye tracking data

are all above the corners due to systematic errors. Circles represent fixations.
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Figure 2. Fixations superimposed on a breast image. Small circles represent fixations, the light
circle indicates the location of lesion, and the bright circle indicates a prolonged (> 1000 ms)

dwell. Image from Mello-Thoms, Nodine & Kundel (2002).
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Figure 3. A screenshot of visual search targets with one participant’s error signatures (the vector
plot). Notice that the error signature gradually changes across different display locations. Image

from Hornof & Halverson (2002).
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Figure 4. Light gray circles indicate fixation data recorded by the eye tracker, and the black
circles indicate the data after error correction. Circle diameter represents fixation duration.

Image from Hornof & Halverson (2002).
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Figure 5. An overview of the components and input devices of the dual task experiment. Image

from Hornof & Zhang (2010).
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Figure 6. Black dots represent disparities from one session of the NRL dual task experiment.
The coordinates of a disparity indicate how far away the fixation is from its nearest object in
terms of horizontal and vertical distances. The vector from (0, 0) to the center of the cluster is
the error signature for the eye movement data of this session, which is similar to the error
signatures shown in Figure 3. The red dot indicates the centroid of all the disparities. Since it is
not at the center of the cluster, it cannot be used to form an accurate error signature. This is why

the mean shift algorithm is needed.
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Figure 7. Densities of the disparities in Figure 6. Blue contours connect equal density points.
The cluster center has the greatest density, and the vector from (0, 0) to the center is likely to be

the error signature.
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Figure 8. The locations of a fixation before error correction (white circle) and after error
correction (purple circle on the tip of the red blip). A gray circle with the radius of 1° of visual
angle is drawn around each blip. The solid arrow shows the error signature applied for this
session. The error correction procedure shifted the fixation horizontally by 0.64°, and vertically

by 1.83°. The location of the purple circle is more believable because it is on an active blip.
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Figure 9. Summary visualizations of two waves for the eye movement dta before (white
circles) and after (purple circles) error correction. The top frame shows two blips classified by
P11 (Participant 11, Day 3, Session 2, Wave 4). The bottom frame shows four blips classified by
P20 (Day 3, Session 2, Wave 11). The locations of the moving blips are shown as a series of
icons. For each sampled location, a circle with the radius of 1° of visual angle is shown around
it. As can be seen, each blip started as black; changed to yellow, red or green as it moving down,;
and then changed to white after it was classified. Based on task constraints, most of the fixations
should be intended to the yellow, red or green sampled locations. The arrows represent error
signatures. (The purple and white lines going off the right edge are eye movements to or from

the tracking display.)
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Figure 10. The summary visualization of Wave 1 of the same session as shown in Figure 9
(bottom frame). Given task constraints, the raw fixations (white circles) are more probable than
the corrected fixations (purple circles). The same error signature as in Figure 9 (bottom) is used
for this wave. In this one out of the forty-eight sessions, the corrected data, in some waves, was

worse than the raw data.

-57-



IMPROVING EYE TRACKING ACCURACY WITH PROBABLE FIXATION LOCATIONS

[
o
Sessions

™ N ~ o
(s1bue |ensiA jo sealbap ul)
uoljelraq |ejuozioH

[

N

(\,
Sessions

N ~— o AP
(e1bue [ensia Jo saaibap ul)
uoneins(q [ediiap

The horizontal and vertical components of the disparity between the uncorrected

Figure 11.

fixations and their intended locations as determined by ground truth mappings. Each box shows
the quartiles of the deviation in each session. The median deviation is marked by a line in the

box. The black dots mark the outliers.
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Figure 12. The horizontal and vertical components of the disparity between the error-corrected

fixations and their intended locations as determined by ground truth mappings.
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Figure 13. Horizontal and vertical disparity between each recorded fixation location and the
closest target after applying the initial error correction for all fixations of P20, Day 3, Session 2.
Graph (a) adds additional temporal orderings to the disparities shown in graph (b). Each line
segment connects a pair of successive disparities. Color denotes the time the fixation occurred,

with time moving from blue to red. Forty pixels is equal to 1° of visual angle.
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Figure 14. Disparities of P20, Day 3, Session 2, grouped by time windows, before correcting
again for each window. The first panel shows disparities for fixations before 90 seconds, and

second panel shows the disparities for fixations after 90 seconds.
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Figure 15. The classification task display was divided into three regions and an additional pass

of error correction was applied to each region individually.
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Figure 16. Each panel shows the disparities (black dots) from each of the three regions.
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Figure 17. The range of mean absolution deviation for each session in different data sets.
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