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ABSTRACT People can select a target from an alphabetically or
This research presents cognitive models of a persomumerically ordered menu significantly faster than from a
selecting an item from a familiar, ordered, pull-down menu. randomly ordered menu. This has been demonstrated by
Two different models provide a good fit with human data Perlman [11] and Somberg [13]. A simple explanation of
and thus two different possible explanations for the low- this phenomenon is that if a menu always contains the
level cognitive processes involved in the task. Both modelssame items in the same places, people can learn and
assert that people make an initial eye and hand movemernemember the exact location of each item. But Somberg’s
to an anticipated target location without waiting for the and Perlman’s observations only partially support this
menu to appear. The first model asserts that a persottheory. Both researchers found that, even after practice and
knows the exact location of the target item before the menueven when menu items are selected with a keystroke instead
appears, but the model uses nonstandard Fitts’ lawof a mouse, people can select the top items in an ordered
coefficients to predict mouse pointing time. The secondmenu faster than lower items. This suggests that people
model asserts that a person would only know thecannot learn the location of all menu items equally well.
approximate location of the target item, and the model usedoth researchers left as an open question a more detailed
Fitts’ law coefficients better supported by the literature. explanation for this phenomenon. The research presented
This research demonstrates that people can develofere attempts to fill this void by offering an empirically
considerable knowledge of locations in a visual task validated model of the low-level perceptual, cognitive, and
environment, and that more work regarding Fitts’ law is motor processing that people use when they select a known

needed. item from a numerically ordered pull-down menu.

KEYWORDS THE EPIC COGNITIVE ARCHITECTURE

Cognitive models, Fitts’ law, menus, visual search. The EPIC (Executive Process-Interactive Control) cognitive
architecture [7] provides a general framework for simulating

INTRODUCTION humans interacting with their environment to accomplish a

Menu selection is a very common human-computer ask and is well-suited to model a menu selection task.
interaction technique, and has been studied at length (suckp)c resembles the Model Human Processor [4], but differs
as in [6, 11, 13]), but models of the low-level cognitive iy that EPIC is a precise computational model, has a
processes and strategies that people use when they select Bfbgrammable production-rule cognitive processor, and

item from a menu have only been emerging in the last fewincorporates more specific constraints synthesized from
years. To give human-computer interaction (HCI) nyman performance literature.

practitioners better advice for building better menu systems, } ] N

more work needs to be done to figure out how people useEPIC consists of a production-rule cognitive processor and
menus. In a previous CHI paper [6], we presentedpPerceptual-motor peripherals. ~To model human
empirically validated models of the low-level perceptual, Performance aspects of accomplishing a task, a cognitive
cognitive, and motor processing that people use when theytrategy and perceptual-motor processing parameters must

select a known target item from a randomigered pull- be spec_ified. A cognitive strategy is represented as a set of
down menu. In this paper, we present similarly detailed production rules, much the same way that CCT [3], ACT-R
models for numericallprdered pull-down menus. [2], and SOAR [8] represent procedural knowledge. The

simulation is driven by a description of the task
environment that specifies aspects of the environment that
would be directly observable to a human, such as what
objects appear at what times, and how the environment
changes in response to EPIC’s motor movements. EPIC
computational models agenerativein that the production
rules only represent general procedural knowledge of the



EPIC generates a specific sequence of perceptual, cognitive[o act upon the environment, a production-rule strategy
and motor activities required to perform each specific sends motor commands to the various motor processors.

instance of the task. These motor commands specify a movement in terms of its
— style as well as other characteristics such as direction and
Cognitive \ extent. Predefined manual movement styles allow EPIC to
Long-Term Processor point with a mouse (the POINT style), press a mouse
Prﬂﬂggf{j&qeﬁule ) button (PRESS), point with a mouse while holding down
Product ion the mouse button (POINT-PRESSING), and release a
Memory $ wy mouse button (RELEASE)Compoundmovement styles
combine multiple movements into a single command. For
example, the PUNCH compound movement style executes
Working a PRESS and RELEASE with a single command. A
Memory PUNCH of a mouse button is more commonly referred to
as “clicking” the mouse button.
A / A motor movement must bereparedand therexecuted.
Movement preparation time will be reduced if the
Ocular previously executed movement had any identical features.

Motor

Processor The standard 200 msec to prepare a POINT, for example,

will be reduced to zero if the previous manual motor
command was an identical POINT. Execution time
represents the time required for mechanical muscular
movements in the physical world, and is thus determined in
part by features such as the distance that an effector must
travel. Motor movement styles and their associated timing
functions and parameters are based on what is available in
the human performance literature (such as in [12]).
Execution time for a mouse point, for example, is
determined by the Welford version of Fitts’ law [4], with a
minimum execution time of 100 msec enforced:

Tactile
Processor

Manual
Motor
Processor

Figure 1. Subset of EPIC architecture, showing flow
of information and control. The processors run
independently and in parallel. Not shown: Auditory
and vocal motor processors, task environment.

EPIC takes as its input: ,
» The cognitive strategy for accomplishing a task. T = max ( 100 ,K - |092<D|Lance + O.5>> msec
» Availability of object features, to represent human Width
perceptual capabilities. For a POINT movement, the coefficient K is set to 100, as
* Details of the task environment, such as when and whergyiven in [4]. For a POINT-PRESSING movement, the
objects appear. coefficient K is set to 140; this value is derived from data

EPIC generates as output: presented in [14].

» The time required to execute the task. This provides a cursory overview of the EPIC cognitive
« A detailed trace of the flow of information and control. ~ a@rchitecture. A more thorough description of EPIC is

) ] ) ) presented in [7]. The task modeled in this paper will be
As shown in Figure 1, information flows from sense presented next.

organs, through perceptual processors, to a cognitive
processor (consisting of a production rule interpreter and alTHE TASK . o _
working memory), and finally to motor processors that The menu selection task modeled in this paper was designed

control effector organs. All processors run independently by Nilsen, who presented the task to human participants in
and in parallel. an experiment (Experiment 2 in [10]). Nilsen used menus

) ) ] of three, six, and nine menu items. Menu items were the
The appearance of a visual object in the EPIC taskpymerical digits from 1 to, wheren was the length of the
environment produces multiple object-feature outputs from meny. Menu items were either randomly re-ordered for each
the visual perceptual processor. These object-feature pairgig| or presented in numerical order. Trials were blocked by

are deposited in visual working memory using a standardmeny |ength and ordering. Menus always appeared at the
delay for each feature. For example, if the visual object “4” ay5ct same location on a computer screen.

appears in the task environment, theation feature of this

new object will arrive in visual working memory before its As shown in Figure 2, each trial consisted of the following
textfeature. steps: Using a mouse, move the cursor to the GO box,

. ) , which causes the precue of the target item to appear above
Location information can also be made available to thene GO box. Commit the precue to memory. Click on the
cognitive processor by definingamed locationdor a GO box. The GO box and precue disappear, the menu

particular task environment. Named locations representyppears, the cursor is positioned one pixel above the first
knowledge of fixed locations in visual space.



menu item, and the clock starts. As quickly as possible,» There is no menu-length effect in the numerically ordered
click on the target item in the menu. The clock stops. menu data. Every serial position takes the same amount
of time regardless of the menu length.

Two different menu styles were used: Walking and click- : . . .
There is a negatively accelerated increase in the

open. With walking menus, participants moved the cursor® . ) ;
to the GO box, pressed and held down the mouse button, numerically ordered menu data; the increase is greater than

moved the cursor to the target while keeping the mouse that of the Fitts’ law prediction also shown on the graph.
button depressed, and then released the mouse button. With 1800 —

click-open menus, participants moved the cursor to the GO
box, clicked the mouse button, moved the cursor to the 1600 _
target, and then clicked the mouse button. Within a block,
all menus were of the same style. 1400 _
4 100 Randomly
= ] ordered
(]
£ 1000
g
, 2 E
: 5 800 _
3 E Numerically
I é 600 _ ordered menus
|
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% 400 T
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200 PP Fitts’ law
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Figure 2. Nilsen’s task with a numerically ordered 0 T T T T T T T 1
0 1 2 3 4 7 8 9

A . 5
menu and six items in the menu. Serial Position

Eight experienced mouse users participated in the
experiment, and were financially motivated to perform each
trial as quickly as possible. Nilsen presented each
participant with eighteen trials for every possible
combination of target position, menu length, menu
ordering, and menu style (walking versus click-open). The
final fifteen asymptotic trials are reported in the data.

Figure 3. Nilsen’s observed data for randomly and
numerically ordered menus. Mean selection times as
a function of serial position of target item, for menus
with three, six, or nine items. Also: Time required to
move the mouse to each target position as predicted
by Fitts’ law with a coefficient of 120.

These features in the data will direct the model-building

;rirggssiz\\//viDNill?sAe;"As observed data for randoml ar]dendeavor that follows. All of the models that follow will
9 y compare how well the models’ predictions match Nilsen’s

numerically ordered menus, averaged across participantS,pcerved data. But the comparisons will use a more detailed
blocks, and menu style (walking versus click-open). Also

shown is a Fitts’ law movement time prediction, with a view of the same data presented in Figure 3. Since the

coefficient of 120 (an average between the coefficients forobserved data points for the different menu lengths are the

. >~ same, but the menu styles produced different times, the
the POINT-PRESSING movement required for walking oo 0 that follow will collapse the observed data and the
menus and the POINT movement required for click-open

menus) predictions by menu length, but expand them by menu
' style (walking versus click-open).
The important features in the numerically ordered menu dat

include: aTHE MODELS

This section presents two classes of modelsintineediate

 Participants select an item from a numerically orderedlook, point, and clicknodels and thémmediate look,
menu substantially faster than from a randomly orderedpoint, check and correatnodels. Preliminary modeling
menu. As a result, the visual search strategies presentedot discussed here for lack of space demonstrates that
in the previous CHI paper [6] to explain the randomly waiting for the menu to appear will produce excessive
ordered menu data will not also explain the numerically delays. As a result, all of the models discussed in this
ordered menu data. Evidently, extensive visual search igpaper represent the belief that people will use anticipated
not needed for the numerically ordered menus. location knowledge to prepare and execute eye and hand

« Participants select the target item from numerically movements to the target without waiting for the menu to
ordered menus very quick|y’ requiring 0n|y 350 to 950 actually appear. Ant|C|pated location knOWIedge is made
msec to click on the GO box, move the cursor to the available to strategies by meansrEmed locationsn
target, and click on the target.



EPIC that correspond to the actual menu item locations andhe trend in the predicted values does not increase steeply
are available before the actual menu items have appeared. enough, and the prediction for position 1 is much too high.

The difference between the two classes of models is that the  1gg0 —
immediate look, point, and cliakodels assume that the 18.22-63-47
location information will always be correct, so a second eye

and hand movement will never be necessary. The 800 —
immediate look, point, check and correabdels, on the
other hand, allow for imperfect location knowledge; they
check to see that the first eye and hand movement landed on
the target and make a corrective eye and hand movement if
necessary.

600 —

400

——m——  Observed, walking
——e——  Observed, click-open

Selection Time (msec)

The discussion of each model includes a flowchart that
summarizes the production rules written in EPIC to 200

represent that model. Production rules were written to ---@---  Predicted, walking
maximize performance within the constraints imposed by ---o0---  Predicted, click-open
EPIC, and to be as parsimonious as possible. The 0 T T T T T T T T 1
production rules send the correct motor commands to c 1 2 3 4 5 6 7 8 9
interact with the current menu style (such as PRESS, Serial Position

POINT-PRESSING, and RELEASE for the walking

merglrlas);izbutbfq[; thet saI;emoft b:e&nty/, ;[:enl‘lowch'artts V;{"L predicted by the immediate look, point, and click
summarize both Sets of motor movements as just click, strategy run with standard Fitts’ coefficients of 100
point, and click. and 140

Figure 5. Selection times observed by Nilsen and

'T}mgdiated."o‘)kl' Plfim’ .and C(;icli_al\t/lmo%ells For positions 2 through 9, the model could be
Theimmediate look, point, and cliakodels represent a nqerpredicting for a number of reasons, including (1)
belief that people anticipate a target location before opemng?g

q articipants could not anticipate the exact location of the
a menu, execute an eye movement and a mouse movemepd, gt “which would imply that (2) this is not the strategy
to that location immediately upon opening a menu, and

. ; . 9 participants really used, or (3) participants took longer to
then click on that location without confirming that the i i than is predicted by Fitts' law with the standard

cursor is actually on the target. This strategy assumes thglyefficients. The next model investigates the third of these

anticipated target locations are correct. The EPIC ,cdipilities

production rules to represent this strategy are summarized ir? '

Figure 4. Nonstandard Fitts’ Law Coefficients Model
Eyes and cursor are on GO The immediate look, point, and clicktrategy run with
box. Target text is in WM. nonstandard Fitts’ coefficients represents the belief that

participants could anticipate the exact location of a target
item before the menu appears and always execute a correct
eye and hand movement to the target, but that mouse points
took longer than is predicted by standard Fitts’ coefficients.
gﬂnﬁiv;pg{ggf;rg;ﬂggggn_ The results from running thenmediate look, point, and
click strategy with exactly known location information and
with nonstandard Fitts’ coefficients of 175 and 220 are

Click on GO box.

st inantom fcipated shown in Figure 6. The values of 175 for POINT and 220
Figure 4. The immediate look, point, and click for POINT-PRESSING were chosen iteratively to provide a
strategy. good fit. The implications of these increased values are

discussed later.
Standard Fitts’ Law Coefficients Model
The results from running thienmediate look, point, and
click strategy are shown in Figure 5. Each predicted
selection time is averaged from one trial run for every menu

With the increased Fitts’ coefficients, this model now does

a very good job of predicting selection times for positions 2

through 9. The difference between the predicted and

length and serial position combination. For these trials,00Served values for the two menu styles is the same, and

the Fitts’ law coefficients in EPIC were set to the standard 20th the predicted and the observed values follow the same

100 for a POINT and 140 for a POINT-PRESSING. negatively accelerated trend. The overall plausibility of this
model and the implications of the nonstandard Fitts’

The results in Figure 5 demonstrate that the model iscoefficients will be discussed after providing a plausible

wrong. The predicted values are negatively accelerated, aexplanation for position 1.

are the observed data, and the difference between the two

menu styles is predicted to be the same as the observed data.

But the predictions for most positions are much too fast,



1000 — .o experimental procedure that only affects position 1, it

13.22-G3-1T-175/220 seems hardly worthwhile to create a new movement style in
EPIC for this model. Instead, in this model, a twitch is
800 — assumed to occur with the first click when the target is “1”.
8 EPIC’s predictions when running tHenmediate look,
£ 600 point, and clickstrategy with special case for position 1
é’ and nonstandard Fitts’ coefficients are shown in Figure 8.
S 400 _ o As can be seen, this model predicts the observed data very
g Observed, walking well, for an average absolute error of 3.8%.
% 500 ——e——  Observed, click-open 1000 — o
- ---p--- Predicted, walking 1.3.24-G3-1T-175/220
-—-=0--- Predicted, click-open
0 800 —
| | | | | | | | 1
0 1 2 3 4 5 6 7 8 9 ’g
Serial Position é 600 —
[
Figure 6. Selection times observed by Nilsen and E
predicted by the immediate look, point, and click 5 400 —
strategy run with Fitts’ coefficients increased to 175 i — w———  Observed, walking
and 220. & 200 ——e——  Observed, click-open
Special Case for Position 1 Model ---o---  Predicted walking
An explanation as to how participants selected targets in ---o---  Predicted, click-open
position 1 so quickly requires a detailed analysis of the task. 0 T | I E— | I E— | —
Recall that upon clicking on the GO box, the cursor is 6 1 2 3 4 5 6 7 8 3

automatically positioned exactly one pixel above the first Serial Position

menu item. When the participant knows the target item
will be in position 1, all that he or she must do is click on
the GO box, make a tiny downward movement with the
mouse, confirm that the target has actually appeared, and
click again.

Figure 8. Selection times observed by Nilsen and
predicted by the immediate look, point, and click
strategy with special case for position 1 run with
nonstandard Fitts’ coefficients of 175 and 220.

Though this model explains the data well and offers a
reasonable explanation for how people accomplish the task,
there are two aspects of this model that make it
guestionable. First, it is hard to accept Fitts’ coefficients
so much higher than the standard values. Second, the
"odel asserts people know exactly where to look and point
etéefore the menu even appears.

Additional production rules were added to fhemediate
look, point, and cliclstrategy to create special case for
position 1branch, rules that will only be executed if the
precue is a “1”. A flowchart summarizing the production
rules appears in Figure 7. In the special case productio
rules, there is no separate POINT movement, but rather th
click on the GO box is assumed to produce as a side effect
tiny downward twitch that is prepared in advance along with The first problem, of the increased Fitts’ coefficients,

the click. actually points to a shortcoming in the HCI literature.
Eyes and cursor are on GO Though Fitts’ law is often cited as a useful tool for
box. Target text is in WM. prediction and design in HCI (such as in [4, 5, 9]), the exact

form and coefficients of Fitts’ law are not settled. Several
studies in fact provide evidence for a Welford Fitts’
coefficient of about 175 for a mouse point [5, 9]. In
addition, the Fitts’ equation appears in several forms
(compare [4, 5, 9]), which makes some coefficients

Click on GO box. Click on GO box . .
incomparable. Thus, it may or may not be reasonable to
use such large Fitts’ coefficients. Much more work needs
Move eyes and cursor to Wait for label of to be done to determine the correct Fitts’ coefficients for
anticipated target location. item 1 to appear. various tasks and environments.
Click on the anticipated Click on target.

target location.
Figure 7. The immediate look, point, and click
strategy with special case for position 1.

11t should be pointed out that re-running the randomly
ordered menu models presented in [6] with the increased
Fitts’ coefficients of 175 and 220 does not seriously
Since a mouse click followed immediately by a deliberate reduce the good fit of the randomly ordered menu models
tiny twitch is rarely required in HCI tasks and since it is since, as argued in [6], the pointing time effects are very
only proposed here to accommodate an artifact of the minor compared to the effects due to visual search.



The second problem is that all of tramediate look,  Exactly Known Location Model

point, and clickmodels assume that a person has exactRunning theimmediate look, point, check and correct
location knowledge for all menu items before the menustrategy in EPIC with exactly known location information
even appears. This assertion seems to contradict Perlmanigveals the baseline prediction of the strategy, before adding
[11] and Somberg’'s [13] findings that, even with any error to the initial eye and hand movement location.
numerically and alphabetically ordered menus and a constarThe results from running this model are shown in Figure
time to select an item once it is found, the top menu items10. Each predicted selection time is averaged from one trial
can be selected faster than lower menu items. Periman’sun for every menu length and serial position combination.
and Somberg’s findings suggest that some items do take

longer to locate even in a known, ordered menu. 1000

1.3.34-1T-0.0e

So, theimmediate look, point, and cliakodels provide a
good fit and a reasonable explanation for how people select ~ 800 —
an item from an ordered menu. But the models discussed
next provide an equally good fit and perhaps an even more

. . 600 —
plausible explanation.

Immediate Look, Point, Check & Correct Models

The immediate look, point, check and corremiodels
represent a belief that people anticipate a target location
before opening a menu, execute an eye movement and a 200 |
mouse movement to that location immediately upon
opening a menu, check to see if the cursor actually landed
on the target, make a corrective eye movement and mouse T
movement if necessary, and then click on the target. These
models allow us to explore the possibility that people

cannot p[)edict lthe exact chatiorll of the target before it rjg,re 10. Selection times observed by Nilsen and
appears, but only an approximate location. predicted by the immediate look, point, check and
The flowchart in Figure 9 summarizes the production rules ~correct strategy run with exact location knowledge.

written in EPIC to explore the plausibility of this strategy. ag can pe seen in Figure 10, the model does not account for
Note that the strategy carries forward the special case 0k gata. But the results are informative nonetheless. The
position 1 discussed in the previous section. model’s predictions for the first three serial positions are
Eyes and cursor are on GO very close to the observed, and with roughly the same
box. Target fextis in WM. negatively accelerated slope as the data. The model
underpredicts for serial positions 4 and above, which might
be remedied by adding some error to the model that would

Target
s 3
Click on GO box movement.

400

——m——  Observed, walking
——e——  Observed, click-open

Selection Time (msec)

=-==-p=-=--  Predicted, walking
-=-=-0-=-=-  Predicted, click-open

Serial Position

sometimes make necessary a second, corrective eye and hand

Click on GO box. . .
exon % Approximately Known Location Model

Wait for label of i i ;
Move exes and cursor to item 1 to appear. Theimmediate look, point, check and corresbdel run
anticipated target location. with approximately known location information represents
Click on target. the belief that people can anticipate the position of a target
in a menu before the menu actually appears, but that people
can anticipate the location of items higher in the menu
more accurately than items lower in the menu.
Move eyes and cursor to Approximately known locations are introduced to the model
correct target location. . . . .
by perturbing the vertical coordinate of the named location

_ for the target item at the start of a trial.
Click on target

Figure 9. The immediate look, point, check and To represent the relation between the accuracy of location
correct strategy. knowledge and distance, these initially anticipated target

S . locations vary from trial to trial, and are normally
For simplicity, the model asserts that a third eye and MOUSEy;istributed aroungl, the true distance from the GO box to

movement will never be necessary. For the small amounty, o correct target location, with a standard deviatidhat
of error introduced in these models, the first movement will is defined as

rarely fall more than one menu item away from the target,

in which case the correct location information will be

readily available for the second eye and hand movement.  wheree is a constant error coefficient. Thus, the further
away the target, the less likely that the first eye movement
and mouse point will land within the target region. This

o=e-pu



relationship is actually well-grounded empirically. Abrams preparation for the point movement can also be partly
et al. [1] observed just such a linear relationship betweenprepared in tandem with the first mouse click. To see if
target distance and standard deviation in endpoints of eyesuch a style would help the model, a modification to the
movements directed at a single target that is peripherallyexisting POINT movement is introduced in these models.
visible before the start of the trial. A value @& 0.04 A more complete representation would be to introduce a
provides a very good fit with the data presented in Abramsnew movement style to the EPIC motor processor, but
et al. [1]. Seeing as how in Nilsen’s task there are multiplethese modifications are tentative.

target locations from trial to trial and the target is not
visible at the start of the trial, a higher error coefficient
seems plausible for predicting the error in the initial eye and
mouse movement locations when modeling Nilsen’s data.

The specific modifications are as follows: (1) The existing
POINT movement style is modified to allow a POINT to
begin during the release of a mouse button rather than
waiting for its completion. (2) The existing POINT and
The results from running thenmediate look, point, check POINT-PRESSING movement styles are modified to
and correct strategy with an initial location error require only 150 msec of preparation rather than the usual
coefficiente = 0.1 are shown in Figure 11. The value of 200 msec if the movement was preceded by a PRESS or
0.1 was chosen iteratively to provide a similar slope as thatPUNCH.

of the data. Three hundred trial runs were executed for everyl_he results from running thiemediate look, point, check
unique combination of menu length, serial position, and and correct strategy with an initial Io’cation, arror

:T;(;EESSMG- The predictions in Figure 11 average thosecoeﬁ‘icient e = 0.1 and a click-and-point compound

movement style are shown in Figure 12. The predictions
1200 — in Figure 12 average the results from three hundred trial

1834300703 runs executed for every unique combination of menu length,
1000 — serial position, and menu style.
= 1000 — -0
2 800 1.3.34-300T-0.1e-ft3-nup
13
£ 600 — 800
-
S 2
8 400 Observed, walking £ 600 4
A ——e——  Observed, click-open E
. . =
200 — -=-=-g--- Pred?cted, Wfallklng 5 400 |
-=-=0--- Predicted, click-open S Observed, walking
0 ] | | | I I I T 1 @ 200 ——e——  Observed, click-open
0 ! 2 3 Ser?al Pojtion 6 ! 8 o 7] ---p---  Predicted, walking
-=-=-0=-- Predicted, click-open
Figure 11. Selection times observed by Nilsen and 0 — T T T T T T T
predicted by the immediate look, point, check and o 1 2 3 4 5 6 7 8 9
correct strategy run with approximate location Serial Position

knowledge (e = 0.1). Figure 12. Selection times observed by Nilsen and

As can be seen in Figure 11, the model comes very close to predicted by the immediate look, point, check and
explaining the observed data. The predicted values have correct strategy run with approximate location
almost exactly the same negatively accelerated slope as the knowledge (e = 0.1) and with a click-and-point
observed data, and are very close to the observed data, butcompound movement style.

the model’s predictions are a little too slow for how quickly

people accomplished this task As can be seen in Figure 12, this model predicts the

observed data very well, with an average absolute error of
Perhaps the overall high speed of the observed data is due ©92%. This model demonstrates that two problems with
extensive overlapping of the motor processing involved. theimmediate look, point, and cliakodels — increasing
For example, perhaps people can prepare and execute the Fitts’ coefficients and asserting perfect location
compound click-and-point movement, a movement style knowledge — can be overcome by a more subtle analysis of
not currently implemented in EPIC. This tentative new the task and a more detailed representation of the perceptual-
compound movement style is introduced in the next model. motor activity required to accomplish the task.

Click-and-Point Compound Movement Style Model CONCLUSION
Introducing a click-and-point compound movement style to The models presented here provide a plausible explanation
the immediate look, point, check and correcatodel for the low-level perceptual, cognitive, and motor

represents a belief that, since the destination of the initialprocessing required for selecting a known target item from a
mouse point can be determined in advance, the motofamiliar, ordered pull-down menu. In order to account for



such fast selection times, it was necessary to assume that
people anticipate the target position and make their initial
eye and hand movements to the target even before the men
appears. The models also suggest that people can anticipate
the position of items that appear higher in an ordered pull-
down menu more accurately than items lower in the menu.

The models presented here also demonstrate that more Wo&'
needs to be done in the study of human performance to
predict simple pointing time with a mouse. A more
systematic effort is needed to catalog Fitts’ coefficients for
specific pointing tasks and mouse environments. And to be
truly valuable, aimed movement studies need to reports.
observations in at least as much detail as can be found in
Walker et al. [14], as well as all measurable mouse
parameters such as weight, drag, and variable gain settings.
Perhaps an altogether new model is needed for predicting
aimed movement times, such eyer’'s Law(See [12],
p.213), which relates movement time to width, distance,7'
and the number of submovements required.

FUTURE WORK

Successfully modeling Nilsen's data for both numerically
and randomly ordered menus provides evidence that a morg'
general visual search task can similarly be modeled. Future
work includes collecting data for a more two-dimensional
visual search task, such as icon search, and then carrying,
forward the strategies developed in the menu selection tasks
in an effort to explain the low level cognitive processes

involved in more general search tasks. 10
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