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ABSTRACT
This research presents cognitive models of a person
selecting an item from a familiar, ordered, pull-down menu.
Two different models provide a good fit with human data
and thus two different possible explanations for the low-
level cognitive processes involved in the task.  Both models
assert that people make an initial eye and hand movement
to an anticipated target location without waiting for the
menu to appear.  The first model asserts that a person
knows the exact location of the target item before the menu
appears, but the model uses nonstandard Fitts’ law
coefficients to predict mouse pointing time.  The second
model asserts that a person would only know the
approximate location of the target item, and the model uses
Fitts’ law coefficients better supported by the literature.
This research demonstrates that people can develop
considerable knowledge of locations in a visual task
environment, and that more work regarding Fitts’ law is
needed.
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INTRODUCTION
Menu selection is a very common human-computer
interaction technique, and has been studied at length (such
as in [6, 11, 13]), but models of the low-level cognitive
processes and strategies that people use when they select an
item from a menu have only been emerging in the last few
years.  To give human-computer interaction (HCI)
practitioners better advice for building better menu systems,
more work needs to be done to figure out how people use
menus.  In a previous CHI paper [6], we presented
empirically validated models of the low-level perceptual,
cognitive, and motor processing that people use when they
select a known target item from a randomly ordered pull-
down menu.  In this paper, we present similarly detailed
models for numerically ordered pull-down menus.

People can select a target from an alphabetically or
numerically ordered menu significantly faster than from a
randomly ordered menu.  This has been demonstrated by
Perlman [11] and Somberg [13].  A simple explanation of
this phenomenon is that if a menu always contains the
same items in the same places, people can learn and
remember the exact location of each item.  But Somberg’s
and Perlman’s observations only partially support this
theory.  Both researchers found that, even after practice and
even when menu items are selected with a keystroke instead
of a mouse, people can select the top items in an ordered
menu faster than lower items.  This suggests that people
cannot learn the location of all menu items equally well.
Both researchers left as an open question a more detailed
explanation for this phenomenon.  The research presented
here attempts to fill this void by offering an empirically
validated model of the low-level perceptual, cognitive, and
motor processing that people use when they select a known
item from a numerically ordered pull-down menu.

THE EPIC COGNITIVE ARCHITECTURE
The EPIC (Executive Process-Interactive Control) cognitive
architecture [7] provides a general framework for simulating
humans interacting with their environment to accomplish a
task, and is well-suited to model a menu selection task.
EPIC resembles the Model Human Processor [4], but differs
in that EPIC is a precise computational model, has a
programmable production-rule cognitive processor, and
incorporates more specific constraints synthesized from
human performance literature.

EPIC consists of a production-rule cognitive processor and
perceptual-motor peripherals.  To model human
performance aspects of accomplishing a task, a cognitive
strategy and perceptual-motor processing parameters must
be specified.  A cognitive strategy is represented as a set of
production rules, much the same way that CCT [3], ACT-R
[2], and SOAR [8] represent procedural knowledge.  The
simulation is driven by a description of the task
environment that specifies aspects of the environment that
would be directly observable to a human, such as what
objects appear at what times, and how the environment
changes in response to EPIC’s motor movements.  EPIC
computational models are generative in that the production
rules only represent general procedural knowledge of the
task, and when EPIC interacts with the task environment,



EPIC generates a specific sequence of perceptual, cognitive,
and motor activities required to perform each specific
instance of the task.
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Figure 1.  Subset of EPIC architecture, showing flow
of information and control.  The processors run
independently and in parallel.  Not shown: Auditory
and vocal motor processors, task environment.

EPIC takes as its input:
• The cognitive strategy for accomplishing a task.
• Availability of object features, to represent human

perceptual capabilities.
• Details of the task environment, such as when and where

objects appear.

EPIC generates as output:
• The time required to execute the task.
• A detailed trace of the flow of information and control.

As shown in Figure 1, information flows from sense
organs, through perceptual processors, to a cognitive
processor (consisting of a production rule interpreter and a
working memory), and finally to motor processors that
control effector organs.  All processors run independently
and in parallel.

The appearance of a visual object in the EPIC task
environment produces multiple object-feature outputs from
the visual perceptual processor.  These object-feature pairs
are deposited in visual working memory using a standard
delay for each feature.  For example, if the visual object “4”
appears in the task environment, the location feature of this
new object will arrive in visual working memory before its
text feature.

Location information can also be made available to the
cognitive processor by defining named locations for a
particular task environment.  Named locations represent
knowledge of fixed locations in visual space.

To act upon the environment, a production-rule strategy
sends motor commands to the various motor processors.
These motor commands specify a movement in terms of its
style, as well as other characteristics such as direction and
extent.  Predefined manual movement styles allow EPIC to
point with a mouse (the POINT style), press a mouse
button (PRESS), point with a mouse while holding down
the mouse button (POINT-PRESSING), and release a
mouse button (RELEASE).  Compound movement styles
combine multiple movements into a single command.  For
example, the PUNCH compound movement style executes
a PRESS and RELEASE with a single command.  A
PUNCH of a mouse button is more commonly referred to
as “clicking” the mouse button.

A motor movement must be prepared and then executed.
Movement preparation time will be reduced if the
previously executed movement had any identical features.
The standard 200 msec to prepare a POINT, for example,
will be reduced to zero if the previous manual motor
command was an identical POINT.  Execution time
represents the time required for mechanical muscular
movements in the physical world, and is thus determined in
part by features such as the distance that an effector must
travel.  Motor movement styles and their associated timing
functions and parameters are based on what is available in
the human performance literature (such as in [12]).
Execution time for a mouse point, for example, is
determined by the Welford version of Fitts’ law [4], with a
minimum execution time of 100 msec enforced:

T Distance
Width

= K · log2 + 0.5max 100 , msec

For a POINT movement, the coefficient K is set to 100, as
given in [4].  For a POINT-PRESSING movement, the
coefficient K is set to 140; this value is derived from data
presented in [14].

This provides a cursory overview of the EPIC cognitive
architecture.  A more thorough description of EPIC is
presented in [7].  The task modeled in this paper will be
presented next.

THE TASK
The menu selection task modeled in this paper was designed
by Nilsen, who presented the task to human participants in
an experiment (Experiment 2 in [10]).  Nilsen used menus
of three, six, and nine menu items.  Menu items were the
numerical digits from 1 to n, where n was the length of the
menu.  Menu items were either randomly re-ordered for each
trial or presented in numerical order.  Trials were blocked by
menu length and ordering.  Menus always appeared at the
exact same location on a computer screen.

As shown in Figure 2, each trial consisted of the following
steps:  Using a mouse, move the cursor to the GO box,
which causes the precue of the target item to appear above
the GO box.  Commit the precue to memory.  Click on the
GO box.  The GO box and precue disappear, the menu
appears, the cursor is positioned one pixel above the first



menu item, and the clock starts.  As quickly as possible,
click on the target item in the menu.  The clock stops.

Two different menu styles were used:  Walking and click-
open.  With walking menus, participants moved the cursor
to the GO box, pressed and held down the mouse button,
moved the cursor to the target while keeping the mouse
button depressed, and then released the mouse button.  With
click-open menus, participants moved the cursor to the GO
box, clicked the mouse button, moved the cursor to the
target, and then clicked the mouse button.  Within a block,
all menus were of the same style.
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Figure 2.  Nilsen’s task with a numerically ordered
menu and six items in the menu.

Eight experienced mouse users participated in the
experiment, and were financially motivated to perform each
trial as quickly as possible.  Nilsen presented each
participant with eighteen trials for every possible
combination of target position, menu length, menu
ordering, and menu style (walking versus click-open).  The
final fifteen asymptotic trials are reported in the data.

THE OBSERVED DATA
Figure 3 shows Nilsen’s observed data for randomly and
numerically ordered menus, averaged across participants,
blocks, and menu style (walking versus click-open).  Also
shown is a Fitts’ law movement time prediction, with a
coefficient of 120 (an average between the coefficients for
the POINT-PRESSING movement required for walking
menus and the POINT movement required for click-open
menus).

The important features in the numerically ordered menu data
include:

• Participants select an item from a numerically ordered
menu substantially faster than from a randomly ordered
menu.  As a result, the visual search strategies presented
in the previous CHI paper [6] to explain the randomly
ordered menu data will not also explain the numerically
ordered menu data.  Evidently, extensive visual search is
not needed for the numerically ordered menus.

• Participants select the target item from numerically
ordered menus very quickly, requiring only 350 to 950
msec to click on the GO box, move the cursor to the
target, and click on the target.

• There is no menu-length effect in the numerically ordered
menu data.  Every serial position takes the same amount
of time regardless of the menu length.

• There is a negatively accelerated increase in the
numerically ordered menu data; the increase is greater than
that of the Fitts’ law prediction also shown on the graph.
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Figure 3.  Nilsen’s observed data for randomly and
numerically ordered menus.  Mean selection times as
a function of serial position of target item, for menus
with three, six, or nine items.  Also: Time required to
move the mouse to each target position as predicted
by Fitts’ law with a coefficient of 120.

These features in the data will direct the model-building
endeavor that follows.  All of the models that follow will
compare how well the models’ predictions match Nilsen’s
observed data.  But the comparisons will use a more detailed
view of the same data presented in Figure 3.  Since the
observed data points for the different menu lengths are the
same, but the menu styles produced different times, the
graphs that follow will collapse the observed data and the
predictions by menu length, but expand them by menu
style (walking versus click-open).

THE MODELS
This section presents two classes of models, the immediate
look, point, and click models and the immediate look,
point, check and correct models.  Preliminary modeling
not discussed here for lack of space demonstrates that
waiting for the menu to appear will produce excessive
delays.  As a result, all of the models discussed in this
paper represent the belief that people will use anticipated
location knowledge to prepare and execute eye and hand
movements to the target without waiting for the menu to
actually appear.  Anticipated location knowledge is made
available to strategies by means of named locations in



EPIC that correspond to the actual menu item locations and
are available before the actual menu items have appeared.

The difference between the two classes of models is that the
immediate look, point, and click models assume that the
location information will always be correct, so a second eye
and hand movement will never be necessary.  The
immediate look, point, check and correct models, on the
other hand, allow for imperfect location knowledge; they
check to see that the first eye and hand movement landed on
the target and make a corrective eye and hand movement if
necessary.

The discussion of each model includes a flowchart that
summarizes the production rules written in EPIC to
represent that model.  Production rules were written to
maximize performance within the constraints imposed by
EPIC, and to be as parsimonious as possible.  The
production rules send the correct motor commands to
interact with the current menu style (such as PRESS,
POINT-PRESSING, and RELEASE for the walking
menus), but for the sake of brevity, the flowcharts will
summarize both sets of motor movements as just click,
point, and click.

Immediate Look, Point, and Click Models
The immediate look, point, and click models represent a
belief that people anticipate a target location before opening
a menu, execute an eye movement and a mouse movement
to that location immediately upon opening a menu, and
then click on that location without confirming that the
cursor is actually on the target.  This strategy assumes that
anticipated target locations are correct.  The EPIC
production rules to represent this strategy are summarized in
Figure 4.

Eyes and cursor are on GO 
box.  Target text is in WM.

Click on GO box.

Move eyes and cursor to 
anticipated target location.

Click on the anticipated 
target location.

Figure 4.  The immediate look, point, and click
strategy.

Standard Fitts’ Law Coefficients Model
The results from running the immediate look, point, and
click strategy are shown in Figure 5.  Each predicted
selection time is averaged from one trial run for every menu
length and serial position combination.  For these trials,
the Fitts’ law coefficients in EPIC were set to the standard
100 for a POINT and 140 for a POINT-PRESSING.

The results in Figure 5 demonstrate that the model is
wrong.  The predicted values are negatively accelerated, as
are the observed data, and the difference between the two
menu styles is predicted to be the same as the observed data.
But the predictions for most positions are much too fast,

the trend in the predicted values does not increase steeply
enough, and the prediction for position 1 is much too high.
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Figure 5.  Selection times observed by Nilsen and
predicted by the immediate look, point, and click
strategy run with standard Fitts’ coefficients of 100
and 140.

For positions 2 through 9, the model could be
underpredicting for a number of reasons, including (1)
participants could not anticipate the exact location of the
target, which would imply that (2) this is not the strategy
participants really used, or (3) participants took longer to
point than is predicted by Fitts’ law with the standard
coefficients.  The next model investigates the third of these
possibilities.

Nonstandard Fitts’ Law Coefficients Model
The immediate look, point, and click strategy run with
nonstandard Fitts’ coefficients represents the belief that
participants could anticipate the exact location of a target
item before the menu appears and always execute a correct
eye and hand movement to the target, but that mouse points
took longer than is predicted by standard Fitts’ coefficients.
The results from running the immediate look, point, and
click strategy with exactly known location information and
with nonstandard Fitts’ coefficients of 175 and 220 are
shown in Figure 6.  The values of 175 for POINT and 220
for POINT-PRESSING were chosen iteratively to provide a
good fit.  The implications of these increased values are
discussed later.

With the increased Fitts’ coefficients, this model now does
a very good job of predicting selection times for positions 2
through 9.  The difference between the predicted and
observed values for the two menu styles is the same, and
both the predicted and the observed values follow the same
negatively accelerated trend.  The overall plausibility of this
model and the implications of the nonstandard Fitts’
coefficients will be discussed after providing a plausible
explanation for position 1.
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Figure 6.  Selection times observed by Nilsen and
predicted by the immediate look, point, and click
strategy run with Fitts’ coefficients increased to 175
and 220.

Special Case for Position 1 Model
An explanation as to how participants selected targets in
position 1 so quickly requires a detailed analysis of the task.
Recall that upon clicking on the GO box, the cursor is
automatically positioned exactly one pixel above the first
menu item.  When the participant knows the target item
will be in position 1, all that he or she must do is click on
the GO box, make a tiny downward movement with the
mouse, confirm that the target has actually appeared, and
click again.

Additional production rules were added to the immediate
look, point, and click strategy to create a special case for
position 1 branch, rules that will only be executed if the
precue is a “1”.  A flowchart summarizing the production
rules appears in Figure 7.  In the special case production
rules, there is no separate POINT movement, but rather the
click on the GO box is assumed to produce as a side effect a
tiny downward twitch that is prepared in advance along with
the click.

Eyes and cursor are on GO 
box.  Target text is in WM.

Click on GO box.

Move eyes and cursor to 
anticipated target location.

Click on the anticipated 
target location.

Click on GO box

Wait for label of 
item 1 to appear.

Click on target.

No YesTarget 
is “1”?

Figure 7.  The immediate look, point, and click
strategy with special case for position 1.

Since a mouse click followed immediately by a deliberate
tiny twitch is rarely required in HCI tasks and since it is
only proposed here to accommodate an artifact of the

experimental procedure that only affects position 1, it
seems hardly worthwhile to create a new movement style in
EPIC for this model.  Instead, in this model, a twitch is
assumed to occur with the first click when the target is “1”.

EPIC’s predictions when running the immediate look,
point, and click strategy with special case for position 1
and nonstandard Fitts’ coefficients are shown in Figure 8.
As can be seen, this model predicts the observed data very
well, for an average absolute error of 3.0%.1
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Figure 8.  Selection times observed by Nilsen and
predicted by the immediate look, point, and click
strategy with special case for position 1 run with
nonstandard Fitts’ coefficients of 175 and 220.

Though this model explains the data well and offers a
reasonable explanation for how people accomplish the task,
there are two aspects of this model that make it
questionable.  First, it is hard to accept Fitts’ coefficients
so much higher than the standard values.  Second, the
model asserts people know exactly where to look and point
before the menu even appears.

The first problem, of the increased Fitts’ coefficients,
actually points to a shortcoming in the HCI literature.
Though Fitts’ law is often cited as a useful tool for
prediction and design in HCI (such as in [4, 5, 9]), the exact
form and coefficients of Fitts’ law are not settled.  Several
studies in fact provide evidence for a Welford Fitts’
coefficient of about 175 for a mouse point [5, 9].  In
addition, the Fitts’ equation appears in several forms
(compare [4, 5, 9]), which makes some coefficients
incomparable.  Thus, it may or may not be reasonable to
use such large Fitts’ coefficients.  Much more work needs
to be done to determine the correct Fitts’ coefficients for
various tasks and environments.

1 It should be pointed out that re-running the randomly
ordered menu models presented in [6] with the increased
Fitts’ coefficients of 175 and 220 does not seriously
reduce the good fit of the randomly ordered menu models
since, as argued in [6], the pointing time effects are very
minor compared to the effects due to visual search.



The second problem is that all of the immediate look,
point, and click models assume that a person has exact
location knowledge for all menu items before the menu
even appears.  This assertion seems to contradict Perlman’s
[11] and Somberg’s [13] findings that, even with
numerically and alphabetically ordered menus and a constant
time to select an item once it is found, the top menu items
can be selected faster than lower menu items.  Perlman’s
and Somberg’s findings suggest that some items do take
longer to locate even in a known, ordered menu.

So, the immediate look, point, and click models provide a
good fit and a reasonable explanation for how people select
an item from an ordered menu.  But the models discussed
next provide an equally good fit and perhaps an even more
plausible explanation.

Immediate Look, Point, Check & Correct Models
The immediate look, point, check and correct models
represent a belief that people anticipate a target location
before opening a menu, execute an eye movement and a
mouse movement to that location immediately upon
opening a menu, check to see if the cursor actually landed
on the target, make a corrective eye movement and mouse
movement if necessary, and then click on the target.  These
models allow us to explore the possibility that people
cannot predict the exact location of the target before it
appears, but only an approximate location.

The flowchart in Figure 9 summarizes the production rules
written in EPIC to explore the plausibility of this strategy.
Note that the strategy carries forward the special case for
position 1 discussed in the previous section.

Eyes and cursor are on GO 
box.  Target text is in WM.

Click on GO box.

Move eyes and cursor to 
anticipated target location.

Target 
is “1”?

Click on GO box

Wait for label of 
item 1 to appear.

Click on target.

No Yes

Cursor 
lands on 
target?

Yes

Move eyes and cursor to 
correct target location.

No

Click on target

Figure 9.  The immediate look, point, check and
correct strategy.

For simplicity, the model asserts that a third eye and mouse
movement will never be necessary.  For the small amount
of error introduced in these models, the first movement will
rarely fall more than one menu item away from the target,
in which case the correct location information will be
readily available for the second eye and hand movement.

Exactly  Known Location Model
Running the immediate look, point, check and correct
strategy in EPIC with exactly known location information
reveals the baseline prediction of the strategy, before adding
any error to the initial eye and hand movement location.
The results from running this model are shown in Figure
10.  Each predicted selection time is averaged from one trial
run for every menu length and serial position combination.
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Figure 10.  Selection times observed by Nilsen and
predicted by the immediate look, point, check and
correct strategy run with exact location knowledge.

As can be seen in Figure 10, the model does not account for
the data.  But the results are informative nonetheless.  The
model’s predictions for the first three serial positions are
very close to the observed, and with roughly the same
negatively accelerated slope as the data.  The model
underpredicts for serial positions 4 and above, which might
be remedied by adding some error to the model that would
sometimes make necessary a second, corrective eye and hand
movement.

Approximately Known Location Model
The immediate look, point, check and correct model run
with approximately known location information represents
the belief that people can anticipate the position of a target
in a menu before the menu actually appears, but that people
can anticipate the location of items higher in the menu
more accurately than items lower in the menu.
Approximately known locations are introduced to the model
by perturbing the vertical coordinate of the named location
for the target item at the start of a trial.

To represent the relation between the accuracy of location
knowledge and distance, these initially anticipated target
locations vary from trial to trial, and are normally
distributed around µ, the true distance from the GO box to
the correct target location, with a standard deviation σ that
is defined as

σ = e · µ

where e is a constant error coefficient.  Thus, the further
away the target, the less likely that the first eye movement
and mouse point will land within the target region.  This



relationship is actually well-grounded empirically.  Abrams
et al. [1] observed just such a linear relationship between
target distance and standard deviation in endpoints of eye
movements directed at a single target that is peripherally
visible before the start of the trial.  A value of e = 0.04
provides a very good fit with the data presented in Abrams
et al. [1].  Seeing as how in Nilsen’s task there are multiple
target locations from trial to trial and the target is not
visible at the start of the trial, a higher error coefficient e
seems plausible for predicting the error in the initial eye and
mouse movement locations when modeling Nilsen’s data.

The results from running the immediate look, point, check
and correct strategy with an initial location error
coefficient e = 0.1 are shown in Figure 11.  The value of
0.1 was chosen iteratively to provide a similar slope as that
of the data.  Three hundred trial runs were executed for every
unique combination of menu length, serial position, and
menu style.  The predictions in Figure 11 average those
results.
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Figure 11.  Selection times observed by Nilsen and
predicted by the immediate look, point, check and
correct strategy run with approximate location
knowledge (e = 0.1).

As can be seen in Figure 11, the model comes very close to
explaining the observed data.  The predicted values have
almost exactly the same negatively accelerated slope as the
observed data, and are very close to the observed data, but
the model’s predictions are a little too slow for how quickly
people accomplished this task.

Perhaps the overall high speed of the observed data is due to
extensive overlapping of the motor processing involved.
For example, perhaps people can prepare and execute a
compound click-and-point movement, a movement style
not currently implemented in EPIC.  This tentative new
compound movement style is introduced in the next model.

Click-and-Point Compound Movement Style Model
Introducing a click-and-point compound movement style to
the immediate look, point, check and correct model
represents a belief that, since the destination of the initial
mouse point can be determined in advance, the motor

preparation for the point movement can also be partly
prepared in tandem with the first mouse click.  To see if
such a style would help the model, a modification to the
existing POINT movement is introduced in these models.
A more complete representation would be to introduce a
new movement style to the EPIC motor processor, but
these modifications are tentative.

The specific modifications are as follows:  (1) The existing
POINT movement style is modified to allow a POINT to
begin during the release of a mouse button rather than
waiting for its completion.  (2) The existing POINT and
POINT-PRESSING movement styles are modified to
require only 150 msec of preparation rather than the usual
200 msec if the movement was preceded by a PRESS or
PUNCH.

The results from running the immediate look, point, check
and correct strategy with an initial location error
coefficient e = 0.1 and a click-and-point compound
movement style are shown in Figure 12.  The predictions
in Figure 12 average the results from three hundred trial
runs executed for every unique combination of menu length,
serial position, and menu style.
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Figure 12.  Selection times observed by Nilsen and
predicted by the immediate look, point, check and
correct strategy run with approximate location
knowledge (e = 0.1) and with a click-and-point
compound movement style.

As can be seen in Figure 12, this model predicts the
observed data very well, with an average absolute error of
3.92%.  This model demonstrates that two problems with
the immediate look, point, and click models – increasing
the Fitts’ coefficients and asserting perfect location
knowledge – can be overcome by a more subtle analysis of
the task and a more detailed representation of the perceptual-
motor activity required to accomplish the task.

CONCLUSION
The models presented here provide a plausible explanation
for the low-level perceptual, cognitive, and motor
processing required for selecting a known target item from a
familiar, ordered pull-down menu.  In order to account for



such fast selection times, it was necessary to assume that
people anticipate the target position and make their initial
eye and hand movements to the target even before the menu
appears.  The models also suggest that people can anticipate
the position of items that appear higher in an ordered pull-
down menu more accurately than items lower in the menu.

The models presented here also demonstrate that more work
needs to be done in the study of human performance to
predict simple pointing time with a mouse.  A more
systematic effort is needed to catalog Fitts’ coefficients for
specific pointing tasks and mouse environments.  And to be
truly valuable, aimed movement studies need to report
observations in at least as much detail as can be found in
Walker et al. [14], as well as all measurable mouse
parameters such as weight, drag, and variable gain settings.
Perhaps an altogether new model is needed for predicting
aimed movement times, such as Meyer’s Law (See [12],
p.213), which relates movement time to width, distance,
and the number of submovements required.

FUTURE WORK
Successfully modeling Nilsen’s data for both numerically
and randomly ordered menus provides evidence that a more
general visual search task can similarly be modeled.  Future
work includes collecting data for a more two-dimensional
visual search task, such as icon search, and then carrying
forward the strategies developed in the menu selection tasks
in an effort to explain the low level cognitive processes
involved in more general search tasks.
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