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ABSTRACT

Visual search is an important part of human-computer
interaction. It is critical that we build theory about how
people visually search displays in order to better support the
users’ visual capabilities and limitations in everyday tasks.
One way of building such theory is through computational
cognitive modeling. The ultimate promise for cognitive
modeling in HCI it to provide the science base needed for
predictive interface analysis tools. This paper discusses
computational cognitive modeling of the perceptual,
strategic, and oculomotor processes people used in a visual
search task. This work refines and rounds out previously
reported cognitive modeling and eye tracking analysis. A
revised “minimal model” of visual search is presented that
explains a variety of eye movement data better than the
original model. The revised model uses a parsimonious
strategy that is not tied to a particular visual structure or
feature beyond the location of objects. Three characteristics
of the minimal strategy are discussed in detail.
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INTRODUCTION

Visual search is an important part of human-computer
interaction (HCI). For most users and many tasks,
information is obtained through visual search. The visual
search processes people use in these tasks have a substantial
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effect on the time to find and the likelihood of finding the
information they seek.

One way to better understand the visual search processes
people use, and why they use them, is with computational
cognitive modeling. Theory developed through cognitive
modeling, as is done in this research, is essential for the
development of automated interface analysis tools.
Interface designers can use such tools to evaluate visual
layouts early in the design cycle before user testing. Two
tools that could benefit from a straightforward, minimal
model of visual search are CogTool [6] and G2A [11].

There are many cognitive models of visual search that may
one day converge to form a solid basis for the theory of
visual search in HCI [1,4,12]. While these models are very
useful, many such models are designed to explain the
effects of particular visual structures or salient features. The
research reported here is motivated by the need to find a
minimal model for goal-directed visual search that is not
tied to a particular visual structure or feature saliency. A
minimal model of visual search is presented that explains a
variety of eye movement better than previous research of
the same task.

PREVIOUS RESEARCH

This work builds on previous modeling and eye movement
analysis of menu search. Hornof [4] studied the visual
search of layouts with and without a visual hierarchy and
built computational cognitive models of the task. Hornof
and Halverson [5] replicated the study to evaluate the eye
movement strategies predicted by the models and found that
while the models predicted the search time and a fair
amount of the visual search behavior, some critical aspects
of the visual search behavior (for example, scanpaths) were
not well predicted. A goal of the current research is to
improve the original models by accounting for more eye
movement data found in the follow-up study.

Figure 1 shows the task relevant to the current research (the
“unlabeled” layouts from [4,5]). Sixteen participants
searched four different screen layouts for a precued target.
Each layout contained one, two, four, or six groups. Each
group contained five objects. The groups always appeared
at the same locations on the screen. One-group layouts used
group A. Two-group layouts used groups A and B. Four-
group layouts used groups A through D.



CHI 2007 Proceedings « Gaze & Eye Tracking

ZEJ
HAN
NUJ
BEG
PIJ
SAR

ZIP
ZIL
RAM
FOZ
SEN

MAX
DuD
FOV
FUT
REX

WOM
VIN
KIM
HOwW
KEZ

ZIS
DOB
ZEY
SAH
NIR

HIJ
SOK
708
ZEJ
RED

Figure 1. A 6-group layout. The precue, in the top left, would
disappear when the layout appeared. The gray text did not
appear during the experiment.

In the original models, the simulated eyes moved down the
first column of text, then down the second column, and then
down the third. Furthermore, the eyes jumped over a
carefully controlled number of items with each eye
movement. The model accounted for the reaction time and a
fair number of eye movement measures, considering that
the model was built without eye movement data to guide its
development.

However, the model’s strategy is somewhat tuned to
aspects of this one visual task and layout. The model
directly controls the direction and amplitude of eye
movements. This direct control, while providing a good fit
to the reaction time data, does an unsatisfactory job of
explaining people’s visual scanpaths. The original model
did a better job of predicting the frequency and number of
fixations, but there is room for substantial improvement. A
goal of this research is to improve the accuracy with which
the model explains people’s visual search strategies, while
at the same time maintaining a minimal model that does not
directly control the scanpaths based on the visual structure
of the layout or visual properties of the layout items.

CHARACTERISTICS OF A MINIMAL MODEL

This research proposes three characteristics of a minimal
model of visual search: (a) Eye movements tend to go to
nearby objects, (b) fixated objects are not always identified,
and (c) eye movements start after the fixated objects are
identified. These characteristics are motivated by previous
research and eye movement data, and are introduced to the
model here in a step by step manner. We propose that any
applied model of visual search should include at least these
three characteristics, and furthermore that much visual
search behavior can be explained by the integration and
interaction of these three characteristics.

The cognitive models described in this study were built
using the EPIC (Executive Process-Interactive Control)
cognitive architecture [7]. EPIC captures human perceptual,
cognitive, and motor processing constraints in a
computational framework that is used to build cognitive
models. EPIC simulates ocular-motor processing, including
the ballistic eye movements known as saccades and the
fixations during which the eyes are stationary and
information is perceived. Visual properties of objects are
available at varying eccentricities and timing. For example,
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the text property is available within one degree of visual
angle from center of fixation and arrives in working
memory 150ms after the text is fixated.

The minimal model was derived iteratively by making
gradual improvements to the model based on eye movement
data. At each step in the model’s development, a sub-
strategy was added or a perceptual parameter was changed
to increase the model’s fidelity.

A potential criticism of the task modeled here is that it lacks
ecological validity and any change to the task may
invalidate the resulting model. We acknowledge this
concern but point out that the model captures fundamental
human perceptual-motor processes, capabilities and
constraints that will be common across a wide range of
ecologically valid, real-world tasks such as air-traffic
control. Common processes and constraints include error in
object recognition, biases towards shorter saccades, and
fixation duration control.

The resulting model is useful for predicting visual search in
HCI. The model contains a visual search strategy that is not
tied to a particular visual structure or saliency of a feature
beyond the location of the visual objects. A text feature is
used to determine if the target is found, but does not guide
search. The development of the model and the integration
of the three key characteristics are discussed next.

Eye Movements Tend to Go to Nearby Objects

The basic job of the human visual search process is to
decide which objects to fixate. Though a completely
random search strategy is very useful for predicting the
mean layout search time, people do not search completely
randomly. Instead, people enjoy the many benefits of
moving to objects that are relatively nearby rather than
across the layout. Saccade destinations tend to be based on
proximity to the center of fixation [9].

In the current research, rather than searching randomly or
following a prescribed search order (as in the original
model), a strategy was used that selects saccade
destinations with the least eccentricity. To account for
variability in the human saccade distances, noise is added to
the model’s process of selecting the next saccade
destination as follows: (a) After each saccade, the
eccentricity property (the distance from the eye position) of
all objects is updated based on the new eye position. (b)
The eccentricity is scaled by a fluctuation factor, which has
a mean of one and a standard deviation of 0.3. This scaling
factor is individually sampled for each object. (c) Objects
whose text has not been identified and that are in unvisited
groups are marked as potential saccade destinations (i.e.
search without replacement). (d) The candidate object with
the lowest eccentricity is selected as the next saccade
destination.

The standard deviation of the fluctuation factor was
determined by varying the fluctuation factor to find the best
fit of the mean saccade distance. As shown in Figure 2, the
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Figure 2. Saccade distance observed (circles), predicted by the
original model (triangles), and predicted by the current model
(squares). The standard errors of the observed data
are too small to be visible.
Original model AAE =43.3%. Current model AAE =4.2%.

current model predicts the mean saccade distances very
well, with an average absolute error (AAE) of 4.2%, a
considerable improvement over the AAE of 43.3% in the
original model. This strategy also does a good job of
predicting the observed scanpaths. Figure 3 shows the three
most frequently observed scanpaths, and how the current
model predicts the observed scanpath frequencies better
than does the original model.

This “nearby with noise” strategy used in the minimal
model has a couple of benefits for predicting visual search
compared to models tied to particular visual structures or
saliency of visual features. First, only the location of the
layout objects if required. This is beneficial if other
properties in the layout are unknown or difficult to extract.
Second, this search strategy can be used when the visual
saliency alone cannot predict visual search, as is the case
with goal-directed search [8]. Unlike the original model [4],
this minimal model does not require a predefined notion of
how the eyes will move through the layout to predict the
observed scanpaths.

Fixated Objects are Not Always Identified

One goal of the current research was to produce a model
that accounts for multiple eye movement measures.
Although a model that moves the eyes to nearby items
accounts for the observed scanpaths, improvements were
required that accounted for the observed number of
fixations per trial.

Studying the eye movement data, it was found that
participants sometimes fixated on or near the target but
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Figure 3. The most commonly observed scanpaths in six-group
layouts and how often each path was taken by the participants
(observed) and the models (original and current).

April 28-May 3, 2007 « San Jose, CA, USA

continued to search. This suggests that the participants may
occasionally fail to recognize the target, even though they
eventually complete the trial correctly.

Previous modeling research [2,10] suggests that people do
occasionally fail to recognize fixated text. The minimal
model was modified to include a fext recoding failure rate.
Text recoding failure rate is a recent addition to EPIC, and
the default value is zero (i.e. no chance of failing to identify
text). The parameter represents the probability that the text
property of an object will not be encoded.

The text recoding failure rate parameter was used in the
current work for two reasons. First, to explore ways to
account for the observation that participants missed the
target occasionally. Second, if the current modeling predicts
observed eye movement data with a failure rate similar to
that used in the previous modeling, this would not only
support the use of the parameter here but also suggest a
default value for the parameter in future modeling.

The text recoding failure rate was initially set to 10%, the
value used in [2]. This failure rate was changed by 1%
increments until the model predicted the mean number of
fixations per trial. A value of 9% provided the best fit for
the number of fixations per trial.

As shown in Figure 4, the current model predicts the
number of fixations per trial very well, with an AAE of
4.2%. This is an improvement over the original model [4]
and the current model with no text recoding failure rate.
The decreased error and the similarity between the best-
fitting text recoding failure rate found here and the rate
found in past research provides support for the use of the
text recoding failure rate parameter. Again, we are
maintaining a minimal model in that this improvement to
the model does not require layout-specific information.
Future research will need to address the possibility of
encoding failure rates for non-text stimuli.

Eye Movements Start After Objects are Identified
The underlying concepts of the minimal search strategy
developed thus far have specified what the eyes move to. A
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Figure 4. Fixations per trial observed (circles), predicted by
the original model (triangles), predicted by the current model
with 0% encoding failure (diamonds), and predicted by
the current model with 9% encoding failure (squares).
Original model AAE = 37.8%. Current model with 0%
encoding failure AAE = 14.3%. Current model AAE =4.2%.
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visual search strategy also needs to specify when the eyes
move. Various strategies have been proposed for how long
people fixate items (see [3] for an overview). The two basic
competing theories are (a) preprogramming, in which
fixation durations are directly controlled by the search
strategy, and (b) process-monitoring, in which fixation
durations are determined by the time required to perceive
the fixated stimuli. The minimal model utilizes a process-
monitoring strategy, which requires fewer production rules
and parameters than required by a preprogramming
strategy.

In the model, saccades are initiated after objects in the
fovea are identified. Once the simulated eyes reach their
destination, the strategy waits until the text property of the
fixated objects is available. While waiting, the strategy
starts the process of deciding where the eyes will go next.

As shown in Figure 5, the current model predicts the
fixation durations very well, with an AAE of 4.6%. This is
an improvement over the original model [4] that had an
AAE of 26.5%. The use of a process-monitoring model for
determining fixation durations predicts the observed data
very well.

CONCLUSION

The minimal visual search model discussed here will be
useful to further research in predicting and understanding
user behavior in HCI. Such a model could be used in future
cognitive modeling as a base on which to build more robust
models of visual search. Further, predictive tools like
CogTool [6] could incorporate a similar model for
predicting users’ visual search behavior. Theory developed
through cognitive modeling such as the work presented here
is essential for the development of predictive, automated
interface analysis tools that allow designers to evaluate their
visual layouts early in the design cycle before user testing is
feasible.

A minimal model of visual search accounts for a variety of
eye movement data, from fixation duration to the most
common scanpaths. The model does so primarily by
employing three straightforward characteristics, motivated

400
PN —e— Observed
é 300 | =T Current Model
.g -=-A-=- Qriginal Model
g
5 200+ L
[=]
g
€ 100+ L
A
=

01— : ‘ ‘

1 2 4
Number of Groups

Figure 5. Fixation duration observed (circles), predicted by
the original model (triangles), and predicted by the
current model (squares).

Original model AAE =26.5%. Current Model AAE = 4.6 %
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by eye movement data and previous research, that can be
applied to other modeling research. These principles are: (a)
Eye movements tend to go to nearby objects, (c) fixated
objects are not always identified, and (d) eye movements
start after the fixated objects are identified. This minimal
model does a better job of accounting for the observed
visual search behavior than a previous model of the same
task that was not informed by eye movement data.
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