
Eurographics Symposium on Parallel Graphics and Visualization (2016), pp. 1–7
W. Bethel, E. Gobbetti (Editors)

The In Situ Terminology Project

Send Hank an email when you know you want to be a co-author

Abstract
The term “in situ processing" has evolved over the last decade to mean both a specific strategy for processing data
and an umbrella term for a processing paradigm. The resulting confusion makes it difficult for visualization and
analysis scientists to communicate with each other and with their stakeholders. To address this problem, a group
of approximately fifty experts convened with the goal of standardizing terminology. This paper summarizes their
findings and proposes a new terminology for describing in situ systems. An important finding from this group was
that in situ systems can be described via multiple, distinct axes: integration type, proximity, access, division of
execution, operation controls, and output type. This paper discusses these axes, evaluates existing systems within
the axes, and explores how currently used terms relate to the axes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

For decades, the dominant paradigm for visualization and
analysis has been “post hoc" processing. With post hoc pro-
cessing, simulation codes save data to permanent storage
(e.g., “spinning disk"), and visualization and analysis pro-
grams load this data after it is stored. Simulation codes typ-
ically store data iteratively, checkpointing the state of the
simulation at a given time (a “time slice"), advancing for a
while, saving their state again, and so on.

The alternate paradigm to post hoc processing is to pro-
cess data as it is generated. This paradigm, including all of
its possible instantiations, is often referred to as “in situ" pro-
cessing. That said, in situ is likely not the best term to use
to describe the paradigm. The phrase “in situ" comes from
Latin, and translates to “on site," “in position," or “in place."
When a visualization or analysis algorithm is applied to sim-
ulation data and that data is not being moved (i.e., is already
in the processor’s registers), then the term in situ is appro-
priate. But the notion of processing data as it is generated
is broader than just data in registers. If simulation data is
moved to distinct resources on the same cluster, for example
nodes dedicated for visualization and analysis on a super-
computer, then the “in situ" description seems more dubi-
ous. On the one hand, this term can be viewed as correct,
since the data is being processed “in place" as it stayed on
the same computer (or supercomputer). On the other hand,
if the data is moved to distinct resources, then is it still being
processed “in place"?

While the term “in situ" is dominant today, early research
used equally applicable terms, often in reference to specific
variants: “concurrent processing" [EGH⇤06] to refer to pro-
cessing data at the same time as the simulation is running,
“co-processing" [Hai94, HB95, HE97, FMT⇤11] to refer to
visualization routines directly coupled with simulation code,
and “runtime visualization" [Ma95, IPD⇤07] to refer to ap-
plying visualization in place. In each case, the terms used
previously were likely as suitable in describing this process-
ing paradigm as the “in situ" term, although they did not
ultimately garner the same popularity.

Despite the presence of alternate, perhaps more appropri-
ate terms, our group ultimately decided to continue using “in
situ" when describing the paradigm that processes data as it
is generated, although consensus was not achieved on this
point. In a vote, 70% of our participants supported continu-
ing to use the “in situ" term, in large part because it had too
much inertia to reverse course. In particular, it was noted that
this term has been adopted by our stakeholders and funding
agencies, and promoting an alternate term — even if more
correct — could create confusion. On the other side, 30% of
our participants voted that we should focus on a more appro-
priate term.

An important contribution of this effort is in identifying
the six axes that we feel describe in situ systems. Our axes
show that there are a diverse set of approaches behind the
paradigm devoted to processing data as it is generated. An-
other important contribution is our new proposed terminol-

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2016)



2 A lot of people / In Situ Terminology Project

ogy for in situ systems. In our terminology, an in situ system
is described by stating its options for each of our six axes.
As a further contribution, we analyze existing systems and
terms within the axes.

The paper is organized as follows:

• Section 2 defines the six axes to describe an in situ system,
as identified by our group.

• Section 3 describes how to apply our axes in the context
of complex workflows.

• Section 4 describes some notional in situ systems, and
classifies them according to our axes.

• Section 5 looks at recent in situ systems and classifies
them based on our axes.

• Finally, section 6 documents the process used for our
group to organize, discuss issues, and reach consensus.

2. Axes of In Situ Systems

Our six identified axes are:

• Integration Type
• Proximity
• Access
• Division of Execution
• Operation Controls
• Output Type

The options for each axis are shown in Figure 1.

2.1. Integration Type

Integration type refers to how the in situ visualization and
analysis routines are integrated into the simulation code.
In the majority of implementations, the simulation code
is aware of the integration and makes calls in support of
data marshalling. However, it is also possible to integrate
in situ routines without the simulation being aware. We use
this distinction — Application-Aware versus Application-
Unaware — as the top-level category describing integration
type.

We identified three distinct sub-categories of application-
aware integrations, although these subcategories may be
viewed as points along a spectrum. The first, Bespoke, refers
to the case where custom visualization and analysis rou-
tines are written specifically for a single simulation code,
and is tailored to its needs. This is also sometimes referred
to as “embedded routines." The latter two subcategories of
application-aware integrations cover configurations where
systems are integrated into the simulation code, and data is
marshalled into those frameworks via APIs. One subcate-
gory, Dedicated API, describes the case where the system
is dedicated to visualization and analysis, and so the simula-
tion code is aware that interactions with this API are for the
purpose of visualization and analysis. This is the approach
used by systems like VisIt/LibSim and ParaView/Catalyst.

The other subcategory, Multi-purpose API, describes the
case where the scope of the system is data, meaning that it
includes visualization and analysis, but that it also might in-
clude I/O or data movement between components. This is
the approach used by systems such as ADIOS. With multi-
purpose API, the simulation code may or may not be aware
whether the API is doing visualization and analysis tasks.
We still refer to this case as Application-Aware, since the
simulation code is aware of the framework’s API, and does
data marshalling to support the framework.

We identified two subcategories of application-unaware
integration types. That said, the application-unaware ap-
proach is relatively new for in situ processing, and new sub-
categories may need to be added as this approach evolves.
Interposition, the first subcategory, refers to the practice of
creating a dynamically-loaded library which contains sym-
bols known to the simulation code, and inserting this library
into the place of the original library that the simulation code
was expecting. For example, if a simulation code writes data
using the MPI-IO library, then an interposition approach
would create a new library with function names matching
those of MPI-IO, would have its implementations of those
functions perform in situ processing, and would swap the
new library in for the MPI-IO library at runtime. Inspection,
the second subcategory, refers to the practice of inspecting
memory to infer patterns in data layout and automatically
add in situ processing. Inspection-based in situ relies on sys-
tem facilities used by tools such as debuggers and profilers.

There are three main considerations motivating the five
categories of integration type. One is the effort to integrate
the in situ routines into the simulation code (referred to here
as “simulation code effort"). Another is the effort to develop
the in situ system (referred to here as “in situ system effort").
The final consideration is the reusability of the in situ system
across multiple simulation codes. These last two considera-
tions are related, as increasing reusability likely increases in
situ system effort. Bespoke approaches often require min-
imal simulation code effort (since they are tailored to the
simulation code) and in situ system effort (since the ap-
proach often requires a trivial system), but its reusability is
often highly limited. Dedicated API and Multi-purpose API
require much more simulation code effort and in situ sys-
tem effort, but often have higher reusability. The application-
unaware categories may require the highest in situ system
effort, but they require no simulation code effort (by defini-
tion), and the reusability possibilites are high.

2.2. Proximity

The Proximity axis characterizes the cost to access data. This
cost could be in time (how fast can we access data?) or in
energy (how much energy is required to access data?).

When considering proximity, it is important to consider
the path from where the data resides to where it should be

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2016)



A lot of people / In Situ Terminology Project 3

Axes Describing an In Situ System

Integration
Type

Application
Aware

Bespoke

Dedicated
API

Multi-
purpose

API

Application
Unaware

Inter-
position

Inspection

Proximity

On Node
l

Off Node,
Same

Computing
Resource

l
Distinct

Computing
Resource

Access

Direct

Shallow
Copy

Deep Copy

Indirect

Division of
Execution

Space
Division

Time
Division

Operation
Controls

Automatic

Adaptive

Non-
adaptive

Human-in-
the-loop

Blocking

Non-
blocking

Output Type

Subset

Transform

Derived

Fixed

Proportional

Figure 1: The top of this diagram has our six basic axes describing in situ systems. Underneath each of the six axes are its
corresponding categories and sub-categories.

processed. That said, there are myriad possible configura-
tions this path can take. As such, we view this axis as a con-
tinuous spectrum, not a discrete one with a fixed number of
choices. This is particularly true given innovations in archi-
tecture, as any attempt to enumerate all options would likely
become stale quickly.

We group options for proximity into three broad cate-
gories:

• On Node
• Off Node, Same Computing Resource
• Distinct Computing Resource

With On Node access, the memory hierarchy forms the
basic model. Closest access is when visualization or analy-
sis algorithms are applied to data that is in the memory data
registers, followed by options such as L1-cache, L2-cache,
L3-cache, and random-access memory. Beyond this are op-
tions such as NUMA accesses to memory on other sockets,
non-volatile memory on node, and local disks. Placement for
each of these options onto a spectrum requires understanding
of latency and bandwidth, and may vary based on architec-
ture, especially as hardware components improve over time
(e.g., NVLink).

With Off Node, Same Computing Resource, there are
fewer options: traveling one switch between nodes, two
switches, etc. Of course, within a node, there still may be
costs occurred on node, i.e., costs from pulling data from
NVRAM on a node to send it over the network to another

node, which then places it in an accelerator’s memory. In
these cases, we believe all costs incurred along the path from
where the data originally resides to location where it is pro-
cessed should be considered.

The last option, Distinct Computing Resources, strains
the usage of the term “in situ." Further, it is worth noting
that a recent Department of Energy workshop on workflows
[DP⇤15] drew the line at distinct computing resources, stat-
ing that this use case should no longer be considered as in
situ. On the other side of the argument are use cases where
data is streamed (maybe in a reduced form) from the simula-
tion’s source to scientists in remote locations, who can then
explore the data using local resources.

2.3. Access

Access refers to how the simulation makes data available
to visualization and analysis routines. The main options for
access are Direct access (where the in situ routines run in
the same logical memory space as the simulation code) and
Indirect access (where in situ routines run in a distinct log-
ical memory space from the simulation code). Sometimes
Access is conflated with Proximity, because Direct Access
often occurs with On Node Proximity and Indirect Access
often occurs with Off Node Proximity. However, these axes
can pair oppositely. For example:

• Direct Access and Off Node Proximity pair when a
simulation code exposes data via remote direct memory

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2016)



4 A lot of people / In Situ Terminology Project

access (RDMA) or a partitioned global address space
(PGAS).

• Indirect Access and On Node Proximity pair when the
simulation code and in situ routines ran as separate pro-
cesses (to minimize integration effort) and exchanged data
via files on NVRAM.

Within Direct Access, we distinguish between Deep
Copy and Shallow Copy implementations. With Deep
Copy implementations, in situ routines make a copy of their
input data from the simulation. This is often because the
routines use a fixed data structure, and this data structure
does not match the simulation code, for example because
the simulation stores data in column-major order and the in
situ routine assumes row-major order. This approach is expe-
dient for software development, but suboptimal in terms of
resources, specifically using extra memory and taking extra
time to copy data. Shallow Copy implementations, on the
other hand, adapt their data structures to those of the simula-
tion code. SCIRun [JPW00] did this by using a templated
approach and adapting to the simulation code at compile
time. EAVL [MAPS12] did this making a data representa-
tion that contained other arrays, including arrays from sim-
ulation data, and then accessing data via a layer of indirec-
tion. VTK [SML04] is taking a similar approach to EAVL,
although it handles variation in data layout via virtual func-
tions.

Both Direct Access and Indirect Access must worry
about hazards, although they manifest themselves in differ-
ent ways. In both cases, the type of hazard is a Write-After-
Read (WAR): the simulation tries to deliver a new data item,
typically a new time slice, before the in situ routine has
finished working on its current data item. Whether Direct
Access or Indirect Access, this hazard will lead to unpre-
dictable program behavior, including likely corrupting the
resulting output. Further, the unsynchronized data write may
result in a program failure for the in situ system, the sim-
ulation code, or both. Thus, in both cases, data access has
to be synchronized. For the Direct Access case, this can be
achieved using standard synchronization methods, e.g., mu-
texes. For the Indirect Access case, this can be achieved via
a communication protocol between simulation code and in
situ system. There are several options for dealing with a sim-
ulation producing data faster than the in situ system can han-
dle. These include: stalling the simulation until new data can
be taken on; buffering raw data, which will, however, drive
up memory consumption; and aborting the in situ routine
and restarting it on the new data.

2.4. Division of Execution

Division of Execution refers to how and when compute re-
sources are divided between simulation and in situ routines.
The two categories within Division of Execution are:

• Space Division. The physical resources (space) are di-
vided between simulation and in situ routines throughout

the execution (in time) of the in situ system. That is, a
subset of the compute resources is exclusively dedicated
to in situ routines.

• Time Division. Some (or all) of the compute resources
alternate between advancing the simulation and visualiza-
tion and analysis. That is, no compute resources are ex-
clusive to in situ routines.

The resources required by in situ routines are generally
less than those needed by the simulation, often by a sig-
nificant amount. Regardless, division of execution between
simulation code and in situ system is a critical issue for the
efficacy of the overall system — allocating insufficient re-
sources or insufficient duration to an in situ system can slow
down the simulation code. That said, it is sometimes difficult
to assess the necessary computational resources and duration
for an in situ system to complete its tasks, since factors such
as algorithm scalability, computational bottlenecks, and sen-
sitivities to data layouts have large impacts on performance.
Fortunately, the division need not be fixed, as the simulation
can choose to adapt resource usage with many combinations
of integration type, proximity, and access.

Each division strategy has potential benefits and pitfalls,
with manifestations varying across in situ configurations.
Space Division facilitates both the efficient execution of
the simulation as well as the appropriation of an ideal set
of resources to in situ routines. However, variations in the
scales and runtimes of the routines could lead to under-
utilized or oversubscribed subsets of resources. Managing
this synchronization as well as possibly necessary data trans-
fers may require significant additional infrastructure. Time
Division requires substantially less (or no) synchronization
and data transfer efforts. However, while in situ routines are
frequently I/O bound in many instances, optimal efficiency
is contingent upon data partitioning. For instance, the paral-
lel scaling of visualization algorithms relies on infrastructure
which can be sensitive to the size and shape of data domains,
for example ghost data generation. The domain decomposi-
tion native to a simulation is sometimes unfavorable for anal-
ysis and visualization, an issue more easily addressable with
post processing or Space Division. Inefficiencies arising in
Time Division are particularly costly as they correspond di-
rectly to periods where the simulation is needlessly unable
to progress.

2.5. Operation Controls

Operation Controls describes the mechanism for selecting
which operations are executed during run-time. We iden-
tify two major categories within operation controls — Au-
tomatic and Human-in-the-Loop — both of which have
sub-categories.

With Automatic Operation Controls, users select which
operations to perform in advance of the calculation, and
there is no human-in-the-loop during the simulation’s ex-

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2016)



A lot of people / In Situ Terminology Project 5

ecution. Within this category, we have identified two sub-
categories. With the Adaptive sub-category, the in situ rou-
tines can adapt which operations are performed as the sim-
ulation executes. As an example, a key criteria may trigger
the execution of some routines that were not executed other-
wise. With the Automatic: Non-adaptive sub-category, the
in situ routines are static.

With Human-in-the-Loop Operation Controls, stake-
holders modify which visualization and analysis routines are
executed in situ. With the Blocking sub-category, the sim-
ulation can pause when waiting for guidance from a stake-
holder. With the Non-blocking sub-category, simulation will
not pause to wait for input from a stakeholder.

2.6. Output Type

Output Type describes what operations are performed on the
simulation data before it is output (meaning either stored or
sent to another in situ sub-system). We identify three ma-
jor categories for output type: Subset, Transform, and De-
rived.

Subset refers to operations where a subset of the data is
selected, and the rest is discarded. Examples include sub-
sampling (i.e., coarse versions of the data), focusing on re-
gions of interest, or extracting portions with a certain prop-
erty, as with query-driven visualization [SSWB05] or as with
topologies queries [HLH⇤16](i.e., N largest connected com-
ponents).

Transform refers to operations that are performed on
each element of the data. Our notion of Transform does not
include reduction, meaning that we expect the data sets cre-
ated by the transformation process are the same order as the
input data. Wavelet transformations would be an example of
a transform that may be applied in situ.

Derived refers to operations that generate new data of a
different nature than the input. Within the Derived category,
we consider two sub-types: Fixed and Proportional. Prod-
ucts of Fixed operations are independent of the input size.
Examples include statistical summarizations and rendered
images (when the image size is fixed). Products of Propor-
tional operations vary based on input size. Examples include
isosurfaces, indexing, intermediate visualization representa-
tions, and topological analysis. Some operations can be used
in either Fixed or Proportional approaches. For example,
Lagrangian basis flow extraction [ACG⇤14] can output a
fixed size (and potentially miss information about the vec-
tor field) or a proportional size (and thus be more likely to
capture information about the vector field).

Finally, the value for Output Type for an in situ routine
can be more than a single entry. For example, wavelet com-
pression can be accomplished by first doing a wavelet trans-
form, and then discarding the least important coefficients.
This would be categorized as Transform | Subset, which in-
dicated that the data is transformed before being reduced by

a subset operation. Finally, some large, dedicated in situ sys-
tems offer many simultaneous output types, and may need
multiple descriptions to describe those outputs.

3. In Situ Workflows

In situ systems sometimes operate in a form where there are
multiple, distinct sub-systems, which operate in a workflow-
like fashion. That is, sub-system “A" will transform data and
transport it to sub-system “B", sub-system “B" will trans-
form data and transport it to sub-system “C", and so on. Of
course, the flow of data does not need to be sequential from
“A" to “B" to “C", but instead can flow in arbitrary ways, in-
cluding forming cycles, acting as a source for multiple sub-
systems, accepting input from multiple sources, etc. In some
cases, “A", “B", etc., are the same program, but this program
was invoked in a way that causes it to function differently.
In other cases, the sub-systems are distinct programs, but
those programs come from the same source code repository,
and are branded under the same product name. In still other
cases, the sub-systems are truly distinct pieces of software.

For our categorization, we classify each sub-system in the
workflow separately. The classification of a workflow with
(for example) three sub-systems would be a 6x3 matrix. That
said, many workflows contain sub-systems that do not re-
late to visualization and analysis; when classifying an in situ
system, we recommend only including sub-systems that do
visualization and analysis operations in a categorization.

4. Classifying Example In Situ Systems

In this section, we describe three notional systems, and clas-
sify them according to our axes. Also, note that the terms
used in the subsection headings (tightly-coupled, loosely-
coupled, hybrid in situ) can have multiple interpretations, but
we believe the examples specified fall within most accepted
definitions.

4.1. Example 1: Notional Tightly-Coupled System

The following system is classified in Table 1: A simulation
code links an in situ library into its code. When the simula-
tion code calls a function in the in situ API, it both speci-
fies the operations to perform and sends data to operate on.
The simulation code’s usage of the API is static; the simu-
lation code compiles against the API, and the same function
is called at a regular interval. When the simulation code in-
vokes the in situ function, the in situ library immediately ex-
ecutes its operations on the same hardware, first transform-
ing it to its own data model, then applying the specified op-
erations, and finally creating images that are saved to disk.
The function then returns and the simulation code resumes
execution.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2016)



6 A lot of people / In Situ Terminology Project

Integration Type Dedicated API
Proximity On Node

Access Direct: Deep Copy
Division of Execution Time Division

Operation Controls Automatic: Non-adaptive
Output Type Derived: Fixed

Table 1: Classification of the in situ system in Example 1.

4.2. Example 2: Notional Loosely-Coupled System

The following system is classified in Table 2: A simulation
code links in an API for data management. When the sim-
ulation code calls functions in the in situ API, it believes it
is doing I/O operations. However, the in situ library instead
sends data to remote nodes. These remote nodes are dedi-
cated to visualization and analysis. A user is running a visu-
alization and analysis tool on the remote nodes, interacting
with the data as it comes over the network. When a new time
slice comes over the network, the data the user was looking
at is flushed and replaced with the new data.

Integration Type Multi-purpose API
Proximity Off Node

Access Indirect
Division of Execution Space Division

Operation Controls Human-in-the-loop:
Non-blocking

Output Type Derived: Fixed

Table 2: Classification of the in situ system in Example 2.

4.3. Example 3: Notional Hybrid In Situ System

The following system is classified in Table 3: The sole pur-
pose of this system is to render isosurfaces. In this system,
the isovalues desired result in a sparse isosurface (i.e., few
triangles compared to the number of cells), so, when data
is produced, an isosurfacing routine is immediately applied.
This routine was written specifically to work on data from
this simulation code. The resulting triangles are sent over the
network to dedicated visualization nodes, using a data trans-
fer library. There, separate visualization software renders the
data. Since the location of the isosurface varies, the software
evaluates the data set and determines the best camera angles
to capture the data. It saves the resulting images to disk.

Finally, note that if the components of this system had
non-sequential flow (i.e., splitting output, cycles, etc.), then
the matrix format (6x2 in this case) would need to be adapted
to better capture the flow, likely as a graph with each node
containing a component’s six axis options.

Integration Type Bespoke Multi-pur-
pose API

Proximity On Node Off Node
Access Direct: Indirect

Shallow Copy
Division of Execution Time Space

Division Division
Operation Controls Automatic: Automatic:

Non-adaptive Adaptive
Output Type Derived: Derived:

Proportional Fixed

Table 3: Classification of the in situ system in Example 3.

5. Classifying Existing In Situ Systems

There is a lot of material in the Google Docs. I will be copy-
ing that content over in the coming days.

6. Process for In Situ Terminology Project

Two paragraphs about the process for getting here.

7. Conclusion

Paragraph 1: Summarize what we did.

Paragraph 2: Talk about the future: this should be a living
document, updated as necessary. Example: fixed memory
footprint. Not a thing now, but might be in the future. An-
other example: handling of hazards. This is a mix of looking
backwards and forwards, but there is farther forward still.

[CMY⇤12]

References
[ACG⇤14] AGRANOVSKY A., CAMP D., GARTH C., BETHEL

E. W., JOY K. I., CHILDS H.: Improved Post Hoc Flow Analy-
sis Via Lagrangian Representations. In Proceedings of the IEEE
Symposium on Large Data Visualization and Analysis (LDAV)
(Paris, France, Nov. 2014), pp. 67–75. 5

[CMY⇤12] CHILDS H., MA K.-L., YU H., WHITLOCK B.,
MEREDITH J., FAVRE J., KLASKY S., PODHORSZKI N.,
SCHWAN K., WOLF M., PARASHAR M., ZHANG F.: In
Situ Processing. In High Performance Visualization—Enabling
Extreme-Scale Scientific Insight. CRC Press/Francis–Taylor
Group, Oct. 2012, pp. 171–198. 6

[DP⇤15] DEELMAN E., PETERKA T., ET AL.: The Future of Sci-
entific Workflows. Tech. rep., Report of the DOE NFNS/CS Sci-
entific Workflows Workshop, April 2015. 3

[EGH⇤06] ELLSWORTH D., GREEN B., HENZE C., MORAN P.,
SANDSTROM T.: Concurrent visualization in a production su-
percomputing environment. IEEE Transactions on Visualization
and Computer Graphics 12, 5 (2006), 997–1004. 1

[FMT⇤11] FABIAN N., MORELAND K., THOMPSON D., BAUER
A. C., MARION P., GEVECI B., RASQUIN M., JANSEN K. E.:
The paraview coprocessing library: A scalable, general purpose

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2016)



A lot of people / In Situ Terminology Project 7

in situ visualization library. In Large Data Analysis and Visual-
ization (LDAV), 2011 IEEE Symposium on (2011), IEEE, pp. 89–
96. 1

[Hai94] HAIMES R.: pv3: A distributed system for large-scale
unsteady cfd visualization. 1

[HB95] HAIMES R., BARTH T.: Application of the pv3 co-
processing visualization environment to 3-d unstructured mesh
calculations on the ibm sp2 parallel computer. In Proc. CAS
Workshop (1995). 1

[HE97] HAIMES R., EDWARDS D. E.: Visualization in a
parallel processing environment. In Proceedings of the 35th
AIAA Aerospace Sciences Meeting, number AIAA Paper (1997),
pp. 97–0348. 1

[HLH⇤16] HEINE C., LEITTE H., HLAWITSCHKA M., IURI-
CICH F., DE FLORIANI L., SCHEUERMANN G., HAGEN H.,
GARTH C.: A survey of topology-based methods in visualiza-
tion. In Computer Graphics Forum (2016), vol. 35, Wiley Online
Library, pp. 643–667. 5

[IPD⇤07] INSLEY J. A., PAPKA M. E., DONG S., KARNI-
ADAKIS G., KARONIS N. T.: Runtime visualization of the hu-
man arterial tree. IEEE Transactions on Visualization and Com-
puter Graphics 13, 4 (2007), 810–821. 1

[JPW00] JOHNSON C., PARKER S., WEINSTEIN D.: Large-
scale computational science applications using the SCIRun
problem solving environment. In Proceedings of the 2000
ACM/IEEE conference on Supercomputing (2000). URL:
http://www.sci.utah.edu/publications/crj00/

super00_final.pdf. 4

[Ma95] MA K.-L.: Runtime Volume Visualization for Parallel
CFD. Tech. rep., DTIC Document, 1995. 1

[MAPS12] MEREDITH J. S., AHERN S., PUGMIRE D., SIS-
NEROS R.: EAVL: the extreme-scale analysis and visualization
library. In Eurographics Symposium on Parallel Graphics and
Visualization (2012), The Eurographics Association, pp. 21–30.
4

[SML04] SCHROEDER W., MARTIN K., LORENSEN B.: The Vi-
sualization Toolkit: An Object Oriented Approach to 3D Graph-
ics, fourth ed. Kitware, Inc., 2004. ISBN 1-930934-19-X. 4

[SSWB05] STOCKINGER K., SHALF J., WU K., BETHEL E. W.:
Query-driven visualization of large data sets. In IEEE Visualiza-
tion (2005), vol. 5, p. 22. 5

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2016)

http://www.sci.utah.edu/publications/crj00/super00_final.pdf
http://www.sci.utah.edu/publications/crj00/super00_final.pdf

