
Submission ID 154 / In Situ Methods, Infrastructures, and Applications 1

1. In Situ Methods

The term “in situ visualization” has evolved into an umbrella
term to cover a variety of methods for processing. Recently,
a group of approximately fifty visualization scientists con-
vened to formalize the terminology for describing different
in situ methods [ins16], also known as the “In Situ Terminol-
ogy Project.” This group currently is characterizing in situ
methods using six axes: integration type, proximity, access,
synchronization, operation controls, and output type. This
section describes these axes, drawing from ideas and discus-
sion from the participants of the In Situ Terminology Project.

1.1. Integration Type

Several different methods are used to integrate visualization
capabilities into running simulations. There are many exam-
ples of simulation developers creating and embedding their
own visualization routines as part of the simulation system.
Such implementations tend to be lightweight but unsuitable
for reuse elsewhere. For more universal reuse of in situ vi-
sualization capabilities, there exist general-purpose libraries
intended to be used by simulations to incorporate visualiza-
tion routines. These libraries allow visualization capabilities
designed by one group to be directly integrated into a simu-
lation of another group.

There are also indirect methods to integrate in situ visu-
alization with a simulation. One such approach is to use a
shared protocol to indirectly connect the two components.
Typically this happens through a middleware framework,
such as ADIOS or GLEAN, where one or both of the compo-
nents could be using the simulation data for purposes in ad-
dition to visualization. Another indirect integration method
is function interposition where functions already used in the
simulation are replaced by functions that do in situ visual-
ization processing. For example, the simulation’s function to
write data to disk can be replaced, unbeknownst to the sim-
ulation code, with an alternate function that intercepts the
data for visualization purposes.

1.2. Proximity

The proximity between visualization routines and the simu-
lation code can greatly affect performance. Enumerating all
possibilities for proximity is difficult, especially in the face
of emerging architectures and deep memory hierarchies. The
closest proximity for in situ routines is to share the same
cores as the simulation, but even this basic configuration is
complicated when considering how data is moved through
the cache. The furthest proximity for in situ would be to
send data to faraway nodes, possibly even to distinct ma-
chines (and possibly even to another continent). Points along
this spectrum include architectural features such as burst
buffers, local file systems, dedicated connections (e.g., PCI
between CPU and GPU, NVLink between GPUs), etc. Fur-
ther, it is important to note that visualization routines may

run in multiple locations. A common example would be to
run data triage routines on the same nodes as the simulation
and also to run additional visualization routines on distinct
nodes (that access data via a transport operation).

1.3. Access

An important description of an in situ system is its access
to simulation data. With direct access, the visualization rou-
tine runs in the same logical memory space as the simulation
code. In this case, the visualization routine typically gains
access to data via pointers to simulation memory. With in-
direct access, the visualization routine runs in a distinct log-
ical memory space from the simulation code. In this case,
the visualization routine typically gains access to data via a
communication mechanism that copies data from the logical
memory space of the simulation.

Access is often conflated with proximity, because direct
access occurs most often with on-node proximity, and indi-
rect access occurs most often with off-node proximity. How-
ever, the remaining options are possible, although not com-
mon. Indirect access and on-node proximity occurs when vi-
sualization routines are run on the same nodes as the simu-
lation, but using distinct memory resources (likely as a sepa-
rate program running alongside the simulation). The remain-
ing option, direct access and off-node proximity, can occur
in PGAS-type settings.

1.4. Synchronization

Synchronization is about the relationship of “when” the vi-
sualization routines and the simulation code operate with re-
spect to each other. With synchronous in situ, computing re-
sources are devoted exclusively to the visualization routine
or the simulation. In this model, the simulation and visual-
ization routines trade off control of the computing resources,
with only one executing at a time. With asynchronous in situ,
visualization routine occurs concurrently to the simulation.
In this model, the simulation and visualization routines can
execute at the same time. This sharing may occur by par-
titioning compute nodes between simulation and visualiza-
tion, by sharing resources within a node for both activities,
or by other models where the allocation of resources vary
over time.

As mentioned in the discussion of Proximity, visualiza-
tion routines may be occurring in multiples locations within
a single in situ system. In this case, each routine may have its
own synchronization. Revisiting the example from the pre-
vious section of an architecture that does data triage in close
proximity and visualization routines from distant proximity,
it would be common for the former to run synchronously
(i.e., the simulation passes execution control to the triage
routine, which passes execution control back to the simu-
lation when finished) and the latter to run asynchronously

submitted to Eurographics Conference on Visualization (EuroVis) (2016)



2 Submission ID 154 / In Situ Methods, Infrastructures, and Applications

(i.e., execute on data extracts after they arrive from the triage
step).

1.5. Operation Controls

Operation Controls describe whether the end user can mod-
ify which visualization operations can be performed during
execution. One type of operation controls allows the end
user to modify the visualization operations being performed
while the simulation is executing. This is often referred to
as “interactive" usage. Interactive controls often have fur-
ther distinctions regarding whether the simulation data can
be modified (i.e., “steering") or not. Another type of opera-
tion controls requires that the set of visualization operations
to be performed be fixed before the simulation begins, i.e.,
they cannot be changed by the user during execution. This is
often referred to as “batch" usage.

1.6. Output Type

Output type describes what the in situ visualization routines
generate. While the output of the execution does not affect
the design of the system per se, many participants of the In
Situ Terminology Project felt that it was an important de-
scriptor of the system.

Explorable outputs are outputs that are useful for post hoc
exploration, while non-explorable outputs are outputs from
visualization routines that are not useful for post hoc ex-
ploration. These two options are best seen as extremes of
a spectrum. If the output of the simulation is static images,
for example renderings of isosurfaces, then that would typ-
ically be described as non-explorable. That said, animating
these images over time may enable post hoc exploration, so
even this simple example is fuzzy. Further, the Cinema sys-
tem [AJO∗14], which extracts images in situ for multiple vi-
sualizations, viewpoints, and time slices, and then enables
post hoc exploration by providing an environment where
users can explore data in a traditional manner (for example
by animating images from different viewpoints to fly around
a data set), is an example of an approach which produces im-
ages and yet is clearly explorable. Other important examples
of explorable extracts are those that compress fields, for ex-
ample using wavelets, and those that extract key portions or
aspects of the data (for example subsetting or topology).

submitted to Eurographics Conference on Visualization (EuroVis) (2016)


