
Abstract: 
The term “in situ processing" has evolved over the last decade to mean both a specific strategy 
for processing data and an umbrella term for a processing paradigm. The resulting confusion 
makes it difficult for visualization and analysis scientists to communicate with each other and 
with their stakeholders. To address this problem, a group of approximately fifty experts 
convened with the goal of standardizing terminology. This paper summarizes their findings and 
proposes a new terminology for describing in situ systems. An important finding from this group 
was that in situ systems can be described via multiple, distinct axes: integration type, proximity, 
access, division of execution, operation controls, and output type. This paper discusses these 
axes, evaluates existing systems within the axes, and explores how currently used terms relate 
to the axes. 
 
1. Introduction: 
For decades, the dominant paradigm for visualization and analysis has been “post hoc" 
processing. With post hoc processing, simulation codes save data to permanent storage (e.g., 
“spinning disk"), and visualization and analysis programs load this data after it is stored. 
Simulation codes typically store data iteratively, checkpointing the state of the simulation at a 
given time (a “time slice"), advancing for a while, saving their state again, and so on. 
 
The alternate paradigm to post hoc processing is to process data as it is generated. This 
paradigm, including all of its possible instantiations, is often referred to as “in situ" processing. 
That said, in situ is likely not the best term to use to describe the paradigm. The phrase “in situ" 
comes from Latin, and translates to “on site," “in position," or “in place." When a visualization or 
analysis algorithm is applied to simulation data and that data is not being moved (i.e., is already 
in the processor’s registers), then the term in situ is appropriate. But the notion of processing 
data as it is generated is broader than just data in registers. If simulation data is moved to 
distinct resources on the same cluster, for example nodes dedicated for visualization and 
analysis on a supercomputer, then the “in situ" description seems more dubious. On the one 
hand, this term can be viewed as correct, since the data is being processed “in place" as it 
stayed on the same computer (or supercomputer). On the other hand, if the data is moved to 
distinct resources, then is it still being processed “in place"? 
 
ISSUE #1: NEEDED: Survey of previous terms, including concurrent, co-processing, and 
runtime 
 
Despite the presence of alternate, perhaps more appropriate terms, our group ultimately 
decided to continue using “in situ" when describing the paradigm that processes data as it is 
generated, although consensus was not achieved on this point. In a vote, 70% of our 
participants supported continuing to use the “in situ" term, in large part because it had too much 
inertia to reverse course. In particular, it was noted that this term has been adopted by our 
stakeholders and funding agencies, and promoting an alternate term — even if more correct — 
could create confusion. On the other side, 30% of our participants voted that we should focus on 
a more appropriate term, like concurrent processing. 



An important contribution of this effort is in identifying the six axes that we feel describe in situ 
systems. Our axes show that there are a diverse set of approaches behind the paradigm 
devoted to processing data as it is generated. Another important contribution is our new 
proposed terminology for in situ systems. In our terminology, an in situ system is described by 
stating its options for each of our six axes. As a further contribution, we analyze existing 
systems and terms within the axes. 
 
This paper is organized as follows: 
…. 
 
2. Axes 
 
Our six identified axes are: 
• Integration Type  
• Proximity  
• Access  
• Division of Execution  
• Operation Controls 
• Output Type  
 

The options for each axis are shown in Figure 1. 
 
 
2.1 Integration Type 



 
Integration type refers to how the in situ visualization and analysis routines are integrated into 
the simulation code. In the majority of implementations, the simulation code is aware of the 
integration and makes calls in support of data marshalling. However, it is also possible to 
integrate in situ routines without the simulation being aware. We use this distinction — 
Application-Aware versus Application-Unaware — as the top-level category describing 
integration type. 
 
We identified three distinct sub-categories of application-aware integrations, although these 
sub-categories may be viewed as points along a spectrum. The first, Bespoke, refers to the 
case where custom visualization and analysis routines are written specifically for a single 
simulation code, and is tailored to its needs. This is also sometimes referred to as “embedded 
routines." The latter two sub-categories of application-aware integrations cover configurations 
where systems are integrated into the simulation code, and data is marshalled into those 
frameworks via APIs. One sub-category, Dedicated API, describes the case where the 
framework is dedicated to visualization and analysis, and so the simulation code is aware that 
interactions with this API are for the purpose of visualization and analysis. This is the approach 
used by systems like VisIt/LibSim and ParaView/Catalyst.  The other sub-category, Multi-
purpose API, describes the case where the scope of the framework is data, meaning that it 
includes visualization and analysis, but that it also might include I/O or data movement between 
components.  This is the approach used by systems like ADIOS. With multi-purpose API, the 
simulation code may or may not be aware whether the API is doing visualization and analysis 
tasks. We still refer to this case as Application-Aware, since the simulation code is aware of the 
framework’s API, and does data marshalling to support the framework. 
 
We identified two sub-categories of application-unaware integration types. That said, the 
application-unaware approach is relatively new for in situ processing, and new sub-categories 
may need to be added as this approach evolves. Interposition, the first sub-category, refers to 
the practice of creating a dynamically-loaded library which contains symbols known to the 
simulation code, and inserting this library into the place of the original library that the simulation 
code was expecting. For example, if a simulation code writes data using the MPI-IO library, then 
an interposition approach would create a new library with function names matching those of 
MPI-IO, would have its implementations of those functions perform in situ processing, and 
would swap the new library in for the MPI-IO library at runtime. Inspection, the second sub-
category, refers to the practice of inspecting memory to infer patterns in data layout and 
automatically add in situ processing. Inspection-based in situ relies on system facilities used by 
tools such as debuggers and profilers. 
 
There are three main considerations motivating the five categories of integration type. One is 
the effort to integrate the in situ routines into the simulation code (referred to here as “simulation 
code effort"). Another is the effort to develop the in situ system (referred to here as “in situ 
system effort"). The final consideration is the reusability of the in situ system across multiple 
simulation codes.  These last two considerations are related, as increasing reusability likely 
increases in situ system effort. Bespoke approaches often require minimal simulation code effort 



(since they are tailored to the simulation code) and in situ system effort (since the approach 
often requires a trivial system), but its reusability is often highly limited. Dedicated API and Multi- 
purpose API require much more simulation code effort and in situ system effort, but often have 
higher reusability. The application-unaware categories may require the highest in situ system 
effort, but they require no simulation code effort (by definition), and the reusability possibilities 
are high. 
 
2.2 Proximity 
 
The Proximity axis characterizes the cost to access data. This cost could be in time (how fast 
can we access data?) or in energy (how much energy is required to access data?). 
ISSUE #2: do we want to distinguish between one retrieval (indirect access) vs many (direct 
access)? 
 
When considering proximity, it is important to consider the path from where the data resides to 
where it should be processed. That said, there are myriad possible configurations this path can 
take. As such, we view this axis as a continuous spectrum, not a discrete one with a fixed 
number of choices. This is particularly true given innovations in architecture, as any attempt to 
enumerate all options would likely become stale quickly. 
 
We group options for proximity into three broad categories: 
• On Node  
• Off Node, Same Computing Resource  
• Distinct Computing Resource 
 
With On Node access, the memory hierarchy forms the basic model. Closest access is when 
visualization or analysis algorithms are applied to data that is in the registers, followed by 
options such as L1-cache, L2- cache, L3-cache, and random-access memory. Beyond this are 
options such as NUMA accesses to memory on other sockets, non-volatile memory on node, 
and local disks. Placement for each of these options onto a spectrum requires understanding of 
latency and bandwidth, and may vary based on architecture, especially as hardware 
components improve over time (e.g., NVLink). 
 
With Off Node, Same Computing Resource, there are fewer options: traveling one switch 
between nodes, two switches, etc. Of course, within a node, there still may be costs incurred on 
node, i.e., costs from pulling data from NVRAM on a node to send it over the network to another 
node, which then places it in an accelerator’s memory. In these cases, we believe all costs 
incurred along the path from where the data originally resides to location where it is processed 
should be considered. 
 
The last option, Distinct Computing Resources, strains the usage of the term “in situ." 
Further, it is worth noting that a recent Department of Energy workshop on workflows(reference) 
drew the line at distinct computing resources, stating that this use case should no longer be 
considered as in situ. On the other side of the argument are use cases where data is streamed 



(maybe in a reduced form) from the simulation’s source to scientists in remote locations, who 
can then explore the data using local resources. 
 
2.3 Access 
 
Access refers to how the simulation makes data available to visualization and analysis routines. 
The main options for access are Direct access (where the in situ routines run in the same 
logical memory space as the simulation code) and Indirect access (where in situ routines run in 
a distinct logical memory space from the simulation code). Sometimes Access is conflated with 
Proximity, because direct access often occurs with on node proximity and indirect access often 
occurs with off node proximity. However, these axes can pair oppositely. For example: 
• Direct access and off node proximity pair when a simulation code exposes data via remote 
direct memory access (RDMA) or a partitioned global address space (PGAS). 
• Indirect access and on node proximity pair when the simulation code and in situ routines ran 
as separate processes (to minimize integration effort) and exchanged data via files on NVRAM. 
 
Within direct access, we distinguish between Deep Copy and Shallow Copy implementations. 
With deep-copy implementations, in situ routines make a copy of their input data from the 
simulation. This is often because the routines use a fixed data structure, and this data structure 
does not match the simulation code, for example because the simulation stores data in column-
major order and the in situ routine assumes row-major order. This approach is expedient for 
software development, but suboptimal in terms of resources, specifically using extra memory 
and taking extra time to copy data. Shallow-copy implementations, on the other hand, adapt 
their data structures to those of the simulation code. SCIRun [JPW00] did this by using a 
templated approach and adapting to the simulation code at compile time. EAVL [MAPS12] did 
this by making a data representation that contained other arrays, including arrays from 
simulation data, and then accessing data via a layer of indirection. VTK [SML96]is there a better 
citation?? is taking a similar approach to EAVL, although it handles variation in data layout via 
virtual functions. 
 
ISSUE #3: HAZARDS vs CONCURRENCY HAZARDS 
Both direct and indirect access must worry about hazards, although they manifest themselves in 
different ways. In both cases, the type of hazard is a Write-After-Read (WAR), in this case 
meaning that the simulation tries to deliver data for a new time slice before the in situ routine 
has finished working on the current time slice. In the direct access case, the hazard would 
manifest as the in situ routine working on data that could be removed or overwritten midway 
through execution. The result of such a hazard is difficult to predict, but would range from a 
memory error to incorrect results. In the indirect access case, the hazard can be handled during 
the data exchange. Options would include making the simulation code stall until the in situ 
routine finishes, or aborting the in situ routine and accepting the new data.  
 
ISSUES #4 and 5: 
Asymmetric discussion: For direct access we discuss what goes awry, for the indirect option, we 
name how to solve it. Maybe we should discuss both aspects for both options. 



"Options" ->This seems to be an accommodation to the long gone synchronicity axis. It seems a 
bit out of place compared to the other sections that methodically traverse the specific branch. Is 
there classification to be teased out based how a system deals with this issue? These two 
solutions are presented pretty negatively (stall, abort). Is there a reasonable technique or two? 
 
 
2.4 Division of Execution 
 
Division of Execution refers to how compute resources are divided between simulation and in 
situ routines. The two main options are: 
• Space Division. A subset of the compute resources are devoted exclusively to in situ routines. 
• Time Division. No compute resources are devoted exclusively to in situ routines. Some (or all) 
of the compute resources alternate between advancing the simulation and visualization and 
analysis. 
 
Time division: talk about baton passing, and goldrush (opportunistic) 
 
ISSUE #6: Need more here. Maybe Tom Peterka can help? 
 
 
2.5 Operation Controls 
 
Operation Controls describes the mechanism for selecting which operations are executed 
during run-time. We identify two major categories within operation controls — Automatic and 
Human-in-the-Loop — both of which have sub-categories. 
 
With Automatic Operation Controls, users select which operations to perform in advance of the 
calculation, and there is no human-in-the-loop during the simulation’s execution. Within this 
category, we have identified two sub-categories. With the Adaptive sub-category, the in situ 
routines can adapt which operations are performed as the simulation executes. As an example, 
some key criteria may trigger the execution of some routines that were not executed otherwise. 
With the Non-adaptive sub-category, the in situ routines are static. 
 
With Human-in-the-Loop Operation Controls, stakeholders modify which visualization and 
analysis routines are executed in situ. With the Blocking sub-category, the simulation can 
pause when waiting for guidance from a stakeholder. With the Non-blocking sub-category, the 
simulation will continue to advance. 
 
Note: the first time our group discussed this axis, we came up with the categorization above. 
The second time we discussed this axis, new concerns were raised about user controls that 
specify the resources the operations should execute on. That is, while the describe above 
focuses on which operations are applied, there is a missing discus- sion of where they are 
applied ... at least with respect to the user potentially having control over them. This missing 
perspective still needs to be incorporated in this document in some way, possibly as a new 



access. Finally, I note that the phrases "logical operation controls" and "physical operation 
controls" were used to capture the difference between what is in the current text (logical) and 
the missing perspective (physical). 
 
ISSUE #7: REMOVE THE ABOVE OR NOT? 
 
ISSUE #8: discuss computational steering? 
 
ISSUE #9: examples? 
 
2.6 Output Type 
 
Output Type describes what operations are performed to the simulation data before it is output 
(meaning either stored or sent to another in situ sub-system).  We identify three major 
categories for output type: Subset, Transform, and Derived. 
 
ISSUE #10: Subset->Filter? 
 
Subset refers to operations where a subset of the data is selected, and the rest is discarded.  
Examples include subsampling (i.e., coarse versions of the data), focusing on regions of 
interest, or extracting portions with a certain property, as with query-driven visualization or as 
with topologies queries (i.e., N largest connected components). 
 
Transform refers to operations that are performed on each element of the data.  Our notion of 
transform does not include reduction, meaning that we expect the data sets created by the 
transformation process are the same order as the input data.  Wavelet transformations would be 
an example of a transform that may be applied in situ. 
 
Derived refers to operations that generate new data of a different nature than the input.  Within 
the Derived category, we consider two sub-types: Fixed and Proportional.  Products of Fixed 
operations are independent of the input size.  Examples include statistical summarizations and 
render to images (when the image size is fixed).  Products of Proportional operations vary 
based on input size.  Examples include isosurfaces, indexing, intermediate visualization 
representations, and topological analysis.  Some operations can be used in either Fixed or 
Proportional approaches.  For example, Lagrangian basis flow extraction can output a fixed size 
(and potentially miss information about the vector field) or a proportional size (and thus be more 
likely to capture information about the vector field). 
 
ISSUE #11: Topological queries in subset, topological analysis in filters 
 
Finally, the value for Output Type for an in situ routine can be more than a single entry.  For 
example, wavelet compression can be accomplished by first doing a wavelet transform, and 
then discarding the least important coefficients.  This would be categorized as Transform | 
Subset, which indicated that the data is transformed before being reduced by a subset 



operation. Finally, some large, dedicated in situ systems offer many simultaneous output types, 
and may need multiple descriptions to describe those outputs. 
 
3. In Situ Workflows  
 
In situ systems sometimes operate in a form where there are multiple, distinct sub-systems, 
which operate in a workflow-like fashion. That is, sub-system “A" will transform data and 
transport it to sub-system “B", sub-system “B" will transform data and transport it to sub-system 
“C", and so on. Of course, the flow of data may not need to be sequential from “A" to “B" to “C", 
but instead can flow in arbitrary ways, including forming cycles, acting as a source for multiple 
sub-systems, accepting input from multiple sources, etc. In some cases, “A", “B", etc., are the 
same program, but this program was invoked in a way that causes them to function differently. 
In other cases, the sub-systems are distinct programs, but those programs come from the same 
source code repository, and are branded under the same product name. In still other cases, the 
sub-systems are truly distinct pieces of software. 
 
For our categorization, we classify each sub-system in the workflow separately. The 
classification of a workflow with (for example) three sub-systems would be a 6x3 matrix. That 
said, many workflows contain sub-systems that do not relate to visualization and analysis; when 
classifying an in situ system, we recommend only including sub-systems that do visualization 
and analysis operations in a categorization. 
 
ISSUE #12: comment from Michel Rasquin that this should be extended to deal with more 
complex, graph-like topologies (instead of pipelines with one input and one output) 
 
4. Classifying Example In Situ Systems  
 
In this section, we describe three example systems, and classify them according to our axes. 
Also, note that the terms used in the subsection headings (tightly-coupled, loosely-coupled, 
hybrid in situ) can have multiple interpretations, but we believe the examples specified fall within 
most accepted definitions. 
 
4.1. Example 1: Tightly-Coupled 
 
The following system is classified in Table 1: A simulation code links an in situ library into their 
code. When the simulation code calls a function in the in situ API, it both specifies the 
operations to perform and sends data to operate on. The simulation code’s usage of the API is 
static; it is compiled in and the same function is called at a regular interval. When the simulation 
code invokes the in situ function, the in situ library immediately executes its operations on the 
same hardware, first transforming it to its own data model, then applying the specified 
operations, and finally creating images that are saved to disk. The function then returns and the 
simulation code resumes execution. 
 
 



 
 
 

Integration Type Dedicated API 

Proximity On Node 

Access Direct: Deep Copy 

Division of Execution Time Division 

Operation Controls Automatic: Non-adaptive 

Output Type Derived 

 
Table 1: Classification of the in situ system in Example 1. 
 
ISSUE #13: group suggestion is that this example be streamlined to its essence, and non-
essential axes be removed 
 
4.2. Example 2: Loosely-Coupled 
 
The following system is classified in Table 2: A simulation code links in an API for data 
management. When the simulation code calls functions in the in situ API, it believes it is doing 
I/O operations. However, the in situ library instead sends data to remote nodes. These remote 
nodes are dedicated to visualization and analysis. A user is running a visualization and analysis 
tool on the remote nodes, interacting with the data as it comes over the network. When a new 
time slice comes over the network, the data the user was looking at is flushed and replaced with 
the new data. 
 

Integration Type Multi-purpose API 

Proximity Off Node 

Access Indirect 

Division of Execution Space Division 

Operation Controls Human in the loop: Non-blocking 

Output Type Subset 

 
 
Table 2: Classification of the in situ system in Example 2. 
 
 
 



4.3. Example 3: Hybrid In Situ 
The following system is classified in Table 3: The sole purpose of this system is to render 
isosurfaces. In this system, the isovalues desired result in a sparse isosurface (i.e., few triangles 
compared to the number of cells), so, when data is produced, an isosurfacing routine is 
immediately applied on the same node. This routine was written specifically to work on data 
from this simulation code. The resulting triangles are sent over the network to dedicated 
visualization nodes, using a data transfer library. There, separate visualization software renders 
the data. Since the location of the isosurface varies, the software evaluates the data set and 
determines the best camera angles to capture the data. It saves the resulting images to disk. 
 
 

Integration Type Bespoke Multi-purpose API 

Proximity On Node Off Node 

Access Direct: Shallow Copy Indirect 

Division of Execution Time Division Space Division 

Operation Controls Automatic: Non-adaptive Automatic: Adaptive 

Output Type Derived: Proportional Derived: Fixed 

 
Table 3: Classification of the in situ system in Example 3. 
 
5. Classifying Existing In Situ Systems 

  
ISSUE #14: need more examples 
 
For now, let’s just add a giant table.  Please add a paragraph, table entry, and reference at the 
end for whatever system you add. 
 
Here’s a paragraph for VisIt: 
VisIt provides in situ capabilities via its LibSim [#1] library.  This library has a dedicated API 
which simulation codes use to pass data and hand off control.  The data from the simulation 
code is often deep-copied, but the simulation’s arrays are shallow-copied when their format 
agrees with VisIt’s data model (e.g., row-major vs column major). LibSim executes algorithms 
using the same resources as the simulation code, and execution alternates between simulation 
code and in situ routines.  There are two modes for directing the visualization operations to 
perform.  With the first mode, Python scripts are set up ahead of time and employed at regular 
intervals.  With the second mode, end users can connect to the in situ library via VisIt’s GUI and 
adaptively direct which routines to apply.  Outputs include anything that VisIt can generate.  For 
the most part, this involves saving images, but it is possible to save out subsets of data. 
 



ParaView [#4] provides in situ analysis and visualization with the Catalyst [#5, #8] library.  
Similar to LibSim, it uses a dedicated API for driving the in situ operations. It relies on the 
adapter design pattern, customized for each simulation code interfacing with Catalyst, to 
construct objects in the VTK data model from direct access to the simulation code’s data 
structures.  In the adapter, the grids are typically deep copied while for arrays the preferred 
access is through shallow copying. Shallow copying of arrays can be done for both array-of-
structures and structure-of-arrays memory layouts. Automatic operation controls can be done 
through either C++ routines or Python routines. Logic can be added to these to support adaptive 
automatic operation controls. For Human-in-the-Loop operation controls, the analyst connects 
the ParaView GUI to a running simulation and provides both blocking and non-blocking 
functionality. 
QIso [#6] is a library that is dedicated to generating and rendering isosurfaces in MPI-based 
simulations.  It uses marching cubes on structured grids obtained directly from the simulation’s 
arrays, renders to an OpenGL off-screen Mesa (OSMesa) buffer, and parallel-composites the 
result via MPI to a single image. 
 

Name Ref Integratio
n Type 

Proximity Access Division 
Execution 

Operation 
Controls 

Output 
Type 

VisIt #1 Dedicate
d API 

On Node Direct: 
Shallow 
Copy 
(when 
possible), 
Deep 
Copy 
(when 
not) 
 

Time 
Division 

Automati
c: Non-
adaptive 
or 
Human-
in-the-
loop: 
Non-
blocking 

Mostly 
Derived: 
Fixed 

Catalyst #4, #5, 
#8 

Dedicate
d API 

On Node Direct: 
Shallow 
Copy 
(when 
possible), 
Deep 
Copy 
(when 
not) 

Time 
Division 

Automati
c: 
Adaptive, 
or 
Human-
in-the-
loop: 
Non-
block or 
blocking 

Subset, 
Derived: 
Fixed, 
Derived: 
Proportio
nal 

QIso #6 Bespoke On Node Direct: 
Shallow 
Copy 

Time 
Division 

Automati
c: Non-
adaptive 

Derived: 
Proportio
nal 

Damaris #7, #8 Dedicate
d API 

On Node 
or 
dedicated 

Direct 
(Shallow 
copy or 

Time 
Division 
or Space 

Automati
c (non-
adaptive), 

Backend-
depende
nt 



nodes deep 
copy) or 
Indirect 

Division or 
Human-
in-the-
loop 
(non-
blocking 
or 
blocking) 

 
 
Please add citations to systems you are familiar with!! 
 
6. Process for In Situ Terminology Project 
  
Maybe a paragraph of two about the process for getting here. 
 
ISSUE #15: need text 
 
7. Conclusion 

 
ISSUE #16: need text 
  
Paragraph 1: Summarize what we did. 
 
Paragraph 2: Talk about the future: this should be a living document, updated as necessary. 
Example: fixed memory footprint. Not a thing now, but might be in the future. Another example: 
handling of hazards. This is a mix of looking backwards and forwards, but there is farther 
forward still. 
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