
CIS	330:	Project	#3F	
Assigned:	May	20th,	2018	
Due	May	27th,	2018	
(which	means	submitted	by	6am	on	May	28th,	2018)	
Worth	3%	of	your	grade	
	
Please	read	this	entire	prompt!	
	
Assignment:		
	
Add	logging	and	exception	handling	to	your	code.	
	
Please	note:	a	new	main3F.C	and	a	new	Makefile	are	on	the	class	page.		I	also	added	
a	header	file	called	“logger.h”	that	has	the	base	class	for	logging	and	exceptions.	
	
==	Logging	==	
	
Add	logging	to	your	code.		This	means	that	your	program	will	generate	a	log	file,	and	
generate	log	events	as	it	executes.		The	log	events	will	detail	your	program	
execution.		The	output	of	my	log	file	is	posted	online.		Your	file	does	not	need	to	
match	mine	exactly,	but	the	exceptions	should	match	up.		(It	might	be	a	good	idea	to	
match	exactly,	for	what	it	is	worth,	since	it	helps	you	find	subtle	errors.)	
	
There	are	two	parts	to	logging:	

(1) adding	infrastructure	for	logging	
(2) making	your	data	flow	code	use	that	infrastructure	

	
==	adding	infrastructure	for	logging	==	
	
Check	out	the	class	Logger	in	the	file	logging.h.		You	need	to	add	methods	associated	
with	that	class.	
	
==	making	your	data	flow	code	use	that	infrastructure	==	
You	will	log	an	event	by	calling	“Logger::LogEvent(msg);”	with	a	“char	*”	named	
“msg”.	
	
For	example,	my	routine:	
void	
Source::Update()	
{	
				Execute();	
}	
	
became:	
	
void	



Source::Update()	
{	
				char	msg[128];	
				sprintf(msg,	"%s:	about	to	execute",	SourceName());	
				Logger::LogEvent(msg);	
				Execute();	
				sprintf(msg,	"%s:	done	executing",	SourceName());	
				Logger::LogEvent(msg);	
}	
	
You	can	see	exactly	where	I	put	my	logging	code	in	the	file	“logger”.	
	
==	Exception	handling	==	
	
There	are	two	parts	to	the	exception	handling:	

(1) adding	infrastructure	for	exception	handling	
(2) making	your	data	flow	code	use	that	infrastructure	

	
==	adding	infrastructure	for	exception	handling	==	
	
There	is	really	only	one	thing	to	do	here:	add	a	constructor.	
	
You	will	need	to	implement	a	constructor	for	DataFlowException	that	stores	the	
exception	in	the	“msg”	data	member.	
	
If	the	constructor	gets	type	=	“Shrinker”	and	error	=	“bad	sizes”,	then	it	should	make	
msg	be	equal	to:	“(Shrinker):	bad	sizes”.		For	what	it	is	worth,	my	constructor	also	
logs	an	event.	
	
==	making	your	data	flow	code	use	that	infrastructure	==	
	
There	are	many	spots	where	you	can	add	exception	handling	in	your	data	flow	code.		
My	driver	program	only	tests	three	of	them.	
	
Here	is	my	code	that	checks	for	and	throws	exceptions	
	
				if	(input->GetWidth()	!=	input2->GetWidth())	
				{	
								char	msg[1024];	
								sprintf(msg,	"%s:	widths	must	match:	%d,	%d",	SinkName(),	input->GetWidth(),	
input2->GetWidth());	
								DataFlowException	e(SinkName(),	msg);	
								throw	e;	
				}	
	



IMPORTANT:	the	final	“stress	test”	project	at	the	end	of	the	term	can	include	
programs	that	should	cause	exceptions.		So	adding	as	many	error	checks	as	possible	
now	is	good.	
	
	
Hint:	it	is	convenient	to	add	the	following	pure	virtual	functions:	
	
const	char	*Source::SourceName()	=	0;		
const	char	*Sink::SinkName()	=	0;	
const	char	*Filter::FilterName()	=	0;	
	
	
they	make	coding	faster	in	several	spots.		(Note	my	code	above	uses	SinkName)	
	
(also,	define:	
	
const	char	*Filter::SourceName()	{	return	FilterName();	};	
const	char	*Filter::SinkName()	{	return	FilterName();	};	
	
)	
	
==	“Turnin”	==	
	
Brent	and	I	will	not	be	grading	3F	and	3G	in	the	normal	way.	Instead,	they	will	be	
graded	as	we	grade	3H.		It	is	not	possible	to	do	3H	without	3F	and	3G.		So	if	your	3F	
and	3G	contributions	work	sufficiently	well	for	your	3H	to	work,	then	you	will	get	
full	credit	for	3F	and	3G.	
		
This	means:	
-	there	is	no	grader.sh	for	3F	or	3G	
-	you	do	not	need	to	upload	anything	
-	nothing	will	be	"late"	for	these	projects	
-	the	grades	will	be	assigned	for	these	projects	when	your	3H	grade	is	assigned	
	


