
CIS	330:	Project	#3E	
Assigned:	May	16th,	2018	
Due	May	23rd,	2018	
(which	means	submitted	by	6am	on	May	24th,	2018)	
Worth	3%	of	your	grade	
	
Please	read	this	entire	prompt!	
	
Assignment:		
	
Make	your	data	flow	network	design	do	demand-driven	execution.	
	
Turnin:	a	tarball	of	your	source	code,	plus	a	Makefile	
	
Please	note:	a	new	main3E.C	and	a	new	Makefile	are	on	the	class	page.			
	
==	Background	==	
	
In	3C	,	the	main	function	in	main3C.C	called	Execute	for	every	filter	in	the	pipeline,	
as	well	as	the	reader.		Data	flow	networks	typically	use	demand-driven	execution.		
This	means	that	a	program	requests	that	one	object	(i.e.,	Image)	be	up-to-date.			The	
object	is	typically	at	the	bottom	of	the	pipeline.		For	that	object	to	be	up-to-date,	it	
needs	for	the	Source	that	generates	it	to	Execute.		If	the	Source	that	generates	it	is	a	
filter,	then	the	filter	can't	execute	until	its	inputs	are	up-to-date.		So	the	filter	would	
prompt	its	inputs	to	get	up-to-date.		In	this	way,	the	request	to	get	up-to-date	
propagates	all	the	way	up	the	pipeline.		When	it	gets	to	a	file	reader,	the	data	is	read.		
Then	the	filters	can	execute,	confident	that	their	inputs	are	up-to-date.	
	
Saying	it	another	way,	you	can	imagine	an	"update"	request	flowing	from	the	bottom	
of	the	pipeline.		As	the	input	to	each	filter	establishes	it	is	up-to-date,	the	filter	can	
execute.		This	effectively	makes	data	"flow"	down	the	pipeline.		And	it	does	it	all	
from	a	single	Update	call	(which	in	turn	spawns	many	more	Update	calls	and	many	
Execute	calls).	
	
==	Changes	to	your	program	for	data	flow	==	
	

(1) make	the	Execute	method	in	Source	be	protected	
(2) Add	an	“Update”	method	to	the	Image	class.	

a. Hint:	you	will	need	a	virtual	method	named	Update	for	Source	as	well.	
	
	
There	are	other	changes	that	you	will	need	to	make	that	are	not	described	in	this	
document.		But	do	not	modify	main3E.C	in	your	final	submission…	you	need	to	
modify	your	data	flow	infrastructure	to	execute	successfully	from	the	single	Update.	
	
	

==	Other	change	==	
	
Make	the	Image	data	member	of	your	Source	(the	“output”)	be	protected	if	it	is	not	
already.		Also	make	the	Image	*	data	members	of	your	Sink	class	(the	“inputs”)	be	
protected	if	they	are	not	already.		You	may	still	allow	access	to	these	data	members	
via	methods	(i.e.,	“Image	*GetOutput(void)	{	return	&output;	};”	as	a	public	method)		
	
Also,	make	sure	all	files	follow	the	traditional	file	structure:	

- Headers	contain	class	definition	only	
- Methods	in	.C	
- Exceptions	for	“inlines”	OK	if	the	function	is	one	line	of	code	(normally	

getters	and	setters)	

