
CIS	330:	Project	#3C	
Assigned:	May	9th,	2018	
Due	May	16th,	2018	
(which	means	submitted	by	6am	on	May	16th,	2018)	
Worth	7%	of	your	grade	
	
Please	read	this	entire	prompt!	
	
	
Assignment:				Change	your	3B	project	to	be	object-oriented.	
	
==	New	code	available	on	the	website	==						
	
===	main3C.C		===						
	
Start	with	my	main3C.C.				It	shows	what	the	interfaces	should	be	for	the	
modules.				Do	not	modify	my	main3C.C,	aside	from	adding	“#includes”	and	print	
statements	(if	you	want).						
	
===	Makefile		===					
	
	I	added	another	Makefile.				Note	that	I	put	my	Filter	class	and	all	of	its	derived	types	
in	a	file	called	“filter.C”	/	“filter.h”.				I	didn’t	think	it	was	worth	splitting	them	into	
separate	files.						
	
==	Code	you	should	be	re-using		==					
	
	===	Image		===						
	
Re-use	your	Image	class	from	3B.		Note	that	I	found	it	necessary	to	add	a	“ResetSize”	
method	that	changes	the	size	of	the	Image	after	it	is	already	constructed.		(The	
filters	construct	the	Image	output	before	they	know	the	size	it	should	be	...	so	I	
couldn’t	use	the	parameterized	constructor	variant	to	set	the	Image	size).	
	
Changes	to	Image:		

- Add	public/private	
- Data	members	must	be	private	
- You	will	need	getters	and	setters	to	modify	the	data	members.	

	
===	Functions,	Reader,	Writer	==				
	
All	of	this	code	will	be	re-purposed	into	the	objects	you	create	
	
	
	
	



	
==	New	objects	==				
	
You	should	create	the	following	inheritance	hierarchy:	
	

			 	
Source:			
This	object	should	have	a	data	member	that	is	an	Image.			
It	should	have	a	pure	virtual	function	called	Execute.	
It	should	have	a	method	called	GetOutput	that	returns	a	pointer	to	its	Image	data	
member.				
	
Sink:			
This	object	should	contain	two	Image	pointers.		(It	needs	two,	since	some	filters	take	
two	inputs.)		The	Image	pointers	can	be	set	with	SetInput	and	SetInput2.		This	object	
should	not	make	copies	of	its	Image	inputs	...	it	should	simply	point	at	Images	that	
come	from	Sources.	
	
PNMreader:			
This	object	needs	to	read	the	file	with	its	Execute.		Since	Execute	takes	no	
arguments,	the	object	needs	to	know	about	the	filename	ahead	of	time.		So	it	is	
passed	in	via	the	constructor.		The	constructor	will	need	to	allocate	memory	for	a	
string	and	copy	over	the	string.		This	means	it	should	also	have	a	destructor,	which	
frees	the	memory.		Although	this	seems	like	an	awkward	way	to	do	it,	it	will	make	
our	lives	easier	as	we	continue	this	project.	
	
Filter:	you	might	be	surprised	how	little	it	takes	to	implement	a	filter.				
	



Shrinker,	LRCombine,	TBCombine,	Blender:	these	will	each	apply	their	operation	in	
the	Execute	method.		Blender	has	the	same	issue	as	PNMReader	where	it	needs	to	
take	an	argument	in	its	constructor.	
	
My	tips:	

- consult	main3C.C	for	further	clarification	on	the	required	methods.			(You	
need	to	conform	to	my	main3C.C	...	don’t	change	main3C.C)	

- test	often!		Whenever	you	have	something	that	you	can	compile	and	run,	then	
do	it.		Writing	code	without	the	feedback	of	compiling	and	running	it	is	a	bad	
strategy.		This	is	not	just	true	for	this	project	...	it	is	true	for	every	project	you	
will	ever	work	on.		This	means	you	should	modify	main3C.C	…	you	should	be	
removing	filters	so	that	you	can	test	pieces	as	you	go.		Of	course,	change	it	
back	to	the	original	form	for	submission.	

- Print	statements	are	hugely	useful	for	debugging.	
	

	
==	What	to	turn	in	==	
	
tar	cvf	proj3C.tar	image.C	sink.C	source.C	PNMreader.C	PNMwriter.C	filter.C	image.h	
sink.h	source.h	PNMreader.h	PNMwriter.h	filter.h	
	
	
Finally:	I	want	use	you	to	use	a	traditional	file	structure.	
If	a	method	has	a	single	line	of	code,	then	you	may	inline	it	in	the	header:	
	
class	Image	
{	
						int	GetWidth()	{	return	width;	};		//	this	is	OK	…	one	line	of	code	
};		
	
If	there	is	more	than	one	line	of	code,	then	the	method	should	be	defined	in	the	
corresponding	.C	file.		You	will	lose	points	if	you	do	not	follow	the	traditional	file	
structure	


