
CIS	330:	Project	#3B	
Assigned:	May	2nd,	2018	
Due	May	9th,	2018	
(which	means	submitted	by	6am	on	May	10th,	2018)	
Worth	3%	of	your	grade	
	
Please	read	this	entire	prompt!	
	
Assignment:		
	

1) Add	constructors	and	methods	to	your	struct	
2) Write	additional	functions	to	manipulate	images.	
3) Confirm	that	your	program	creates	the	right	output.	

	
This	project	is	in	C++,	not	C.	
	
==	1.	Add	constructors	and	one	method	to	your	struct	==	
	
Add	three	constructors	(default,	parameterized,	and	copy	constructor)	to	your	
struct.		You	might	find	that	multiple	parameterized	constructors	are	useful,	and	you	
are	welcome	to	add	more	than	one.		Note	that	each	copy	constructor	should	allocate	
new	memory	for	that	Image’s	pixel	buffer	…	sharing	it	across	images	is	problematic	
(who	owns	the	memory	and	is	responsible	for	freeing	it?	…	we	aren’t	worried	about	
memory	leaks	yet,	but	we	will	soon).	
	
You	will	also	need	a	method	to	reset	the	image’s	size.		This	is	because	the	driver	
program	is	calling	the	default	constructor,	and	the	size	will	need	to	be	reset	when	
you	want	to	put	a	valid	image	in	it.			I	recommend	something	like:	
void				ResetSize(int	width,	int	height);	
	
==	2.	Write	additional	functions	to	manipulate	images	==	
	
HalfSize:	the	output	image	should	be	half	the	width	and	height.		Pixel	(i,	j)	in	the	
output	should	be	the	same	as	pixel	(2*i,	2*j)	in	the	input.	
	
LeftRightCombine:	take	two	input	images	that	have	the	same	height	and	make	a	
single	image	where	they	are	combined	left-to-right.		I.e.:	(A)	+	(B)	=	(AB)	
	
TopBottomCombine:	take	two	input	images	that	have	the	same	width	and	make	a	
single	image	where	they	are	combined	left-to-right.		I.e.:	(A)	+	(B)	=			(A)	
	 	 	 	 	 	 	 	 	 	 (B)	
	
	
Blend:	take	two	input	images	that	have	the	same	width	and	height	and	blend	them	
together.		If	the	“factor”	is	0.8,	then	the	output	image	should	be	80%	image	1	and	
20%	image	2.		(This	would	mean	a	“0.8*V1	+	0.2*V2”	summation	for	each	channel.)	



Note:	for	now,	you	can	assume	all	inputs	are	valid.		That	is,	if	you	are	doing	a	left-
right	concatenation,	then	the	heights	of	the	two	images	are	the	same.	
	
The	signatures	for	all	of	these	functions	is	in	functions.h.	
	
==	File	structure	==	
	
Your	Image	struct	should	be	transplanted	in	its	own	file	(.h	/	.C).		I	have	provided	a	
Makefile	that	compiles	your	program.		While	you	are	welcome	to	change	it,	know	
that	we	will	be	using	the	Makefile	I	provide	for	grading.	
	
==	How	we	will	test	==	
	
We	will	test	it	by	running	the	main	program	that	can	be	found	on	the	class	website.		
We	will	also	look	at	your	code.	
	
==	What	to	turn	in	==	
	
Make	your	tar	as:	
tar	cvf	proj3B.tar	image.h	functions.C	image.C	
	
Before	you	submit,	make	sure	to	test	your	code	on	ix-dev.		You	should	execute	the	
provided	grader	program	script	(grader.sh)	prior	to	submitting.	It	should	be	called	
within	your	project	directory	on	ix-dev	as	follows:		
	./grader.sh	proj3B.tar	
	
You	will	be	substantially	penalized	if	you	include	your	object	code	(.o’s),	binary,	and	
/or	image.	(this	increases	upload	and	download	times).	
	
	
==	Additional	notes	==	
	
Note	1:	you	do	not	need	to	worry	about	memory	leaks	yet.		That	will	come	in	future	
projects.	
	
Note	2:	you	now	are	writing	C++	…	make	sure	you	use	“.C”	(and	not	“.c”).	
	
Note	3:	C++	is	touchy	about	malloc.		You	will	need	to	cast	the	return	type	of	malloc.	
As	in:	
		data	=	(unsigned	char	*)	malloc(3*w*h);	
where	
data	=	malloc(3*w*h);	
was	fine	in	C	
	
	
	



==	My	advice	==	
	
This	project	will	force	you	to	retrofit	your	3A	code.		I	recommend	you	test	
frequently.		For	example,	start	with	a	main	function	like:	
#include	<image.h>	
#include	<functions.h>	
	
int	main(int	argc,	char	*argv[])	
{	
				ReadImage(argv[1],	img);	
				WriteImage(argv[2],	img);		/*	note	the	original	prompt	takes	img8	*/	
}	
and	make	sure	that	it	produces	an	identical	output	(“diff”!).		If	not,	you	are	just	going	
to	get	yourself	in	deep.	
	
	


