
CIS	330:	Project	#2D	
Assigned:	April	30th,	2018	
Due	May	5th,	2018	
(which	means	submitted	by	6am	on	May	6th,	2018)	
Worth	4%	of	your	grade	
	
Please	read	this	entire	prompt!	
	
Assignment:	You	will	implement	subtypes	with	C,	building	off	your	work	from	
project	2C.	
	

1) Make	a	union	called	ShapeUnion	with	the	three	types	(Circle,	Rectangle,	
Triangle).	

2) Make	a	struct	called	FunctionTable	that	has	pointers	to	functions.	
3) Make	an	enum	called	ShapeType	that	identifies	the	three	types.	
4) Make	a	struct	called	Shape	that	has	a	ShapeUnion,	a	ShapeType,	and	a	

FunctionTable.	
5) Modify	your	9	functions	to	deal	with	Shapes.			
6) Integrate	with	the	new	driver	program	(driver_2D.c).		Test	that	it	produces	

the	correct	output.	
	
The	driver	program	further	specifies	what	the	interface	should	be.		Before	you	ask	
questions,	make	sure	you’ve	looked	at	the	driver	program.		Although	this	prompt	
could	be	even	more	detailed,	it	is	much	more	detailed	than	what	you’ll	get	in	the	real	
world.		Reading	code	and	inferring	details	yourself	is	a	critical	skill	to	develop.	
	
==	1.	ShapeUnion	==	
	
A	union	of	Rectangle,	Circle,	and	Triangle.	
	
==	2.	FunctionTable	==	
	
This	struct	has	two	data	members.		Both	data	members	are	pointers	to	function.		
The	first	data	member	should	be	named	“GetArea”.		The	second	data	member	should	
be	named	“GetBoundingBox”.	
	
==	3.	ShapeType	==	
	
An	enum	that	identifies	whether	you	have	you	a	rectangle,	circle,	or	triangle.	
	
==	4.	Shape	==	
	
Contains	a	ShapeUnion,	ShapeType,	and	a	FunctionTable.			The	FunctionTable	must	
have	name	“ft”.	
	
	



	
==	5.	Modify	your	9	functions	==	
	
Each	of	your	9	functions	takes	in	a	Rectangle,	Circle,	or	Triangle.		Modify	the	pointer	
type	to	Shape	instead	of	Rectangle,	Circle,	or	Triangle.		Further	modify	the	function	
to	carry	out	the	desired	operation	(initialize,	get	area,	get	bounding	box).			
	
For	example,	“double	GetRectangleArea(Rectangle	*)”	will	become	“double	
GetRectangleArea(struct	Shape	*)”.		The	function	will	then	operate	on	the	Shape,	
knowing	that	the	shape	is	a	rectangle.		You	will	need	to	make	changes	to	your	
prototypes.h	and	to	your	.c	file	that	implements	the	functions.	
	
Note	that	initialize	will	become	much	bigger.		If	you	are	implementing	
InitializeRectangle,	then	you	will	need	to	initialize	the	“Rectangle”	part	of	the	
ShapeUnion	in	the	Shape,	but	you	will	also	need	to	initialize	the	Shape	itself.		This	
includes	setting	functions	in	the	FunctionTable.	
	
==	6.	Integrate	with	driver	==	
	
A	new	driver	program	has	been	posted.	It	needs	to:	compile,	run,	and	produce	the	
correct	output	for	you	to	complete	the	assignment.	
	
==	7.	ADMIRE!!	==	
	
Look	at	what	you’ve	done.		You	have	now	done	subtyping/supertyping.		The	driver	
program	operates	on	Shapes	without	knowing	their	details.	
	
==	IMPORTANT	==	
	
FunctionTable	and	Shape	have	a	“circular	dependency”.		This	means	that,	when	you	
define	FunctionTable,	you	want	to	tell	the	compiler	about	Shapes.		So	that	would	
make	you	want	to	define	Shapes	first.		Unfortunately,	when	you	tell	the	compiler	
about	Shapes,	you	want	it	to	know	about	FunctionTables!		So	that	means	putting	
either	first	is	problematic.		As	it	turns	out,	you	have	to	put	FunctionTable	first.		The	
compiler	needs	to	know	the	size	of	the	Shape	struct,	and	it	can’t	know	that	without	
knowing	the	size	of	the	FunctionTable	struct.			
	
Your	code	should	be:	
	
struct	Shape;		/*	tells	the	compiler	that	a	struct	named	Shape	will	be	defined	later	*/	
	
typedef	struct	
{	
			/*	add	function	pointers.		Refer	to	Shape	as	“struct	Shape”	*/	
}	FunctionTable;	
	



	
struct	Shape	
{	
				/*	add	data	members	for	Shape	*/	
};	
	
Also:	note	that	if	you	do	
typedef	struct	
{	
}	Shape;	
then	it	will	work,	but	gcc	will	issue	some	annoying	warnings	about	your	function	
prototypes	not	matching.	
	
	
==	What	to	modify	==	
	
You	will	need	to	modify	my_struct.h,	my_struct.c,	and	prototypes.h.		You	should	not	
modify	driver_2D.c.		If	you	modify	this	latter	file,	you	will	have	points	deducted.	The	
grader	program	(grader.sh)	will	reveal	whether	it	has	been	modified.	
	
	
==	Success	==	
	
Your		executable	will	be	named	“project_2D”.	Run	your	program	as:	
./project_2D	>	my_output	
	
and	call:	
diff	my_output	driver_output	
	
If	diff	returns	no	differences,	then	your	program	produces	the	correct	output.		
	
	
==	What	to	turn	in	==	
	
Before	you	submit,	make	sure	to	test	your	code	on	ix-dev	using	the	provided	grader	
program	script	(grader.sh)	within	your	project	directory	(on	ix-dev).	
	
Your	actual	source	code	(my_struct.h,	my_struct.c,	and	prototypes.h)	will	still	be	
graded	for	good	programming	practices.	The	project	will	be	graded	on	ix-dev.	
	
Submit	to	Canvas	a	tarball	named	2D_turnin.tar	with	the	following	files:	
tar	-cvf	2D_turnin.tar	my_struct.h	my_struct.c	prototypes.h	my_output	
	


