O

UNIVERSITY OF OREGON
607:
[

/7717 O /7 7 /7 __7
ARV ARV Y VY Y Y Y T Y W
AV VAV Y A S I A AN A A A Y N A A A R A A A A Y
___ /I I N ST IN_ NI NIl I

Lecture 1.1:
Course Overview &
Introduction to Unix

October 3, 2022 Hank Childs, University of Oregon

Outline

 Class Overview

e Getting Started With Unix
— Unix History
— Shell Prompts
— Files
— File Editors

* Project1l

COVID / lliness

* |f you have to quarantine or feel sick, then:
— (1) email me ahead of time

—(2) call in to the Zoom
e Zoom listed on Canvas site

— (3) you will be credited with attending

* Please, please stay home if there is a
possibility of spreading COVID

O

UNIVERSITY OF OREGON

Why Does This Seminar Exist?

* Some schools make their undergraduate students do a
lot of Unix/C/C++ preparation.

e Some do not.
e At UO, we assume our grad students know Unix/C/C++.

* |f you didn’t get a lot of preparation, this is a chance to
do it now.

* (Also a good refresher for those interviewing for jobs)

* Note: this course draws a lot of material from previous
courses. Apologies in advance.

 Note #2: material is pretty basic this week. Will get
more advanced.

UNIVERSITY OF OREGON

Course Derived from CIS 330

* 330 Goals: excellence in C, C++, and Unix

O

* Why 607?
— Many of our grad-level classes require strong
knowledge in C, C++, and Unix

— Critical for success after graduation

* Programming Languages Beacon:
http://www.lextrait.com/vincent/implementation
s.html

Grading For This Course (1/2)

e Will assigh ~18 projects
* Only 2 will be graded: 3H and 4B
* = these two depend on 3A-3G

* The rest of the projects are to prepare you to
do 3H and 4B

UNIVERSITY OF OREGON

Grading For This Course (2/2)

O

Students can earn up to 100 points:

« Weekly attendance in lecture: 45 points (5 points per lecture, maximum of 45, even if attending all 10 weeks)

o Students effectively can miss one lecture for free. This is intended for attending conferences, illness, family
emergencies, etc. If students need to miss more than one lecture for such reasons, they should contact the
instructor.

« Completing final projects (up to 55 points)

o less than 30% of 3H tests passing: 0 points
between 30% and 69% of 3H tests passing: 20 points
between 70% and 99% of 3H tests passing: 35 points
100% of 3H tests passing: 45 points
Project 4B passes memory error free: 5 points
o Project 4B passes memory leek free: 5 points

[e]

o O o

Grading will not be curved:

« 95,100 points: A
« 90 points: A-

« 85 points: B

« 80 points: B-

« 75 points: C

« 70 points: C-

« 65 points: D

« 60 points: D-

« less than 60 points: F

Norms for this class

* Please ask questions

* Please ask me to slow down

* Please give feedback
* Quiet classroom greatly valued
* Please do not arrive late

UNIVERSITY OF OREGON

O

Course Materials

* PowerPoint lectures will be posted online.
* | will “live code” frequently.

* Textbook:

— Past terms: none

— This term: incorporating “C and Data Structures” by
Sventek

* On Canvas (legal statement next slide)

O

C and Data Structures - a well-structured approach

Joseph S. Sventek

This book contains copyrighted material. You may use it for this class under
the following constraints:

"Permission is granted for one time classroom use for registered learners
only. The duration of use is only for the duration of the course. The
material may not be published and distributed outside of the course.”

Thus, you may make a copy for your use on your own machine. You may
NOT share this book with anyone outside of the class, nor may you post it
ANYWHERE on the web, Facebook, or any other social media platform.

Failure to abide by these rules will lead to significant legal difficulties for the
University, the Department, your instructor, and yourself.

O

UNIVERSITY OF OREGON

Academic Misconduct (1 of 2)

* The programming projects are individual
efforts

— You may discuss the projects with your
classmates.

— Do not let someone look at your code on your
screen. (BUT: helper can look at helpee’s code)

— Absolutely, positively do not email code.

— Do not search the internet for previous
implementations (includes github)

UNIVERSITY OF OREGON

Academic Misconduct (2 of 2)

O

e If | detect collusion, all individuals involved
will receive an F in the course immediately

— | choose to not enumerate cases that involve
collusion. Whiteboard conversations are fine. If
appropriate, the helper can look at the helpee’s
code. If you feel you are in a gray area, then you
should email me.

— Please note that if you are the one providing too
much help, then you will also get an F

O

UNIVERSITY OF OREGON

IDES

* |DEs are great

— ... but in this class, we will learn how to get by
without them

* Many, many Unix-based projects don’t use
IDEs

— The skills you are using will be useful going
forward in your careers

Accessing a Unix environment

* Rm 100, Deschutes
 Remote logins (ssh, scp)

 Windows options
— Cygwin / MSYS

— Virtual machines

Who has home access to a Unix environment?

‘ Who has Windows?

Missed Class on Week 1 Is an
Opportunity??
e This class: do 3A-3H, 4B

e But: need to get through a lot of lecture
before you can begin

* Ends up being crowded at the end
* Different idea?

— More lectures early in the term
— Skip lectures later in the term

Outline

 Class Overview

e Getting Started With Unix
— Unix History
— Shells
— Files
— File Editors

* Project1l

O

UNIVERSITY OF OREGON

Reading

e Cand Data Structures:
— Chapter 2.1, 2.2,2.3,2.4,, 2.5, and 2.6.1.

Outline

 Class Overview

e Getting Started With Unix
— Unix History
— Shells
— Files
— File Editors

* Project1l

What is Unix?

* Operating system
— Multi-tasking
— Multi-user

e Started at AT&T Bell Labs in late '60s, early
“70s

 First releasein 1973

UNIVERSITY OF OREGON

O

What is Unix?

80s & 90s: many competing versions, all
conforming to same standard

— AIX (IBM), Solaris (Sun), HP-UX (Hewlett-Packard)

e 1990s: Linux takes off
— Open source

e 2000s: commercial Unixes abandoned,
companies use Linux, back Linux

— Several variants of Linux

e OS X: used on Macs since 2002

— Meets Unix standard -

Outline

 Class Overview

e Getting Started With Unix
— Unix History
— Shells
— Files
— File Editors

* Project1l

UNIVERSITY OF OREGON

O

Shells

* Shells are accessed through a terminal
program
— Typically exposed on all Linux
— Mac: Applications->Utilities->Terminal

* (I always post this on the dock immediately upon
getting a new Mac)

Yo Yo Terminal — bash — 80x24

bash
Last login: Mon Mar 31 18:18:21 on ttys002 =]
fawcett:~ childs$
fawcett:~ childs$

UNIVERSITY OF OREGON

O

Shells

e Shells are interpreters
— Like Python

* You type a command, it carries out the

command
e NO Terminal — bash — 80x24
e
Last login: Mon Mar 31 18:18:21 on ttys002 =]

fawcett:~ childs$

fawcett:~ childs$
fawcett:~ childs$
fawcett:~ childs$ whoami
childs

fawcett:~ childss

UNIVERSITY OF OREGON

O

Shells

* There are many types of shells

 Two most popular:
—sh (= bash & ksh)
— csh (= tcsh)
* They differ in syntax, particularly for

— Environment variables

— Iteration / loops / conditionals

‘ The examples in this course will use syntax for sh

Environment Variables

* Environment variables: variables stored by
shell interpreter

e Some environment variables create side
effects in the shell

* Other environment variables can be just for
your own private purposes

UNIVERSITY OF OREGON

O

Environment Variables

(S NON$) Terminal — bash — 86x28 '

I bash T —
=]

Last login: Mon Mar 31 18:44:25 on ttys003
fawcett:~ childs$ export CIS330=fun

- New commands: export, echo, env

Shells

* There is lots more to shells ... we will learn
about them as we go through the quarter

Outline

 Class Overview

e Getting Started With Unix
— Unix History
— Shells
— Files
— File Editors

* Project1l

UNIVERSITY OF OREGON

O

Files

* Unix maintains a file system

— File system controls how data is stored and
retrieved

* Primary abstractions:
— Directories
— Files

 Files are contained within directories

UNIVERSITY OF OREGON

O

Directories are hierarchical

* Directories can be placed within other
directories

* “/” --The root directory

— Note “/” where Windows uses “\”
o “/dirl/dir2/filel”

— What does this mean?

File filel is contained in directory dir2,
which is contained in directory dirl,
which is in the root directory

Home directory

* Unix supports multiple users

* Each user has their own directory that they
control

* Location varies over Unix implementation, but
typically something like “/home/username”

e Stored in environment variables

fawcett:~ childs$ echo $HOME
/Users/childs B

O

UNIVERSITY OF OREGON

Anatomy of shell formatting

Current

working
Machine name directory Username

X

fawcett:~ childs$ echo $HOME
/Users/childs

PR

« “~”(tilde) is shorthand for your home directory

— You can use it when invoking commands

The shell formatting varies over Unix implementation
and can be customized with environment variables.
(PS1, PS2, etc)

UNIVERSITY OF OREGON

O

File manipulation

eNO Terminal — bash — 80x24

l bash [
Last login: Tue Apr 1 04:56:14 on ttys@05

| New commands: mkdir, cd, touch, Is, rmdir, rm

Also, “*” is a wildcard that matches any filename

cd: change directory

* The shell always has a “present working
directory”

— directory that commands are relative to
e “cd” changes the present working directory

* When you start a shell, the shell is in your
“home” directory

UNIVERSITY OF OREGON

O

Unix commands: mkdir

* mkdir: makes a directory

— Two flavors

* Relative to current directory
— mkdir dirNew

* Relative to absolute path
— mkdir /dirl/dir2/dirNew
» (dirl and dir2 already exist)

UNIVERSITY OF OREGON

O

Unix commands: rmdir

* rmdir: removes a directory

— Two flavors
* Relative to current directory
— rmdir badDir

* Relative to absolute path
— rmdir /dirl/dir2/badDir
» Removes badDir, leaves dirl, dir2 in place

* Only works on empty directories!

— “Empty” directories are directories with no files

‘ Most Unix commands can distinguish between absolute and

relative path, via the “/” at beginning of filename.
(I’'m not going to point this feature out for subsequent commands.)

UNIVERSITY OF OREGON

O

Unix commands: touch

e touch: “touch” a file
e Behavior:

— If the file doesn’t exist

e = create it

— If the file does exist

e - update time stamp

Time stamps record the last modification to a file or directory
Why could time stamps be useful?

O

UNIVERSITY OF OREGON

Unix commands: Is

* |s: list the contents of a directory
— Note this is “LS”, not “is” with a capital ‘i’
* Many flags, which we will discuss later

— A flag is a mechanism for modifying a Unix
programs behavior.

— Convention of using hyphens to signify special
status

e “Is” is also useful with “*” wild cards
(discussed more later)

UNIVERSITY OF OREGON

O

Important: “man”

* Get a man page:

* =2 “man rmdir” gives:

RMDIR(1) BSD General Commands Manual RMDIR(1)
NAME

rmdir —— remove directories
SYNOPSIS

rmdir [-p] directory ...

DESCRIPTION

The rmdir utility removes the directory entry specified by each directory
argument, provided it is empty.

Arguments are processed in the order given. In order to remove both a
parent directory and a subdirectory of that parent, the subdirectory must
be specified first so the parent directory is empty when rmdir tries to
remove it.

The following option is available:
-p Each directory argument is treated as a pathname of which all

components will be removed, if they are empty, starting with the
last most component. (See rm(1) for fully non-discriminant

Outline

 Class Overview

e Getting Started With Unix
— Unix History
— Shells
— Files
— File Editors

* Project1l

O

UNIVERSITY OF OREGON

File Editors

* Existing file editors:
— Vi
— Emacs

— Two or three hot new editors that everyone loves
(and ultimately fade away and die)

* This has been the state of things for 25 years

| will use “vi” in this course.
You are welcome to use whatever editor you want.

O

UNIVERSITY OF OREGON

My Mental Model for File Editors

emacs

Vi

How Everything
efficient else
you can be
after you

are
proficient

Investment to be proficient with your editor

O

UNIVERSITY OF OREGON

Vi has two modes

e Command mode

— When you type keystrokes, they are telling vi a
command you want to perform, and the
keystrokes don’t appear in the file

* Edit mode
— When you type keystrokes, they appear in the file.

O

UNIVERSITY OF OREGON

Transitioning between modes

e Command mode to edit mode

— i: enter into edit mode at the current cursor
position

— a: enter into edit mode at the cursor position
immediately to the right of the current position

— |: enter into edit mode at the beginning of the
current line

— A: enter into edit mode at the end of the current
line

‘ There are other ways to enter edit mode as well \

Transitioning between modes

e Edit mode to command mode

— Press Escape

UNIVERSITY OF OREGON

O

Useful commands

* yy:yank the current line and put it in a buffer
— 2yy: yank the current line and the line below it

* p: paste the contents of the buffer
— 2pp: past the contents of the buffer two times

e X: delete the character at the current cursor
e “:100” go to line 100 in the file

* Arrows can be used to navigate the cursor
position (while in command mode)

—Sodoh,j, k,and |

[We will discuss more tips for “vi” throughout the quarter.

They will mostly be student-driven (Q&A time each class)

My first vi sequence

e At ashell, type: “vi cis330file”
* Press ‘i’ (to enter edit mode)

* Type “l am using vi and it is fun” (text appears
on the screen)

* Press “Escape” (to enter command mode)

* Press “:wqg” (command mode sequence for
“write and quit”)

(Ucr'sz'on 1.1 \

April 15t, 06

vi / vim graphical cheat sheet

&>

SC

normal
mode
toggle ||} external play rev || 0, got:hl A\ "soft" repeat|| ¥ next begin end "soft" bol next
~ case ! filter I@ macroj # i]c)lent D o / bol & s ident ||\ sentence|| Jsentence||___ down + line
\, goto 2 "hard"|| _ prev || — auto’
* mark 1 3 4 5 6 7 8 9 0 bol fine || = format
next end replace 1 back vank undo insert open paste begin end
IQ mode WVO E wo R mode "till line line I at bol O above P before parag. parag.
record next end replace] ' 1,3 insert open paste’|| [, 1.
* macro word e word r' char t' ull _y yank u undo 1 mode O below p after misc — -
appcndl subst delete ' 'back" eof/ screen| join sereen || « exemd ". reg. 1 bol
A at eol S line to eol “find ¢ Ggotol H top J I]mes K help bottom|| « line spec goto !ml

Aappenal[S ot [[] acteie][£+ fnd [l vy <= [[] & [k 4 1 > (| ; oepeac)| s gete 1\ o,

4 k- chang isual J
7 awit” || X Back ||C hanse| [V visat| (B o] [IN] iy | IV < e > indent]| | P+ i

, extra” delete 1,3 visual next . set reverse repeat

A X “ehar ||€ ehange||'V TG b word n (find) mark|| sy t/T/f/F || * c})nd / * find

moves the cursor, or defines Main command line commands ('ex'): Notes:

the range for an operator 'w (save), :q (quit), :q! (quit w/o saving) (1) use "x before a yank/paste/del command
direct action command. e f(O en file ’ . to use that register ('clipbuard') (x=a..z,‘)
if red, it enters insert mode %s/x/y/g (replace 'x' by 'y' filewide), (e.g.: "ay$ to copy rest of line to reg 'a")

:h (help in vim), :new (new file in vim),

requires a motion afterwards, (2) type in a number before any action

=]
:
-

pe operates between cursor & Other important commands: to repeat it that number of times
destination CTRL-R: redo (vim), (e.g.: zp, dz2w, 5i, dgj)
special functions, CTRL-F/-B: page up/down, 3) duplicate operator to act on current line
requires extra input CTRL-E/-Y: scroll line up/down,) (r= deletgline >> = indent line)
i CTRL-V: block-visual mode (vim only , . . .
. commands with a dot need ock-visual mode (vim only) (4) ZZ to save & quit, Z() to quit w/o saving

a char argument afterwards Visual mode:

bol = beginning of line, eol = end of line, Move around and type operator to act (5) zt: scroll cursor to top,

mk = mark, yank = copy on selected region (vim only) zb: bottom, zz: center

words: fguux|{foo]] bazr]| baz]] (6) g% top of file (vim only),

WORDSs: Guux(foo, bar | baz) J open file under cursor (vim only)

For a graphical vi/vim tutorial & more tips, go to www.viemu.com - home of ViEmu, vi/vim emulation for Microsoft Visual Studio

_ http://www.viemu.com/vi-vim-cheat-sheet.gif _

vimtutor

e Past students have liked vimtutor

UNIVERSITY OF OREGON

O

Project 1A

* Practice using an editor

* Must be written using editor on Unix platform
— | realize this is unenforceable.

— |f you want to do it with another mechanism, |
can’t stop you

* But realize this project is simply to prepare you for later
projects

Project 1A

* Write >=300 words using editor (vi, emacs,
other)

* Topic: what you know about C programming
language
* Can’t write 300 words?

— Bonus topic: what you want from this course

* How will you know if it is 300 words?

— Unix command: “wc” (word count)

UNIVERSITY OF OREGON

O

Unix command: wc (word count)

fawcett:~ childs$ vi hanks_essay
fawcett:~ childs$ wc -w hanks_essay
252 hanks_essay
fawcett:~ childs$ wc hanks_essay
63 252 1071 hanks_essay
fawcett:~ childs$ |

(63 = lines, 252 = words, 1071 = character)

Don’t forget

 This lecture is available online
— http://ix.cs.uoregon.edu/~hank/607

* All project prompts are available online

http://ix.cs.uoregon.edu/~hank/607

0 UNIVERSITY OF OREGON ‘ IS 60 7 []
[]

/7717 O /7 7 /7 __7
ARV ARV Y VY Y Y Y T Y W
AV VAV Y A S I A AN A A A Y N A A A R A A A A Y
___ /I I I N ST IN_ NI NIl 1

Lecture 1.2:
Memory in C

Oct 39, 2022 Hank Childs, University of Oregon

Plan for today

* Baby steps into C and gcc
* Memory

GNU Compilers

* GNU compilers: open source
— gcc: GNU compiler for C

— g++: GNU compiler for C++

UNIVERSITY OF OREGON

Our first gcc program

Unix command that

prints contents of a file
® OO kad CIS330 y

CO2LNOOGFD58:CIS330 hank$ cat t.c —
#include <stdio.h>

int main() Invoke gcc compiler

{
printf("hello world!\n") / Name of file to compile
} ///}

CO2LNOOGFD58:CIS330 hank$ gcc t.c
CO2LNOOGFD58:CIS330 hank$./a.out
hello world!

CO2LNOOGFD58:CIS330 hank$ I

O

gcc’s default name for output programs

‘ You should use this for Proj 2A

Plan for today

* Baby steps into C and gcc
* Memory

Reading

e 4.1 (but NOT 4.1.2 ... covered later)
¢ 4.2

e 4.3-4.5.2 (what | assume you know from 314)
—NOT4.5.3t04.5.8

* 4.6:today’s lecture

Why C?

* You can control the memory

* That helps get good performance
* |f you don’t control the memory (like in other

programming languages), you are likely to get
poor performance

e ..so let’s talk about memory

O

UNIVERSITY OF OREGON

Motivation: Project 2A

Assignment: fill out this worksheet.

Location | 0x8000 | 0x8004 | 0x8008 | 0x800c | 0x8010 | 0x8014 | 0x8018
Value 0 1 1 2 3 5 8
Location | 0x801c | 0x8020 | 0x8024 | 0x8028 | 0x802c | 0x8030 | 0x8034
Value 13 21 34 55 89 144 233
Location | 0x8038 | 0x803c | 0x8040 | 0x8044 | 0x8048 | 0x804c | 0x8050
Value 377 610 987 1597 2584 4181 6765
Code:
int *A = 0x8000;
int*B[3] ={ A A+7,A+14 };
Note: “NOT ENOUGH INFO” is a valid answer.
Variable Your Answer Variable Your Answer
A 0x8000 (A+6)-(A+3)
&A NOT ENOUGH *(A+6)-*(A+4)

INFO
A[2] 1 A[5]-*(A+4)
*A (A+6)-B[0]

Important Context

* Different types have different sizes:
— int: 4 bytes
— float: 4 bytes
— double: 8 bytes
— char: 1 byte
— unsigned char: 1 byte

Important Memory Concepts in C (1/9):
Stack versus Heap

* You can allocate variables that only live for the
invocation of your function

— Called stack variables (will talk more about this
later)

 You can allocated variables that live for the
whole program (or until you delete them)

— Called heap variables (will talk more about this
later as well)

UNIVERSITY OF OREGON

Important Memory Concepts in C (2/9):
Pointers

O

* Pointer: points to memory location

— Denoted with “*’

— Example: “int *p”
* pointer to an integer
— You need pointers to get to heap memory

e Address of: gets the address of memory
— Operator: ‘&’

— Example:
int Xx;
int *y = &x;

Important Memory Concepts in C (3/9):
Memory allocation

e Special built-in function to allocate memory
from heap: malloc

— Interacts with Operating System
— Argument for malloc is how many bytes you want

e Also built-in function to deallocate memory:
free

UNIVERSITY OF OREGON

O

free/malloc example

Enables compiler to see functions that aren’t in this file. More on this next week.

\

#include <stdlib.h> ' sizeof is a built in function in C. It
int main() . returns the number of bytes for a
{ type (4 bytes for int).

/* allocates memory x/ f
int xptr = malloc(2xsizeof(int));

/* deallocates memory */
free(ptr);

} \ don’t have to say how many bytes

to free ... the OS knows

UNIVERSITY OF OREGON

Important Memory Concepts in C (4/9):
Arrays

O

* Arrays lie in contiguous memory

— So if you know address to one element, you know
address of the rest

* int *a = malloc(sizeof(int)*1);
— a single integer
— ... or an array of a single integer
* int *a = malloc(sizeof(int)*2);
— an array of two integers
— first integer is at ‘a’
— second integer is at the address ‘a+4’
 Tricky point here, since C/C++ will refer to it as ‘a+1’

Important Memory Concepts in C (5/9):
Dereferencing

 There are two operators for getting the value
at a memory location: *, and []

— This is called deferencing

e * = “dereference operator”
* int *p = malloc(sizeof(int)*1);
p = 2; / sets memory p points to to have value 2 */

p[O] = 2; /* sets memory p points to to have value 2 */

UNIVERSITY OF OREGON

Important Memory Concepts in C (6/9):
pointer arithmetic

O

* int *p = malloc(sizeof(int)*5);
» C/C++ allows you to modify pointer with math
operations

— called pointer arithmetic

— “does the right thing” with respect to type
* int *p = malloc(sizeof(int)*5);
* p+1is 4 bytes bigger than p!!

e Then:

— “p+3” is the same as “&(p[3])” (ADDRESSES)
— “*(p+3)” is the same as “p[3]” (VALUES)

) oo oromeon .
Important Memory Concepts in C (7/9)

Pointers to pointers

* int **p = malloc(sizeof(int *)*5);
 p[0] = malloc(sizeof(int)*50);

p[O] p[1] p[2] p[3] p[4]
Pl 1

- 50 integers...

p[0](O]

Important Memory Concepts in C (8/9):
Hexadecimal address

 Addresses are in hexadecimal
e int *A = 0x8000;
 Then A+1 is 0x8004. (Since int is 4 bytes)

) oo oromeon .
Important Memory Concepts in C (9/9)

NULL pointer

* int *p = NULL;
e often stored as address 0x0000000
* used to initialize something to a known value

— And also indicate that it is uninitialized...

O

UNIVERSITY OF OREGON

Project 2A

* You how know what you need to do Project 2A

— But: practice writing C programs and testing
yourself!!

— Hint: you can printf

with a pointer fawcett:VIS2016 childs$ cat t.c
#include <stdlib.h>

#include <stdio.h>

int main()

{

/* allocates memory x/
int xptr = malloc(2xsizeof(int));
printf("%sp\n", ptr);

}

fawcett:VIS2016 childs$ gcc t.c
fawcett:VIS2016 childs$./a.out
0x100100080

Project 2A

* Assigned now

 Worksheet. You print it out, complete it on
your own, and bring it to class.

* Due Monday 10am in class
* Practice with C, vi, gcc, printf

UNIVERSITY OF OREGON

O

Memory Segments

 Von Neumann architecture: one memory
space, for both instructions and data

* = so break memory into “segments”
— ... creates boundaries to prevent confusion
* 4 segments:
— Code segment
— Data segment
— Stack segment
— Heap segment

Code Segment

* Contains assembly code instructions

e Also called text segment

* This segment is modify-able, but that’s a bad

idea

— “Self-modifying code”
* Typically ends in a bad state very quickly.

O

UNIVERSITY OF OREGON

Data Segment

* Contains data not associated with heap or
stack
— global variables
— statics (to be discussed later)
— character strings you’ve compiled in

char *str = “hello world\n”

Stack: data structure for collection

* A stack contains things

* |t has only two methods: push and pop
— Push puts something onto the stack

— Pop returns the most recently pushed item (and
removes that item from the stack)

 LIFO: lastin, first out

Imagine a stack of trays.
You can place on top (push).
Or take one off the top (pop).

O

UNIVERSITY OF OREGON

Stack

e Stack: memory set aside as scratch space for
program execution

* When a function has local variables, it uses
this memory.
— When you exit the function, the memory is lost

O

UNIVERSITY OF OREGON

Stack

* The stack grows as you enter functions, and
shrinks as you exit functions.

— This can be done on a per variable basis, but the
compiler typically does a grouping.

* Some exceptions (discussed later)

* Don’t have to manage memory: allocated and
freed automatically

Heap

* Heap (data structure): tree-based data
structure

 Heap (memory): area of computer memory

that requires explicit management (malloc,
free).

* Memory from the heap is accessible any time,
by any function.

— Contrasts with the stack

O

UNIVERSITY OF OREGON

Memory Segments

S R - +

text (fixed size)
S TRy S +

data (fixed size)
tmmm e ———— +

stack | growth
e ———— + V

free
e ————— + °

heap | growth

‘ Source: http://www.cs.uwm.edu/classes/cs315/Bacon/ \

Stack vs Heap: Pros and Cons

Allocation/Deal Automatic Explicit
location

How stack memory is allocated into
Stack Memory Segment

void fOO() Code

{ Data
int stack_varA;

Stack

int stack_varB;
’
int main()
{

int stack var(C;
int stack_varD;
foo();

}

Stack Memory Segment

void fOO() Code
{ Data
int stack_varA;

: Stack
int stack_varB;

stack varC
} stack _varD

int main() €

{

int stack var(C;
int stack_varD;
foo();

}

Stack Memory Segment

void fOO() € Code

{ Data
int stack_varA;

int stack_varB;

Stack

stack varC
} stack _varD
I stack varA
int main() stack varB

{

int stack var(C;
int stack_varD;
foo(); =

}

Stack Memory Segment

void fOO() Code
{ Data
int stack_varA;

: Stack
int stack_varB;

stack varC

i = stack _varD
int main()
{

int stack var(C;
int stack_varD;
foo();

<€

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

int doubler(int A)

{
int stack_varA; Stack
stick_vaEA E Z*AA- stack varC
) return stack_varA; stack_varD
int main()
{

int stack_varC;
int stack_varD = 3;
stack_varC = doubler(stack_varD);

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

int doubler(int A)

{
int stack_varA; Stack
stack_varA = 2xA; stack varC
return stack_varA; stack varD

} <info for how to get

. , back to main>

int main() _

| A (=3)

int stack varC <Location for RV>
i _var(C;

int stack_varD = 3; e/’/////
stack_varC = doubler(stack_varD); Free

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

int doubler(int A) <«
{
int stack_varA; Stack
stack_varA = 2xA;

stack varC
return stack_varA;

stack_varD

i <info for how to get
: . back to main>

int maln() A(= 3)

{

<Location for RV>

int stack_varC; stack varA

int stack_varD = 3;
stack_varC = doubler(stack_varD); Free

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

int doubler(int A)

{
int stack_varA; Stack
stack_varA = 2xA; stack varC
return stack_varA; stack varD
} o f
. . fo for h
. Return copies into] o 10 B
%nt main() location specified [NFYEE

by calling function) BESICEEURCEINNES
stack _varA

int stack_varC;
int stack_varD = 3;
stack_varC = doubler(stack_varD); Free

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

int doubler(int A)

{
int stack_varA; Stack
stack_varA = 2xA; stack varC = 6
return stack_varA; ~ _
\ stack varD =3
int main()
{

int stack_varC;
int stack_varD = 3;
stack_varC = doubler(stack_varD);

} —

O

UNIVERSITY OF OREGON

This code is very problematic ... why?

int *xfoo()

{

int stack varC[2] = { 0, 1 };
return stack _var(C;

int wbar() foo and bar are returning

{ addresses that are on the
int stack_varD[2] = { 2, 3 }; stack ... they could easily
return stack _varD; be overwritten

} (and bar’s stack_varD

Qnt nain() overwrites foo’s

{ stack_varC in this

int *xstack_varA, xstack_varB;
stack_varA = foo();
stack_varB = bar();
stack_varA[@] x= stack varB[0];

program)

O

UNIVERSITY OF OREGON

Nested Scope

Code
int main() Data
{ _ Stack

int stack_varA; <
{ stack varA

int stack_varB = 3;

}

UNIVERSITY OF OREGON

O

Nested Scope

Code
int main() DEIE

1 : Stack
int stack_varA;

{
}

stack _varA
stack_varB

int stack_varB = 3; <«

UNIVERSITY OF OREGON

O

Nested Scope

Code
int main() DEIE
?nt stack _varA; stack varA

int stack_varB = 3;

}
} <€

You can create new scope
within a function by adding
1{1 and 1};.

UNIVERSITY OF OREGON

O

Stack vs Heap: Pros and Cons

Allocation/Deal Automatic Explicit
location
Access Fast Slower

Memory pages associated

with heap may be located

anywhere ... may be
caching effects

Memory pages associated
with stack are almost
always immediately
available.

Stack vs Heap: Pros and Cons

Allocation/Deal Automatic Explicit
location

Access Fast Slower
Variable scope Limited Unlimited

UNIVERSITY OF OREGON

O

Variable scope: stagfoo s bad code ... never

int *foo() return memory on the

{ stack from a function
int stack_varA[2] ={ 0, 1 };

return stack_varA;

} bar returned memory
int *bar() licmlicap
{

int *xheap_varB;

heap_varB = malloc(sizeof(int)*2); The caIImg fUhctlon —
heap_varB[0] = 2; i.e., the function that

heap_varB[1] = 2; calls bar — must
return heap varB;)
P— understand this and take

}

responsibility for calling
int main()
P free.

int xstack_varA;

int xstack_varB;

stack_varA = foo(); /x problem x/
I}

If it doesn’t, then this is
bar(); /% still good */ a “memory leak”.

stack_varB

O

UNIVERSITY OF OREGON

Memory leaks

/1t is OK that we are using the heap ... that’s what
it is there for

Stack

The problem is that we lost the references to

the first 49 allocations on heap stack_varA

The heap’s memory manager will not be able to
re-claim them ... we have effectively limited the
memory available to the

int 1;

int stack _varA;
for (1 =0 ; i <50 ; i++)
stack _varA = bar();

UNIVERSITY OF OREGON

O

Running out of memory (stack)

int endless_ fun()

{

endless_fun();
b
int main()
{

endless_fun();
}

stack overflow: when the stack runs into the heap.
There is no protection for stack overflows.

(Checking for it would require coordination with the

heap’s memory manager on every function calls.)

O

int

{

int

'

UNIVERSITY OF OREGON

Running out of memory (heap)

xheaps_o_fun()

int xheap_A = malloc(sizeof(int)*1000000000);

return heap_A;

main()

int xstack_A;
stack_A = heaps_o_fun();

If the heap memory manager
doesn’t have room to make an
allocation, then malloc returns
NULL a more graceful error
scenario.

Allocation
too big ...
not enough
free
memory

Stack vs Heap: Pros and Cons

Allocation/Deal Automatic Explicit
location

Access Fast Slower
Variable scope Limited Unlimited
Fragmentation No Yes

Memory Fragmentation

* Memory fragmentation: the memory
allocated on the heap is spread out of the

memory space, rather than being
concentrated in a certain address space.

UNIVERSITY OF OREGON

O

Memory Fragmentation

int *xbar()

{

int xheap_varA;

heap_varA = malloc(sizeof(int)x*2);
heap_varA[0] = 2;

heap_varA[1l] = 2;

return heap_varA;

}

int main()
{
int 1i;
int stack_varA[50];
for (1 =0 ; i <50 ; i++)
stack_varA[i]l = bar(); <
for (1 =0 ; i < 25 ; i++)
free(stack _varA[ix2]);

Negative aspects of fragmentation?
(1) can’t make big allocations
(2) losing cache coherency

UNIVERSITY OF OREGON

O

Fragmentation and Big Allocations

Even if there is lots of memory
available, the memory manager can
only accept your request if there is a

big enough contiguous chunk.

Stack vs Heap: Pros and Cons

Allocation/Deal Automatic Explicit
location

Access Fast Slower
Variable scope Limited Unlimited
Fragmentation No Yes

UNIVERSITY OF OREGON

O

Memory Errors

* Array bounds read
int main()

{
int var;
int arr[3] ={ 0, 1, 2 };
var=arr([3];

s
* Array bounds write
int main()

{

int var = 2;
int arr[3]:

arr[3]=var;
¥

O

UNIVERSITY OF OREGON

Memory Errors

* Free memory read / free memory write

int main()
{
int xvar = malloc(sizeof(int)%*2);
var[0] = 0;
var[l] = 2;
free(var);
var[0] = varl1l];

}

When does this happen in real-world scenarios?

UNIVERSITY OF OREGON

O

Memory Errors

* Freeing unallocated memory

int main()

{
int *kvar = malloc(sizeof(int)*x2);
var[0] = 0;
var[l] = 2;

free(var);
free(var);

When does this happen in real-world scenarios?
| Vocabulary: “dangling pointer”: pointer that points to memory

that has already been freed.

UNIVERSITY OF OREGON

O
Memory Errors

* Freeing non-heap memory

int main()

{
int var[2]
var[0] = 0;
var[l] = 2;

free(var):

When does this happen in real-world scenarios?

UNIVERSITY OF OREGON

O

Memory Errors

* NULL pointer read / write

int main()

{
char xstr = NULL;
printf(str);
str[@] = 'H';

}

* NULL is never a valid location to read from or
write to, and accessing them results in a
“segmentation fault”

— remember those memory segments?

When does this happen in real-world scenarios?

O

UNIVERSITY OF OREGON

Memory Errors

e Unitialized memory read

int main()

{
int *arr = malloc(sizeof(int)x*10);
int V2=arr([3]:

When does this happen in real-world scenarios?

