
Hank Childs, University of OregonOctober 3, 2022

CIS 607:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 1.1:
Course Overview &
Introduction to Unix

Outline

• Class Overview
• Getting Started With Unix
– Unix History
– Shell Prompts
– Files
– File Editors

• Project 1

COVID / Illness

• If you have to quarantine or feel sick, then:
– (1) email me ahead of time
– (2) call in to the Zoom
• Zoom listed on Canvas site

– (3) you will be credited with attending
• Please, please stay home if there is a

possibility of spreading COVID

Why Does This Seminar Exist?

• Some schools make their undergraduate students do a
lot of Unix/C/C++ preparation.

• Some do not.
• At UO, we assume our grad students know Unix/C/C++.
• If you didn’t get a lot of preparation, this is a chance to

do it now.
• (Also a good refresher for those interviewing for jobs)
• Note: this course draws a lot of material from previous

courses. Apologies in advance.
• Note #2: material is pretty basic this week. Will get

more advanced.

Course Derived from CIS 330

• 330 Goals: excellence in C, C++, and Unix

• Why 607?
– Many of our grad-level classes require strong

knowledge in C, C++, and Unix
– Critical for success after graduation

• Programming Languages Beacon:
http://www.lextrait.com/vincent/implementation
s.html

Grading For This Course (1/2)

• Will assign ~18 projects

• Only 2 will be graded: 3H and 4B

• à these two depend on 3A-3G

• The rest of the projects are to prepare you to

do 3H and 4B

Grading For This Course (2/2)

Norms for this class

• Please ask questions
• Please ask me to slow down
• Please give feedback
• Quiet classroom greatly valued
• Please do not arrive late

Course Materials

• PowerPoint lectures will be posted online.
• I will “live code” frequently.
• Textbook:
– Past terms: none
– This term: incorporating “C and Data Structures” by

Sventek
• On Canvas (legal statement next slide)

Academic Misconduct (1 of 2)

• The programming projects are individual
efforts
– You may discuss the projects with your

classmates.
– Do not let someone look at your code on your

screen. (BUT: helper can look at helpee’s code)
– Absolutely, positively do not email code.
– Do not search the internet for previous

implementations (includes github)

Academic Misconduct (2 of 2)

• If I detect collusion, all individuals involved
will receive an F in the course immediately
– I choose to not enumerate cases that involve

collusion. Whiteboard conversations are fine. If
appropriate, the helper can look at the helpee’s
code. If you feel you are in a gray area, then you
should email me.

– Please note that if you are the one providing too
much help, then you will also get an F

IDEs

• IDEs are great
– … but in this class, we will learn how to get by

without them
• Many, many Unix-based projects don’t use

IDEs
– The skills you are using will be useful going

forward in your careers

Accessing a Unix environment

• Rm 100, Deschutes
• Remote logins (ssh, scp)
• Windows options
– Cygwin / MSYS
– Virtual machines

Who has home access to a Unix environment?

Who has Windows?

Missed Class on Week 1 Is an
Opportunity??

• This class: do 3A-3H, 4B

• But: need to get through a lot of lecture
before you can begin

• Ends up being crowded at the end

• Different idea?
– More lectures early in the term

– Skip lectures later in the term

Outline

• Class Overview
• Getting Started With Unix
– Unix History
– Shells
– Files
– File Editors

• Project 1

Reading

• C and Data Structures:
– Chapter 2.1, 2.2, 2.3, 2.4., 2.5, and 2.6.1.

Outline

• Class Overview
• Getting Started With Unix
– Unix History
– Shells
– Files
– File Editors

• Project 1

What is Unix?

• Operating system
– Multi-tasking
– Multi-user

• Started at AT&T Bell Labs in late ’60s, early
‘70s

• First release in 1973

What is Unix?
• 80s & 90s: many competing versions, all

conforming to same standard
– AIX (IBM), Solaris (Sun), HP-UX (Hewlett-Packard)

• 1990s: Linux takes off
– Open source

• 2000s: commercial Unixes abandoned,
companies use Linux, back Linux
– Several variants of Linux

• OS X: used on Macs since 2002
– Meets Unix standard

Outline

• Class Overview
• Getting Started With Unix
– Unix History
– Shells
– Files
– File Editors

• Project 1

Shells
• Shells are accessed through a terminal

program
– Typically exposed on all Linux
– Mac: Applications->Utilities->Terminal
• (I always post this on the dock immediately upon

getting a new Mac)

Shells

• Shells are interpreters
– Like Python

• You type a command, it carries out the
command

Shells

• There are many types of shells
• Two most popular:
– sh (= bash & ksh)
– csh (= tcsh)

• They differ in syntax, particularly for
– Environment variables
– Iteration / loops / conditionals

The examples in this course will use syntax for sh

Environment Variables

• Environment variables: variables stored by
shell interpreter

• Some environment variables create side
effects in the shell

• Other environment variables can be just for
your own private purposes

Environment Variables

New commands: export, echo, env

Shells

• There is lots more to shells … we will learn
about them as we go through the quarter

Outline

• Class Overview
• Getting Started With Unix
– Unix History
– Shells
– Files
– File Editors

• Project 1

Files

• Unix maintains a file system
– File system controls how data is stored and

retrieved
• Primary abstractions:
– Directories
– Files

• Files are contained within directories

Directories are hierarchical

• Directories can be placed within other
directories

• “/” -- The root directory
– Note “/”, where Windows uses “\”

• “/dir1/dir2/file1”
– What does this mean?

File file1 is contained in directory dir2,
which is contained in directory dir1,

which is in the root directory

Home directory

• Unix supports multiple users
• Each user has their own directory that they

control
• Location varies over Unix implementation, but

typically something like “/home/username”
• Stored in environment variables

Anatomy of shell formatting

Machine name

Current
working
directory

• “~” (tilde) is shorthand for your home directory
– You can use it when invoking commands

Username

The shell formatting varies over Unix implementation
and can be customized with environment variables.

(PS1, PS2, etc)

File manipulation

New commands: mkdir, cd, touch, ls, rmdir, rm
Also, “*” is a wildcard that matches any filename

cd: change directory

• The shell always has a “present working
directory”
– directory that commands are relative to

• “cd” changes the present working directory
• When you start a shell, the shell is in your

“home” directory

Unix commands: mkdir

• mkdir: makes a directory
– Two flavors
• Relative to current directory

– mkdir dirNew
• Relative to absolute path

– mkdir /dir1/dir2/dirNew
» (dir1 and dir2 already exist)

Unix commands: rmdir

• rmdir: removes a directory

– Two flavors

• Relative to current directory

– rmdir badDir

• Relative to absolute path

– rmdir /dir1/dir2/badDir

» Removes badDir, leaves dir1, dir2 in place

• Only works on empty directories!

– “Empty” directories are directories with no files

Most Unix commands can distinguish between absolute and

relative path, via the “/” at beginning of filename.

(I’m not going to point this feature out for subsequent commands.)

Unix commands: touch

• touch: “touch” a file
• Behavior:
– If the file doesn’t exist
• à create it

– If the file does exist
• à update time stamp

Time stamps record the last modification to a file or directory

Why could time stamps be useful?

Unix commands: ls

• ls: list the contents of a directory
– Note this is “LS”, not “is” with a capital ‘i’

• Many flags, which we will discuss later
– A flag is a mechanism for modifying a Unix

programs behavior.
– Convention of using hyphens to signify special

status
• “ls” is also useful with “*” wild cards

(discussed more later)

Important: “man”
• Get a man page:
• à “man rmdir” gives:

Outline

• Class Overview
• Getting Started With Unix
– Unix History
– Shells
– Files
– File Editors

• Project 1

File Editors

• Existing file editors:
– Vi
– Emacs
– Two or three hot new editors that everyone loves

(and ultimately fade away and die)
• This has been the state of things for 25 years

I will use “vi” in this course.
You are welcome to use whatever editor you want.

My Mental Model for File Editors

How
efficient

you can be
after you

are
proficient

Investment to be proficient with your editor

emacsvi

Everything
else

Vi has two modes

• Command mode
– When you type keystrokes, they are telling vi a

command you want to perform, and the
keystrokes don’t appear in the file

• Edit mode
– When you type keystrokes, they appear in the file.

Transitioning between modes

• Command mode to edit mode
– i: enter into edit mode at the current cursor

position
– a: enter into edit mode at the cursor position

immediately to the right of the current position
– I: enter into edit mode at the beginning of the

current line
– A: enter into edit mode at the end of the current

line

There are other ways to enter edit mode as well

Transitioning between modes

• Edit mode to command mode
– Press Escape

Useful commands

• yy: yank the current line and put it in a buffer

– 2yy: yank the current line and the line below it

• p: paste the contents of the buffer

– 2pp: past the contents of the buffer two times

• x: delete the character at the current cursor

• “:100” go to line 100 in the file

• Arrows can be used to navigate the cursor

position (while in command mode)

– So do h, j, k, and l

We will discuss more tips for “vi” throughout the quarter.

They will mostly be student-driven (Q&A time each class)

My first vi sequence

• At a shell, type: “vi cis330file”
• Press ‘i’ (to enter edit mode)
• Type “I am using vi and it is fun” (text appears

on the screen)
• Press “Escape” (to enter command mode)
• Press “:wq” (command mode sequence for

“write and quit”)

http://www.viemu.com/vi-vim-cheat-sheet.gif

vimtutor

• Past students have liked vimtutor

Project 1A

• Practice using an editor
• Must be written using editor on Unix platform
– I realize this is unenforceable.
– If you want to do it with another mechanism, I

can’t stop you
• But realize this project is simply to prepare you for later

projects

Project 1A

• Write >=300 words using editor (vi, emacs,
other)

• Topic: what you know about C programming
language

• Can’t write 300 words?
– Bonus topic: what you want from this course

• How will you know if it is 300 words?
– Unix command: “wc” (word count)

Unix command: wc (word count)

(63 = lines, 252 = words, 1071 = character)

Don’t forget

• This lecture is available online
– http://ix.cs.uoregon.edu/~hank/607

• All project prompts are available online

http://ix.cs.uoregon.edu/~hank/607

Hank Childs, University of OregonOct 3rd, 2022

CIS 607:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 1.2:
Memory in C

Plan for today

• Baby steps into C and gcc
• Memory

GNU Compilers

• GNU compilers: open source
– gcc: GNU compiler for C
– g++: GNU compiler for C++

Our first gcc program

Invoke gcc compiler

Name of file to compile

gcc’s default name for output programs

You should use this for Proj 2A

Unix command that
prints contents of a file

Plan for today

• Baby steps into C and gcc
• Memory

Reading

• 4.1 (but NOT 4.1.2 … covered later)

• 4.2

• 4.3-4.5.2 (what I assume you know from 314)
– NOT 4.5.3 to 4.5.8

• 4.6: today’s lecture

Why C?

• You can control the memory
• That helps get good performance

• If you don’t control the memory (like in other
programming languages), you are likely to get
poor performance

• … so let’s talk about memory

Motivation: Project 2A

Important Context

• Different types have different sizes:
– int: 4 bytes
– float: 4 bytes
– double: 8 bytes
– char: 1 byte
– unsigned char: 1 byte

Important Memory Concepts in C (1/9):
Stack versus Heap

• You can allocate variables that only live for the
invocation of your function
– Called stack variables (will talk more about this

later)
• You can allocated variables that live for the

whole program (or until you delete them)
– Called heap variables (will talk more about this

later as well)

Important Memory Concepts in C (2/9):
Pointers

• Pointer: points to memory location
– Denoted with ‘*’
– Example: “int *p”

• pointer to an integer
– You need pointers to get to heap memory

• Address of: gets the address of memory
– Operator: ‘&’
– Example:

int x;
int *y = &x;

Important Memory Concepts in C (3/9):
Memory allocation

• Special built-in function to allocate memory
from heap: malloc
– Interacts with Operating System
– Argument for malloc is how many bytes you want

• Also built-in function to deallocate memory:
free

free/malloc example
Enables compiler to see functions that aren’t in this file. More on this next week.

sizeof is a built in function in C. It
returns the number of bytes for a
type (4 bytes for int).

don’t have to say how many bytes
to free … the OS knows

Important Memory Concepts in C (4/9):
Arrays

• Arrays lie in contiguous memory
– So if you know address to one element, you know

address of the rest
• int *a = malloc(sizeof(int)*1);
– a single integer
– … or an array of a single integer

• int *a = malloc(sizeof(int)*2);
– an array of two integers
– first integer is at ‘a’
– second integer is at the address ‘a+4’

• Tricky point here, since C/C++ will refer to it as ‘a+1’

Important Memory Concepts in C (5/9):
Dereferencing

• There are two operators for getting the value
at a memory location: *, and []
– This is called deferencing
• * = “dereference operator”

• int *p = malloc(sizeof(int)*1);

• *p = 2; /* sets memory p points to to have value 2 */

• p[0] = 2; /* sets memory p points to to have value 2 */

Important Memory Concepts in C (6/9):
pointer arithmetic

• int *p = malloc(sizeof(int)*5);
• C/C++ allows you to modify pointer with math

operations
– called pointer arithmetic
– “does the right thing” with respect to type

• int *p = malloc(sizeof(int)*5);
• p+1 is 4 bytes bigger than p!!

• Then:
– “p+3” is the same as “&(p[3])” (ADDRESSES)
– “*(p+3)” is the same as “p[3]” (VALUES)

Important Memory Concepts in C (7/9)
Pointers to pointers

• int **p = malloc(sizeof(int *)*5);
• p[0] = malloc(sizeof(int)*50);
• ….

p
p[0] p[1] p[2] p[3] p[4]

50 integers…
p[0][0]

Important Memory Concepts in C (8/9):
Hexadecimal address

• Addresses are in hexadecimal
• int *A = 0x8000;
• Then A+1 is 0x8004. (Since int is 4 bytes)

Important Memory Concepts in C (9/9)

NULL pointer

• int *p = NULL;

• often stored as address 0x0000000

• used to initialize something to a known value

– And also indicate that it is uninitialized…

Project 2A

• You now know what you need to do Project 2A
– But: practice writing C programs and testing

yourself!!
– Hint: you can printf

with a pointer

Project 2A

• Assigned now
• Worksheet. You print it out, complete it on

your own, and bring it to class.
• Due Monday 10am in class
• Practice with C, vi, gcc, printf

Memory Segments

• Von Neumann architecture: one memory
space, for both instructions and data

• à so break memory into “segments”
– … creates boundaries to prevent confusion

• 4 segments:
– Code segment
– Data segment
– Stack segment
– Heap segment

Code Segment

• Contains assembly code instructions
• Also called text segment
• This segment is modify-able, but that’s a bad

idea
– “Self-modifying code”
• Typically ends in a bad state very quickly.

Data Segment

• Contains data not associated with heap or
stack
– global variables
– statics (to be discussed later)
– character strings you’ve compiled in

char *str = “hello world\n”

Stack: data structure for collection

• A stack contains things
• It has only two methods: push and pop
– Push puts something onto the stack
– Pop returns the most recently pushed item (and

removes that item from the stack)
• LIFO: last in, first out

Imagine a stack of trays.
You can place on top (push).

Or take one off the top (pop).

Stack

• Stack: memory set aside as scratch space for
program execution

• When a function has local variables, it uses
this memory.
– When you exit the function, the memory is lost

Stack

• The stack grows as you enter functions, and
shrinks as you exit functions.
– This can be done on a per variable basis, but the

compiler typically does a grouping.
• Some exceptions (discussed later)

• Don’t have to manage memory: allocated and
freed automatically

Heap

• Heap (data structure): tree-based data
structure

• Heap (memory): area of computer memory
that requires explicit management (malloc,
free).

• Memory from the heap is accessible any time,
by any function.
– Contrasts with the stack

Memory Segments

Source: http://www.cs.uwm.edu/classes/cs315/Bacon/

Stack vs Heap: Pros and Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
stack_varA
stack_varB

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info for how to get
back to main>
A (= 3)
<Location for RV>

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info for how to get
back to main>
A (= 3)
<Location for RV>
stack_varA

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info for how to get
back to main>
A (= 3)
<Location for RV>
stack_varA

Return copies into
location specified
by calling function

How stack memory is allocated into
Stack Memory Segment

Code

Data

Heap

Stack

Free

stack_varC = 6
stack_varD = 3

This code is very problematic … why?

foo and bar are returning
addresses that are on the
stack … they could easily

be overwritten
(and bar’s stack_varD

overwrites foo’s
stack_varC in this

program)

Nested Scope

Code

Data

Heap

Stack

Free

stack_varA

Nested Scope

Code

Data

Heap

Stack

Free

stack_varA
stack_varB

Nested Scope

Code

Data

Heap

Stack

Free

stack_varA

You can create new scope
within a function by adding

‘{‘ and ‘}’.

Stack vs Heap: Pros and Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Memory pages associated
with stack are almost
always immediately

available.

Memory pages associated
with heap may be located

anywhere ... may be
caching effects

Stack vs Heap: Pros and Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Variable scope Limited Unlimited

Variable scope: stack and heapfoo is bad code … never
return memory on the
stack from a function

bar returned memory
from heap

The calling function –
i.e., the function that

calls bar – must
understand this and take
responsibility for calling

free.

If it doesn’t, then this is
a “memory leak”.

Memory leaks

Code

Data

Heap

Stack

Free

stack_varA

It is OK that we are using the heap … that’s what

it is there for

The problem is that we lost the references to

the first 49 allocations on heap

The heap’s memory manager will not be able to

re-claim them … we have effectively limited the

memory available to the program.

Running out of memory (stack)
Code

Data

Heap

Stack

Freestack overflow: when the stack runs into the heap.
There is no protection for stack overflows.

(Checking for it would require coordination with the
heap’s memory manager on every function calls.)

Running out of memory (heap)
Code

Data

Heap

Stack

FreeIf the heap memory manager
doesn’t have room to make an
allocation, then malloc returns
NULL …. a more graceful error

scenario.

Allocation
too big …

not enough
free

memory

Stack vs Heap: Pros and Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Variable scope Limited Unlimited

Fragmentation No Yes

Memory Fragmentation

• Memory fragmentation: the memory
allocated on the heap is spread out of the
memory space, rather than being
concentrated in a certain address space.

Memory Fragmentation
Code

Data

Heap

Stack

Free

Negative aspects of fragmentation?
(1) can’t make big allocations

(2) losing cache coherency

Fragmentation and Big Allocations
Code

Data

Heap

Stack

Free

Even if there is lots of memory
available, the memory manager can
only accept your request if there is a

big enough contiguous chunk.

Stack vs Heap: Pros and Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Variable scope Limited Unlimited

Fragmentation No Yes

Memory Errors

• Array bounds read

• Array bounds write

Memory Errors

• Free memory read / free memory write

When does this happen in real-world scenarios?

Memory Errors

• Freeing unallocated memory

When does this happen in real-world scenarios?

Vocabulary: “dangling pointer”: pointer that points to memory
that has already been freed.

Memory Errors

• Freeing non-heap memory

When does this happen in real-world scenarios?

Memory Errors
• NULL pointer read / write

• NULL is never a valid location to read from or
write to, and accessing them results in a
“segmentation fault”
– …. remember those memory segments?

When does this happen in real-world scenarios?

Memory Errors

• Unitialized memory read

When does this happen in real-world scenarios?

