Intro to WegGL: Vertex & Fragment Shaders

February 28, 2019

This document provides an introduction to WebGL using Vertex & Frag-
ment shaders. First fragment shaders are introduced using an online editor. An
example of rendering a circle using only fragment shaders is examined. Second,
vertex shaders with fragment shaders are introduced using a locally hosted web-
page. Two examples of vertex/fragment shader combinations are examined. At
the end of the document, the reader should understand how vertex and fragment
shaders are connected and used.

1 Requirements

WebGL provides an OpenGL implementation for webpages that will use hard-
ware acceleration for rendering. In order to verify that your browser, os, and
hardware stack are working correctly: please load the following web page http:
//glslsandbox.com and select a shader example. You should see an image that
is rendered using WebGL and the select fragment shader. This webpage will be
used for the first

A locally hosted webpage will be used for the second examples. All html, js,
obj, and png files are provided here: https://www.dropbox.com/s/braoyjidnepfim57/
ProjectG.zip?d1=0. In order to run the webpage, open a console in the direc-
tory with the provided file. Run the following command to start a local host
webserver:

e Python2: python -m SimpleHTTPServer 12345
e Python3: python -m http.server 12345

Open a web browser and navigate to the following webpage: http://localhost:
12345/projectg.html and validate that the example is working.

2 Shaders

The OpenGL pipeline takes a vertex specification, such as model geometry, and
a series of shaders (small programs written in shader language), starting with
the vertex shader and ending with the fragment shader, to output pixels. At


http://glslsandbox.com
http://glslsandbox.com
https://www.dropbox.com/s/braoyji4ne6im57/ProjectG.zip?dl=0
https://www.dropbox.com/s/braoyji4ne6im57/ProjectG.zip?dl=0
http://localhost:12345/projectg.html
http://localhost:12345/projectg.html

minimum a fragment shader must be specified to render pixels, and model ge-
ometry requires both a vertex shader and fragment shader. Additional shader
layers that will not be covered, provide transformations to tessellation (subdi-
vision of vertices), geometry manipulation, and the catchall compute shader.

Working backwards through the pipeline each pixel is rendered by a fragment
shader, this will be examined first to create a simple circle on the screen and
calculate shaded lighting on sphere. Interesting overlay effects can be achieved
in the fragment shader, simple shaded coloring, textures, rippling luminosities
etc. The first example fragment shaders applied to the whole screen. The
second example applies a different fragment shader to the waves and teapot.
Creating complex lighting, color, and effects in a screen requires the composition
of multiple fragment shaders applied to the results of multiple vertex shaders.

Two vertex/fragment shaders are then examined. The first vertex shader
simply passed geometry directly though and is paired with a scaled lighting
fragment shader. The second vertex shader creates waves on a surface and is
paired with a texture mapping fragment shader.

3 Fragment Shader: Circle & Sphere Lighting

The example Circle and Sphere Lighting shaders can be found at http://
glslsandbox.com/e#52974.0and http://glslsandbox.com/e#52975.0|respec-
tively.

Normally fragment shaders are used to calculate color, texture, and lighting
information to produce a final pixel color. For the example Circle shader, the
distance from the center of the screen is calculated and pixels are colored either
red or grey. Assigning gl FragColor in the fragment shader is mandatory to
render any pixel. There are other built in variables in the fragment shader spec
that are not examined.

The surfacePosition variable is bound by the GLSLsandbox program, the
screen can then zoom and scroll over the surface. The starting screen to surface
position is from (-1,-1) to (1,1) with (0,0) at the center. The circle is drawn by
calculated the distance from the center, and either rendering the pixel red if the
distance is less then the radius of the circle, or grey otherwise.

The Sphere lighting shader starts with the circle shader and calculates a
lighting model for each pixel. This example assumes there is a sphere lo-
cated at (0,0,0) with radius 0.5, and a fixed light position at (2,2,2). At each
pixel/surfacePosition, the sphere surface point (X,Y,Z) is solved. Then the light
direction vector to the sphere surface point is used to solve the shading to apply
to the color red.

These two examples demonstrate the basics of fragment shading to deposit
colors in gl FragColor. The next two examples have simple fragment shaders
to calculate light shading and use texture maps. Complex lighting, coloring,
and texturing are achieved in fragment shaders, its even possible to create the
illusion of surface geometry in this layer, as demonstrated by the Sphere lighting
example.


http://glslsandbox.com/e#52974.0
http://glslsandbox.com/e#52974.0
http://glslsandbox.com/e#52975.0

4 Vertex & Fragment Shader: Textured Waves

The next vertex/fragment shaders are located in projectg.html. The remaining
code is to load geometry and textures, bind them, compile the shaders, and link
them together in the program to create the rendered image.

The fragment shader is a simple texture mapping shader. The variable
vTextureCoord is output by the vertex shader and uSampler bound in the calling
program. The function simply maps the location of uSampler to the texture
location, and colors the fragment with the texture color by setting gl_FragColor.

The vertex shader for the waves takes a flat plane for geometry and trans-
forms the vertex based on the distance from the origin. aPosition is the original
vertex location in the plane geometry and transforms the location with sin/cos.
The transformed vertex is moved and positioned by multiplying by the uP-
Matrix and uMVMatrix matrix respectively, these are bound variables in the
calling program. The final vertex position is assigned by setting gl Position,
this is mandatory for a vertex shader.

5 Vertex & Fragment Shader: Teapot

The vertex shader for the teapot simply transforms the teapot vertex geometry
to the position specified by uMVMatrix, uNMatrix, and uPMatrix. These ma-
trix transforms are variables that are bound in the calling program. The heavy
work of constructing the matrices to transform by is done in the calling pro-
gram. This vertex shader has simply moved the teapot geometry to the correct
location.

The fragment shader for the teapot colors the surface of the teapot with dif-
ferent intensity colors based on a light source. Starting with the vertex position
from the vertex shader, a 4d vertex: normalize and dividing by w to calculate
the surface position in world coordinates. The light position and surface po-
sition direction are used to calculate a shading/intensity value. Depending on
the intensity calculated, a color value is selected to color the gl _Fragment.

Implementing a smoothly colored & shaded surface can be quickly achieved
by changing how the gl_FragColor is calculated. Currently the intensity value is
used to select from 4 color values. Selecting a single color instead such as vecd
red_color = vec4(1.0,0.0,0.0,0.0). Then scale the colors values by the intensity,
such as red_color.x = red_color.x * intensity, lastly set gl FragColor =red_color
to set the smoothly shaded color.

6 Shading Pipeline

The reader should now have an understanding of how the new opengl pipeline
works. The calling program loads vertex & texture data, binds them, compiles
shaders, then composes them together to create a rendered scene. Only vertex
& fragment shaders have been examined, the first and last stage of the opengl
pipeline respectively.



	Requirements
	Shaders
	Fragment Shader: Circle & Sphere Lighting
	Vertex & Fragment Shader: Textured Waves
	Vertex & Fragment Shader: Teapot
	Shading Pipeline

