
CIS 441/551: Project #1G
Gray Scale Shading and Edge Detection with CUDA

Instructions: You will be converting an image to grey scale and ap-
plying an edge detection filter to your output using CUDA 10.

1. You can use the skeleton code provided to you, called project1G.cu

2. You will be responsible for handling all memory allocations to and
from the device. Don’t forget to free memory!

3. You will also be responsible for writing the grey scale shader. You
must use the correct luminosity equation (see below)

4. Comments are provided to you in the code to help you out. Read
over them before you begin typing. You can change any code you
wish, as long as your image is the same, BUT you only need to
add code and the comments will tell you where to place certain
things, ensuring that you have the correct order of operations (this
is very important).

5. You should not expect a pixel perfect image. Expect the reference
image to match by eye.

6. After you have successfully created the greyscale image you will
want to start working on the Sobel Operator. The x and y kernels
that you should use are already provided to you. You will imple-
ment the correct math operation using the correct indexes. You
will have to do a double for loop to get this working. The rest is
provided for you. Figuring out the right indexing is key here.

7. You will turn in a tarball with your code. Your code should gen-
erate two images: a greyscale image and a Sobel image.

1



Hints: Where to start? There is a lot of documentation around
for cuda. I would suggest searching the internet and find a source
that makes sense to you (sometimes it just takes another source).
Some helpful links are Nvidia’s documentation and The Supercom-
puting Blog. Both these resources contain all the information needed
to complete the task.
Luminosity: The human eye does not see all colors with the same
magnitude. The center of our color vision is near yellow-green, and
colors closer to that will appear brighter. Thus we can’t just average
the RGB colors and get an accurate looking image (try it). The correct
formula to use is

L = 0.21 ∗Red + 0.72 ∗Green + 0.07 ∗Blue (1)

You can see here that we have higher preferences to green and the
lowest preference to blue, just like in the natural world.
Sobel Filter: You will implement an edge detection algorithm on
the grayscale image produced in part one. The sobel filter is a pair
of masks (or matrices), X and Y, that detect horizontal and vertical
edges respectively.

X =

 −1 0 1
−2 0 2
−1 0 1


Y =

 −1 −2 1
0 0 0
−1 2 1


The filter works by convolving both the horizontal edge detection mask
and vertical edge detection mask pixelwise over the input image to pro-
duce estimations for the gradient of the image around a pixel in the x
and y directions.

The final transformed pixel value is based on the magnitude of the
gradient vector. If the magnitude is greater than a user defined thresh-
old value, then the final transformed pixel value is 255, otherwise it
is 0. After convolving the masks over all pixels the output image will

2

https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
http://supercomputingblog.com/cuda/cuda-tutorial-1-getting-started/
http://supercomputingblog.com/cuda/cuda-tutorial-1-getting-started/


contain only edge information. Your task is to implement the sobel
operator via an additional kernel in your program.

Andrew Ng’s deep learning course provides a good visualization of
the edge detection algorithm, here. In his example, he uses slightly
different values for his vertical and horizontal masks, do not worry
about that, stick with the masks shown above. This is another good
resource showing how to compute the convolution of a matrix over an
image patch. If you have any questions feel free contact Amnay at
aamimeur@cs.uoregon.edu.
Compiling: Compile with the command

nvcc -o project1G{,.cu} ‘pkg-config --cflags --libs opencv‘

This command will work on Ubuntu systems. If you are using another
system then you will need to add the same cflags and libs that opencv
requires. Note that we are using the back-tick, ‘, which is (probably)
located at the top left of your keyboard, left of the 1 key.
Getting a GPU: If you don’t have access to a GPU please email
swalton2@uoregon.edu with the title ”Alaska Access: 441” and an ac-
count will be created for you and instructions will be provided on how
to access the GPU.
Checking with CPU: If you decide to check your result with a CPU
you will not get a pixel perfect representation. It is normally a good
idea to check results like this, but your images will have differences
unless you take into account FMA instructions (on the GPU). More
documentation can be found in the cuda documentation. You can also
email Steven if you need to edit your code to perform this check.

3

https://www.youtube.com/watch?v=XuD4C8vJzEQ
http://www.songho.ca/dsp/convolution/convolution2d_example.html
https://docs.nvidia.com/cuda/floating-point/index.html#axzz42SnDmIrm

