
Introduction to Physically Based Rendering
Walt O’Connor

What is possible with a full PBR pipeline

Section 1: What is PBR (Physically Based Rendering)
Physically Based Rendering attempts to roughly model how light works in reality by simulating

light and the material it is striking using physical properties about the material (compared to

something like Phong shading, where a number of parameters with little connection to the

physical properties of the material being simulated are tweaked until you have a somewhat

convincing replica). Physically based rendering has existed as an idea since the 80s, however it

only saw implementation in industry starting in the early 2010s. Nowadays it is ubiquitous in

games and film, and most popular game engines ship with an extensive PBR pipeline by default

these days (this is what you are using in Unity). PBR is not a specific set of equations and code

used for rendering the way Phong shading is, rather it is a set of concepts and approaches that

can be applied in different ways depending on the demands of the system being implemented.

The techniques and approximations we will be implementing today are rooted primarily in work

done at Epic Games on Unreal Engine, and Disney for their animated films.

A normal PBR workflow includes Roughness, Metallicity, Normal Mapping, Ambient Occlusion

and Image Based Lighting (Cubemaps), however we will only be covering Roughness and

Metallicity, as Ambient Occlusion is trivial to implement if you have baked output from your 3D

modeling program, Normal Mapping requires substantial modification to your input code to

compute tangent spaces, and implementing Cubemaps would probably take longer than the rest

of this project combined. Some advanced workflows also include a Displacement Map which

gets fed to a tessellation shader to add triangles to the scene in order to simulate surface

features, but that is far beyond the scope of this work.

Normal PBR input textures

PREREQUISITES:
You need to have a model on hand that has accurate UV/texture coordinate mapping. You need

to be able to successfully load textures and provide them to your shader. The textures I provide

are in a number of different formats (the albedo is 8 bit RGB while the metallic and roughness

are 16 bit grayscale), and you need to be able to read these and make OpenGL understand

what the bytes you are giving it mean (or just convert everything to 8 bit RGB before giving it to

OpenGL like I did). In your fragment shader main function, I expect there to be:

vec3 albedo = texture(albedo_tex, tex_coords);

float roughness = texture(roughness_tex, tex_coords).r;

float metallic = texture(metallic_tex, tex_coords).r;

If you don’t have this setup you might have to adapt what you are doing to match your inputs.

We are making the incorrect assumption that every vertex in your model is the same distance

from the source light (this is how you model a directional light), and the distance will be

computed from the vector to your light, so you should pass the unnormalized vector to the light

in, use it to compute intensity, and then normalize it.

This assignment consists of two parts: getting the texturing working (part 1) and getting
the shader working (part 2). These instructions only cover part 2. THERE IS A TO DO
LIST ON THE LAST PAGE COVERING EXACTLY WHAT YOU NEED TO DO FOR BOTH
PARTS.

Section 2: Fundamental Ideas Behind PBR
At a foundational level, Physically Based Rendering typically entails two fundamental concepts:

1. The microfacet surface model
2. Energy conservation

The Microfacet Surface Model:

A “smooth” object under a microscope
For physically based rendering, surfaces are treated as a jagged collection of microscopic
perfectly reflective mirrors. The Roughness parameter controls the bumpiness of the surface at
a microscopic level. This would obviously be completely impractical to compute, so instead a
statistical approximation is used to model how much a surface of a given roughness would
reflect to a camera at a given position, given a light at another position. In general a smooth
surface will tend to reflect light directly along the reflection vector, while a rough surface will
scatter it in many directions. A perfectly rough surface has Lambertian properties.

Specular reflection occurs at Roughness = 0, Diffuse at Roughness = 1, and spread anywhere
in between.

Appearance of a gray sphere at different levels of roughness, notice that the size of the
reflection increases with roughness.

Energy Conservation:
The above diagram gives rise to an interesting observation: energy is conserved. The specular
highlight on the smooth sphere is very tight and bright, but the highlight on the rough sphere is
very large and dim. Ultimately the same amount of light is making it to the camera for every
sphere, but where it comes from is different. This is obviously consistent with how real light
interacts with objects, but it is a large development over the Phong model where the specular
highlights would trivially violate conservation of energy and you had to manually tune them
down with the Ks parameter. At this point we have to start making a distinction between diffuse
refraction and specular reflection: when light hits an object, part of it is reflected immediately
(specular), and some of it enters in to the surface of the object where it is bounced around
(refracted) until it exits the object some distance away from where it entered. For this project we
are assuming opaque objects so we can make the assumption that light will exit the object fairly
close to where it entered, but if you want to start modeling transparent or more complex
materials (skin) then this assumption no longer holds and you need to use refractance
equations and subsurface scattering to model the light. It is important to note that refraction and
reflection must be mutually exclusive in order to maintain conservation of energy (i.e.
light_refracted + light_reflected = light_in)

Yellow light is reflected, red light is refracted, some is absorbed by the object

Aside 1: Metallicity
Everyone knows metals interact with light differently than dielectrics (non-electrically
conductive/non metallic objects), especially graphics artists trying to recreate the appearance of
metal, but far fewer people know what makes metal’s interaction with light so unique. It’s
actually quite simple: any light that is not immediately reflected off a metal is entirely absorbed
(all the red arrows disappear in the above diagram). The reason this happens is also quite
simple: electromagnetic waves can not travel through electrical conductors, instead they are
absorbed and induce an electrical current. This is also why we call non-metallic materials
dielectrics in PBR--they look the way they do because they don’t conduct electricity. This means
that most metals have little to no diffuse component, and instead they just reflect light (and their
color comes from which wavelengths of light they are prone to absorbing and reflecting).

Generally materials are either fully metallic or fully dielectric, but metallicity is represented as a
range between 0 and 1 rather than a binary because many materials are composites of metallic
and nonmetallic components, and the range lets you describe the composition of the material.

The Reflectance Equation
If you want to model the reflection and refraction of light, you need something called the
reflectance equation, which looks like this:

DON’T GET SCARED, WE ARE GOING TO COMPLETELY ELIMINATE THAT INTEGRAL IN
ONE STEP
(If you do want to scare yourself, this is a specialized and simplified form of the render equation,
https://en.wikipedia.org/wiki/Rendering_equation).
This equation tries to tell us the intensity of the light leaving a surface through a hemisphere Ω,
given:

Luckily, we only need to worry about the integral when our light sources are not point lights (you
have to integrate the light coming in across the area of the surface the light is leaving from for
non-point lights). If you assume just point lights, it becomes a sum over each point light where

is direction to the current light. If we consider only a single point light, we don’t even need toω
𝑖

have the sum, we just have the equation:

Let’s tackle the easiest part first (THIS IS WHERE YOU NEED TO START CODING YOUR
FRAGMENT SHADER): 𝑛・ω

𝑖

The provided starter code provides an UNNORMALIZED vector to the camera and to the light
and assumes you are not rotating the model.

Next we do the middle term:
is very simple, that is just the intensity of light at point , which can be trivially determined𝐿

𝑖
𝑖 𝑝

using the inverse square law:

https://en.wikipedia.org/wiki/Rendering_equation

The starter code passes in an un-normalized vector to the light, and this is the same for every
vertex since we are modeling a directional light rather than a point light, so you should use that
as the distance. I used a light intensity of 30 and that seemed to work well, if your model is all
white or all black, try varying this before thinking you made a mistake.

Finally we get to that equation. This is known as the Bidirectional Reflective Distribution𝑓
𝑟

Function. We are using the Cook-Torrance approximation for the BRDF:

The value for albedo should be provided for you already if you are using my starter code,
otherwise it is just the color of the diffuse texture at that point.

Cook and Torrance were kind enough to also give us an approximation for the specular part of
the Cook-Torrance BRDF:

Now things are getting fun. The denominator is fairly self explanatory, just make sure to
normalize all your vectors before dotting them. For ALL equations with fractions, ensure to
bound the denominators below at like 0.0001 so that you don’t divide by zero. I found that I had
to do to get it to look right, if your model is entirely black on the shaded side, the− 1 * ω

𝑖

denominator might be the problem.
The numerator has three parts, D, F, and G, which we will cover in the next few sections.

D: This is the Normal Distribution Function, which does the math that actually approximates the
microfacets given surface roughness. We will use the Trowbridge-Reitz GGX approximation:

The only term you don’t have immediately available here is , which is the halfway vector:ℎ

It is just a vector halfway between the light and view vector, very useful for speeding up certain
lighting computations. The function stub for this should already be prepared, so just fill it out and
you should be in business.

This is the equation that generates the chart from earlier:

We have a problem now, notice how in the above the perfectly rough surface is still illuminated
even where it is in shadows. This is because we have no model of the microsurfaces getting in
the way of each other when reflecting light. Enter…
G: The Geometry function.

We need a statistical model of microsurfaces blocking each other from reflecting light back at
the camera, and this function will provide it. We use the Schlick-GGX approximation:

Where is a vector to the camera. This works to model geometry obstruction, but we still need𝑣
to model geometry shadowing. Remember to bound the denominator below at some small value
(I used 0.0001) so that you don’t end up dividing by 0. Luckily we can use the same equation
again but replace the vector to the camera with the vector towards the light. If we do both of
these and multiply them, we get a more accurate model of the surface geometry obstructing the
light. This is known as Smith’s Method:

Again, these all have function stubs, so just fill the function contents out and you should be good
to go (Smith’s Method becomes G in your Cook-Torrance equation). This equation models how
shadows are harder or softer against a surface depending on how rough it is:

Finally we have…
F: The Fresnel equation.
As the angle between the camera and a surface approaches 90 degrees, the surface becomes
more and more reflective until it is perfectly reflective at 90 degrees regardless of roughness.
This is modeled using the Fresnel equation. In the past (up through 2013ish by my own
recollection), artists would provide a texture describing the Fresnel effect for each somewhat
reflective material (particularly for water where the changing color of waves depending on height
was modeled using the Fresnel effect)

Sphere with all lighting other than the Fresnel effect disabled

The preset Fresnel color for water in Unity3D version 3
About a decade ago, it was determined that the Fresnel effect for all dielectric materials was
more or less the same and could be easily computed using the Fresnel-Schlick approximation:

is typically computed using a surface’s index of refraction, but since metals don’t really refract𝐹
0

you can’t compute it like that. Instead people get really cheap and compute differently𝐹
0

depending on the metallicity: for very metallic surfaces, they replace the pixel values in the
albedo texture with the value since metals don’t really have albedo values (you can see this in𝐹

0

a lot of PBR metal materials that have very strange colors in the albedo texture, it’s because
they are feeding in the via the albedo texture). For dielectric materials, is typically really𝐹

0
𝐹

0

low, like 0.04-0.08. To implement this in code, lerp between (0.04, 0.04, 0.04) and (albedo_r,
albedo_g, albedo_b) based on the metallic value (such that metallic=0 will return (0.4,0.4,0.4),
and metallic=1 will return the albedo) and use that as .𝐹

0

Table of precomputed values𝐹
0

At this point you should have all the parts of your Cook-Torrance specular equation finished, and
thus your overall Cook-Torrance BRDF equation is finished. You aren’t quite done yet as you still
haven’t determined and , luckily can just be set to the output from the Fresnel𝑘

𝑠
𝑘

𝑑
𝑘

𝑠

approximation, and is just . Remember that metallic objects don’t refract light thus they𝑘
𝑑

1 − 𝑘
𝑠

don’t have diffuse components, so you also need to multiply by𝑘
𝑑

1 − 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐

Finally, you need to do some tone mapping as currently there is no upper limit on the value your
Cook-Torrance BRDF produces, this is easily solved by using the abasic tone mapping equation
color = color / (color + vec3(1.0));
which will bound your output between 0 and 1 (color is just the output of your BRDF), and you
might be inclined to gamma correct your output (we are working in a linear color space, but they
eye sees light differently, so we map the colors in to eyeball color space):
color = pow(color, vec3(1.0/2.2));
You should have a fairly realistic looking (though somewhat flat surface). I have provided a
number of materials to check out, and you can find more at https://ambientcg.com/ if you want
to play around more.

https://ambientcg.com/

Concrete textures I provided mapped on to a ball with normal mapping

Your objects will not look super realistic yet because they have nothing to reflect (you need cube
mapping for that), and they aren’t very bumpy (you need normal mapping for that). Normal
mapping can be implemented using only a shader, if you google around for a bit you might be
able to find some code to copy paste in so you can get the full effect (it should perturb the view
vector at the beginning of your fragment shader and then propagate that through the rest of the
shader). I have provided normal maps for you so you can do this if you want.

TODO LIST:
(images are generated by setting the fragment color to the output of their respective functions,
using MetalPlates006_1K_*.png as texture inputs)

1. GET TEXTURE LOADING WORKING
(ctrl-f “TODO” in pbr.cxx and fill all of them in, they should look like this when drawn on
the sphere with no shading, check the note in “uint8_t* load_images(...)” to see how to
handle grayscale inputs)

Albedo Roughness Metallic

2. Set up LightIntensity
3. Set up HalfwayVec

4. Compute NdotL

5. Compute D (TrowbridgeReitzGGX)

6. Set up GeometrySchlickGGX
7. Compute G (Smith’s Method)

8. Set up lerp between F0 and Albedo

9. Compute F (Fresnel Schlick)

10. Compute the full specular (DGF/(4*CdotN*NdotL))

11. Compute full BDRF (CookTorrance)

12. Compute full reflectance equation

DONE

