
CIS	441/541:	Project	#3B	

Goal:	Extend	the	starter	to	create	realistic	collision	responses	among	spheres	in	3D	space.	In	addition	to	
these	collisions,	you	will	vary	the	following	attributes	of	the	spheres	in	response	to	collisions	and	ticks:	

(1) Color	
(2) Size	

	Steps:		

1. Modify	your	CMakeLists.txt	to	work	with	the	starter	code.	
2. Compile	and	run	the	code.	You	should	see	a	single,	unlit	sphere	(left).		Now	copy	over	your	code	

for	Phong	shading	into	the	vertex	shader.		You	should	now	see	the	single	sphere	as	lit	(right).	

	
	

3. We’re	going	to	start	by	making	the	sphere	move.	The	sphere	has	several	attributes	you	should	
take	note	of	–	position,	direction,	color,	radius,	and	time	since	collision.	We	can	use	the	
direction	attribute	to	update	the	position	each	tick.	Then	by	drawing	the	sphere	at	the	new	
location,	we	can	create	movement.	Uncomment	the	code	labeled	“STEP	3”.	This	is	basic	code	to	
keep	the	ball	inside	of	a	general	box	by	“bouncing”	it	off	the	walls.	We’ll	come	back	to	it	later	
but	for	now	we	will	move	on.	Compile	and	run	the	code,	and	you	should	see	your	ball	bounce	
off	a	wall	or	two.	

4. Now	let’s	get	to	implementing	the	collision.	You	should	notice	the	main	code	already	performs	a	
rudimentary	collision	detection	–	each	sphere	checks	every	other	sphere	to	see	if	a	collision	has	
happened.	This	is	fine	for	our	purposes,	but	right	now	it	doesn’t	do	anything.		
To	properly	detect	the	collision,	update	the	LookForCollision	and	getDistance	functions	so	we	
can	tell	if	two	spheres	are	overlapping.	(HINT:	distance	is	measured	from	the	center	of	one	
sphere	to	the	center	of	the	other.	What	is	the	smallest	the	distance	can	be	before	they	touch?)	

5. Update	the	color	of	the	spheres	when	they	collide	(Use	whatever	colors	you	want).	If	you	add	
more	spheres	(edit	“numSprites”	in	the	main	function)	you	should	notice	they	pass	through	each	
other,	but	change	colors	when	touching.	

6. Now	that	the	collision	detection	is	working,	we	need	to	implement	the	collision.	Call	the	
function	collideDir	when	a	collision	is	detected	instead	of	changing	colors.	This	function	should	



take	the	position	and	direction	of	both	spheres	involved	in	the	collision,	and	update	them.	To	do	
so,	we	will	need	to	implement	that	function.	

7. Implement	collideDir.	This	involves	the	following	steps:	
a. Calculate	the	normalized	normal	vector	N	between	the	two	balls	
b. Calculate	the	relative	velocity	vector	between	the	two	balls	
c. Calculate	the	relative	speed	along	the	normal	vector		
d. Modify	both	ball’s	direction	by	the	relative	speed		

This	is	an	elastic	collision	between	two	circles	in	2D	space	generalized	to	spheres	in	3D.	For	a	
more	in-depth	explanation,	see	the	comments	in	the	function			

8. Compile	this	code	with	fifteen	balls	and	run.	You	should	be	able	to	observe	some	bounces	
between	the	balls.	Since	that	can	be	difficult	to	see,	after	1000	ticks	you	should	see	something	
like	the	following:	

	

	

9. Now	we	are	going	to	vary	color	and	size	with	collisions.	After	each	collision,	modify	color	
according	to	the	following	formula:	

color[0]	+=	0.7	*	(1-color[0])	
color[1]	-=	0.1	*	color[1]	
color[2]	-=	0.1	*	color[2]	

	 Additionally,	each	50	ticks	without	a	collision,	modify	the	color	as	follows:	

color[0]	-=	0.05*color[0]	
color[1]	+=	0.35*(1-color[1])	
color[2]	+=	0.35*(1-color[2])	

	 Compile	and	run	the	code.	You	should	observe	the	color	of	the	balls	changing	as	they	collide.	

10. 	Finally,	modify	the	size	of	the	spheres	in	a	similar	manner.	Every	collision	should	reduce	the	
radius	of	the	sphere	by	the	following	formula:	

radius	-=	0.25	*	radius;	



	 Additionally,	each	50	ticks	without	a	collision,	modify	the	radius	as	follows:	

	 	 radius	+=	0.01	*	(1-radius)	

	 Compile	and	run	the	code	with	50	balls.	After	1000	ticks	with	50	balls,	you	should	see	the	
following:	

	


