
CIS	441/541:	Project	#2A	
Due	May	11th,	2021	(which	means	6am	May	12th,	2021)		
Worth	8%	of	your	grade	
	
Overview:		
	
You	will	implement	an	OpenGL	program	that	makes	the	same	image	as	your	project	
1F	code.	
	
OpenGL	programming	is	difficult.		It	is	very	easy	to	end	up	with	a	shader	that	will	
not	compile	or	to	see	nothing	on	the	screen.		These	situations	are	very	hard	to	
debug.		Therefore,	we	have	organized	the	project	in	a	series	of	phases,	and	each	
phase	completes	with	a	checkpoints.		You	should	only	attempt	phase	N+1	after	
phase	N	is	fully	completed.		
	
If	you	have	trouble	with	Checkpoints	#1	or	#2	(which	are	getting	software	setup),	
then	please	make	a	discussion	post	to	the	class	Canvas.			There	is	no	“cheating”	when	
it	comes	to	these	steps,	and	we	should	all	trade	tips.			
	
After	phases	3	and	4,	you	should	make	a	copy	of	your	code,	i.e.,	
project2A_phase3.cxx	and	project2A_phase4.cxx.	
	
	
Checkpoint	#1:	Install	software.	
	
We	hope	that	most	students	will	be	able	to	run	OpenGL	programs	natively	on	their	
machines.		If	not,	we	have	set	up	a	virtual	box	for	you	to	use.	
	
Explicitly,	try	to	install	third	party	software	on	your	machine.		If	that	works,	then	
super.		If	not,	then	install	the	VirtualBox	image.	
	
==	installing	for	Mac	==	
	
brew	install	glfw	
brew	install	glew	
brew	install	glm	
	
==	installing	for	Linux	==	
	
sudo	apt	install	libglfw3-dev	libglew-dev	libglm-dev			
	
==	virtual	box	install	==	
	
The	virtual	box	image	is	available	at	http://ix.cs.uoregon.edu/~hank/CIS441.ova	
	



The	username	and	password	are	both	cis441	
	
The	project	is	located	at	~/project2A	
	
	
Checkpoint	#2:	Run	sample	program.	
			
Download	the	starter	code	(named	project2A.cxx),	the	data	file	(proj2_data.h)	and	
the	CMakeLists.txt	file.	
	
Run	the	following	three	commands:	
cmake	.	
make	
./project2A	
	
You	should	see	this:	

	
	
If	you	do	not	see	this,	then	either:	

(1) Post	a	discussion	to	the	class	Canvas	with	details	and	we	will	see	if	we	can	
debug	

(2) Return	to	checkpoint	#1	and	install	the	VirtualBox	
	
You	should	not	move	on	from	this	checkpoint	unless	you	see	the	image	above.	
	
Checkpoint	#3:	Modify	the	Vertex	Array	Object.	
	
The	starter	code	sets	up	two	triangles.		Two	of	the	vertex	buffer	objects	are	for	
vertices,	and	they	each	have	data	for	four	vertices.		These	vertex	buffer	objects	are	
for	position	and	color.		The	third	vertex	buffer	object	is	for	indices.	
The	data	in	“proj2_data.h”	has	different	data:	



- tri_points:	Position	for	each	vertex	(this	is	the	same	as	the	starter	code)	
- tri_normals:	Normals	for	each	vertex	
- tri_data:	Data	value	for	each	vertex	(this	is	in	place	of	color)	
- tri_indices:	Indices	for	each	triangle	(this	is	the	same	as	the	starter	code)	

	
The	shader	programs	assume	your	data	is	organized	as	follows:	
Positions	are	at	location	0	
Data	is	at	location	1	
Normals	are	at	location	2	
	
Please	make	sure	you	add	these	arrays	in	the	correct	location.		This	is	done	with	the	
first	argument	of	glVertexAttribPointer.	
	
Indices	are	of	type	GL_ELEMENT_ARRAY_BUFFER,	so	they	do	not	have	a	location	in	
the	shader	program.		(They	are	used	before	the	shader	executes.)	
	
Also,	make	sure	to	update	the	glDrawElements	function	in	main	for	the	correct	
number	of	triangles.	
	
Finally,	you	should	add	“#define	PHASE3”	to	the	top	of	your	source	code.		This	will	
make	changes	the	shader	programs	and	view	matrices	to	work	on	your	new	data.	
	
Compile	and	execute.		You	should	see:	

	
You	should	not	move	on	from	this	checkpoint	unless	you	see	the	image	above.	
	
	



Checkpoint	#4:	Add	Color.	
	
First,	you	should	add	“#define	PHASE4”	to	your	code.		Further,	do	not	remove	
“#define	PHASE3”	–	you	need	both.	
	
For	this	phase,	you	will	modify	the	fragment	shader.		By	adding	“#define	PHASE4”,	
the	data	you	loaded	in	VBOs	(for	array	“tri_data”)	will	now	be	passed	out	of	the	
vertex	shader	and	be	LERPed	by	the	GPU	before	it	gets	to	the	fragment	shader.		You	
should	use	this	data	to	make	a	color.		These	data	values	range	from	1	to	6.		They	
should	be	colored	as	follows:	
Values	between	1	and	4.5:	LERPed	from	(0.25,	0.25,	1.0)	at	value	1	to	(1.0,	1.0,	1.0)	
at	value	4.5.	
Values	between	4.5	and	6:	LERPed	from	(1.0,	1.0,	1.0)	at	value	4.5	to	(1.0,	0.25,	0.25)	
at	value	6.	
	
At	the	end	of	this	phase,	you	should	see	this	picture:	
	

	
	
	
You	should	not	move	on	from	this	checkpoint	unless	you	see	the	image	above.	
	
	
	
	
	



Checkpoint	#5:	Add	Shading.	
	
First,	you	should	add	“#define	PHASE5”	to	your	code.		Further,	do	not	remove	
“#define	PHASE3”	or	“#define	PHASE4”	–	you	need	all	three.	
	
For	this	phase,	you	will	add	shading	by	modifying	both	the	vertex	shader	and	the	
fragment	shader.		By	adding	“#define	PHASE5”,	the	vertex	shader	will	now	produce	
a	shading	value.		That	shading	value	will	be	LERPed	by	the	GPU	before	it	gets	to	the	
fragment	shader.		The	fragment	shader	will	then	take	the	LERPed	shading	value	and	
modify	its	colors	to	be	darker.	
	
Note	that	the	majority	of	work	for	this	phase	is	modifying	the	vertex	shader	to	do	
Phong	lighting.		If	you	look	at	the	“#define	PHASE	5”	code	in	the	vertex	shader,	then	
you	will	see	code	for	getting	lighting	information.	
	
At	the	end	of	this	phase,	you	should	see	this	picture:	
	

	
	
Once	you	have	gotten	this	picture,	you	have	finished	Project	2A.	
	
	
	



What	to	Turn	In.	
	
You	should	turn	in	a	single	file,	project2A.cxx.		Do	not	upload	proj2_data.h	or	your	
CMakeLists.txt.	
	
This	code	will	be	evaluated	by	the	instruction	staff	by	running	your	program	and	
visually	inspecting	the	output	of	Phase	5.		There	is	no	differencer	program,	so	look	
closely	for	shading	and	coloring	issues.	
	
Projects	that	have	non-obvious	shading	or	coloring	issues	will	receive	6.5/8.0.	
Projects	that	have	obvious	issues	will	receive	at	most	3.5/8.0.	
	
	


