
CIS	441/541:	Project	#1F	
Due	May	5th,	2021	(which	means	6am	May	6)	
Worth	8%	of	your	grade	
	
Instructions:	
	
You	will	add	shading	to	your	program	and	also	generate	a	movie.	
	

1) NOTE:	there	is	a	new	data	member,	normal,	for	the	Triangle	class.	
class	Triangle	
{	
		public:	
						double									X[3];	
						double									Y[3];	
						double									Z[3];	
						double									colors[3][3];	
						double									normals[3][3];	
};	
	
Normals	is	indexed	by	the	vertex	first	and	the	dimension	second.	
	int	vertexId	=	0;	
	int	x	=	0,	y	=	1,	z	=2;	
	normals[vertexId][y]	=	…;	
	
Note:	I	also	added	a	“double	shading[3];”	data	member	to	Triangle.		I	found	
this	to	be	a	helpful	location	to	store	per-vertex	shading	information.	
	

2) You	can	use	the	same	reader	routine	from	1E.		HOWEVER:	you	must	add	
“#define	NORMALS”	at	the	top	of	your	project1F.cxx	file.		This	will	enable	
“#ifdef	NORMALS”	commands	in	the	GetTriangles	function.		You	also	should	
change	the	string	that	says	“proj1e_geometry.vtk”	within	the	GetTriangles()	
function	to	be	“proj1f_geometry.vtk”.	
	

3) Download	the	file	shading.cxx.		This	file	defines	a	data	structure	that	contains	
the	parameters	for	shading.		I	pasted	the	contents	of	this	file	into	my	code,	
and	encourage	you	all	to	do	the	same.		This	file	also	contains	a	function	called	
GetLighting.		This	function	should	be	called	for	every	render,	since	the	light	
position	updates	with	the	camera.	

	
4) Extend	your	code	to	do	Phong	shading.		Use	one-side	lighting	for	both	diffuse	

and	specular	components.		Note:	in	class	on	Tuesday	April	27th,	I	said	we	
would	use	two-sided	lighting.		I	am	reversing	myself	and	we	will	use	one-
sided	lighting.		This	makes	conventions	for	vector	directions	very	important.		
See	the	bottom	of	this	document	for	more	detail.	
	

	



5) The	correct	image	for	GetCamera(0,1000)	is	posted	to	the	website,	as	well	as	
the	correct	images	when	using	only	ambient,	diffuse,	and	specular.	

	
	

	
You	have	two	deliverables:	

1) Your	code.		This	is	the	only	thing	you	upload	to	Canvas	
2) A	movie.		This	movie	should	be	posted	to	a	website	(YouTube,	

ix.cs.uoregon.edu/~<yourname>,	or	something	else)	or	shared	via	the	cloud	
(Google	Drive,	etc.)	

	
Finally,	the	very	first	line	of	your	project1F.cxx	code	should	be:	
//	Access	my	movie	at:	<link>	
	
Being	extra	clear,	you	only	turn	in	your	source	code,	and	your	source	code	will	have	
a	link	to	your	movie.	
	
Note:	incorrect	images	are	likely	to	earn	less	than	half	credit.		I’d	rather	have	correct	
submissions	late	than	incorrect	submissions	on	time.	
	
My	implementation	notes:	

- my	first	step	was	to	add	shading	as	a	data	member	to	Triangle.	
- I	added	a	fake	function	that	would	calculate	the	shading	for	a	vertex.		The	

function	returned	0.5.	
- I	then	added	code	to	LERP	the	per-vertex	shading	as	I	did	scanlines,	and	to	

modify	the	output	color	for	a	fragment	using	the	shading	info.	
- I	then	tested	and	confirmed	it	looked	right.	
- After	all	of	that	worked,	I	implemented	the	shading	equations.	

	
Movie	encoders:	I	imagine	most	will	use	ffmpeg.		I	used	mpeg2encode,	since	I	can	
access	it	easily	through	other	software	I	use.	
	
Grading	rubric:	

- Code	with	everything	correct:	5.5	points	
- Movie	(on	a	website	or	the	cloud):	2.5	points	

	
(Part	of	this	assignment	is	learning	a	movie	encoder	…	install	software,	learn	to	use	
it,	etc.		If	you	want	to	skip	that,	you	will	lose	2.5	points.)	
	
==	Convention	on	vector	directions	==	
	

(1) The	light	source	is	coming	from	the	triangles.		Explicitly,	if	a	triangle	vertex	is	
at	(0,0,0)	and	if	the	light	source	is	at	(10,0,0),	then	the	light	direction	is	(1,	0,	
0).	



(2) The	view	direction	is	coming	from	a	triangle	vertex.		Explicitly,	if	a	triangle	
vertex	is	at	(0,0,0)	and	if	the	camera	is	at	(0,10,0),	then	the	view	direction	is		
(0,	1,	0).	

	
This	image	further	clarifies:	
	

	

(v_x,	v_y,	v_z)
=	(0,0,0)

(c_x,	c_y,	c_z)	/	camera	=	(0,1,0)

(l_x,	l_y ,	l_z)	/	light	source	=	(1,0,0)

(0.707,0.707,0)	/	view	normal

viewDir =	normalize(c_x-v_x,				c_y-v_y,					c_z-v_z)	=	(0,	1,	0)

lightDir
=	normalize(l_x-v_x,				l_y-v_y,				l_z-v_z)
=	(1,	0,	0)

This	example	has	a	
triangle	vertex,	v,	at	the	
origin,	the	camera	one	
unit	along	the	Y-axis	and	
the	light	source	one	unit	
along	the	X-axis.

The	lightDir and	viewDir
formulas	show	the	
conventions	we	should	
use	for	direction	for	
general	positions.


