
CIS	441/541:	Project	#1E	
Due	by	Tues	April	27th,	2021	(which	means	6am	April	28th,	2021)	
Worth	6%	of	your	grade	
	
Instructions	

1) Download	the	following	three	files	and	incorporate	them	into	your	program.		
You	are	welcome	to	keep	them	as	separate	files	if	you	are	comfortable	with	
CMake,	but	I	am	expecting	that	most	of	you	will	cut-n-paste	their	contents	
into	your	1E	code	

a. Download	camera.cxx.		It	has	a	definition	of	the	Camera	class	and	also	
a	method	for	generating	Camera	positions	(“GetCameraPosition”).	

b. Download	matrix.cxx,	which	has	my	matrix	class.	
c. Download	reader1E.cxx.			

2) Download	the	geometry	file	“proj1e_geometry.vtk”.	
3) Note	that	the	output	image	is	1000x1000.		You	should	initialize	the	buffer	to	

be	black	(0,0,0).		This	was	done	for	you	in	previous	projects,	so	just	make	
sure	that	code	didn’t	go	anywhere.		Keep	in	mind	you	will	be	doing	multiple	
renderings	and	need	to	initialize	the	color	and	z-buffers	for	each	rendering.	

4) Generate	the	correct	camera	positions	for:	
Camera	c1	=	GetCamera(0,	1000);	
à	output	image	name	should	be	frame000.png	
Camera	c2	=	GetCamera(250,	1000);	
à	output	image	name	should	be	frame250.png	
Camera	c3	=	GetCamera(500,	1000);	
à	output	image	name	should	be	frame500.png	
Camera	c4	=	GetCamera(750,	1000);	
à	output	image	name	should	be	frame750.png	

	
Note	that	differencer	will	no	longer	produce	perfect	outputs.		If	you	get	every	pixel	
different,	then	your	program	is	wrong.		But	if	you	have	~20	pixels	(or	less)	different,	
then	you	should	declare	victory.	
	
When	you	are	done,	submit	your	code	to	Canvas.		
	
In	terms	of	grading,	expect	less	than	half	credit	if	you	turn	in	an	incorrect	solution	…	
I	prefer	a	correct	solution	late	(half	credit)	to	an	incorrect	solution	on	time.	
	
	
	
Tips:	

(1) All	vertex	multiplications	use	4D	points.		Make	sure	you	send	in	4D	points	for	
input	and	output,	or	you	will	get	weird	memory	errors.	

a. Also	don’t	forget	to	divide	by	“w”	
(2) People	often	get	a	matrix	confused	with	its	transpose.		Use	the	method	

Matrix::Print()	to	make	sure	the	matrix	you	are	setting	up	is	what	you	think	it	
should	be.		Also,	remember	the	points	are	left	multiplied,	not	right	multiplied.	



(3) Regarding	multiple	renderings:	
a. Don’t	forget	to	initialize	the	screen	between	each	render	
b. If	you	modify	the	triangle	in	place	to	render,	don’t	forget	to	switch	it	

back	at	the	end	of	the	render	
	
	
	
Here	are	the	outputs	for	an	example	camera	and	points:	
near	=	5;			
far	=	200;	
angle	=	M_PI/6;	
position[0]	=	0;	
position[1]	=	40;	
position[2]	=	40;	
focus[0]	=	0;	
focus[1]	=	0;	
focus[2]	=	0;	
up[0]	=	0;	
up[1]	=	1;	
up[2]	=	0;	
	
Camera Frame: U = 1, 0, 0 
Camera Frame: V = 0, 0.707107, -0.707107 
Camera Frame: W = 0, 0.707107, 0.707107 
Camera Frame: O = 0, 40, 40 
Camera Transform 
(1.0000000 0.0000000 0.0000000 0.0000000) 
(0.0000000 0.7071068 0.7071068 0.0000000) 
(0.0000000 -0.7071068 0.7071068 0.0000000) 
(0.0000000 0.0000000 -56.5685425 1.0000000) 
View Transform 
(3.7320508 0.0000000 0.0000000 0.0000000) 
(0.0000000 3.7320508 0.0000000 0.0000000) 
(0.0000000 0.0000000 1.0512821 -1.0000000) 
(0.0000000 0.0000000 10.2564103 0.0000000) 
Total Transform 
(1866.0254038 0.0000000 0.0000000 0.0000000) 
(-353.5533906 965.9258263 0.7433687 -0.7071068) 
(-353.5533906 -1673.0326075 0.7433687 -0.7071068) 
(28284.2712475 28284.2712475 -49.2130831 56.5685425) 
Transformed 0, 36.4645,36.4645, 1 to 500, 500,1 
Transformed 0, -101.421,-101.421, 1 to 500, 500,-1 
Transformed V0 from (1.11111,7.57576,-9.07897) to (535.976, 881.312, -0.873317) 
Transformed V1 from (0.968446,7.57576,-8.9899) to (531.391, 879.688, -0.873122) 
Transformed V2 from (1.11111,7.46665,-8.9899) to (535.967, 876.682, -0.87336) 
 
 
 
 
 
	



At	a	high	level,	your	code	will	be	something	like:	
vector<Triangle>	t	=	GetTriangles();	
AllocateScreen();	
for	(int	i	=	0	;	i	<	1000	;	i++)	
{	
				InitializeScreen();	
				Camera	c	=	GetCamera(i,	1000);	
				TransformTrianglesToDeviceSpace();	//	involves	setting	up	and	applying	
matrices	…	if	you	modify	vector<Triangle>,	remember	to	undo	it	later	
				RenderTriangles()	
				SaveImage();	
}	


