
Hank Childs, University of OregonFebruary 7, 2019

CIS 441/541: Intro to Computer Graphics
Lecture 9: More OpenGL!

Office	Hours:	Week	5

• Monday:	1-2	(Roscoe)
• Tuesday:	1-2	(Roscoe)
• Wednesday:	1-3	(Roscoe)
• Thursday:	1130-1230	(Hank)
• Friday:	1130-1230	(Roscoe)

Timeline	(1/2)
• 1F:	assigned	Feb	7th (Feb	1),	due	Feb	19th

– à not	as	tough	as	1E
• 2A:	posted	now,	due	Feb	21st

• à you	need	to	work	on	both	1F	and	2A	during	
Week	6	(Feb	11-15)

• 2B:	posted	now,	due	Feb	27th

• YouTube	lectures	for	Feb	12th and	14th

Timeline	(2/2)
Sun Mon Tues Weds Thurs Fri Sat

Feb	3 Feb	4 Feb	5	
Lec 8

Feb	6
1E due

Feb	7
Begin	1F,	
begin 2A

Feb	8 Feb	9

Feb 10 Feb	11 YouTube Feb	13 YouTube?? Feb	15 Feb	16

Feb	17 Feb	18 Feb	19
1F	due

Feb	20 Feb	21
2A due,	
begin	2B

Feb	22 Feb	23

Comparing	to	previous	terms	(1/2)

• Way	ahead	on	lecture
– If	I	complete	today’s	lecture,	we	will	be	1.5	
lectures	ahead	of	the	pace	from	previous	term

– Why?:	
• YouTube	videos	saving	on	material	repeat
• Bad	materials	in	previous	terms,	and	then	have	to	
waste	class	time	fixing	things

– May	only	need	1	YouTube	lecture	from	Japan

Comparing	to	previous	terms	(2/2)

• A	little	behind	on	project	pace

• The	W19	plan	only	works	if	you	pursue	*both*	
1F	and	2A	during	Week	6!

Project Due	date	(F16) Due	date (W19)

1E Monday	of	Week	5 Weds	of	Week	5

1F Monday	of	Week	6 Tuesday	of	Week	7

2A Monday	of	Week	7 Thursday	of	Week	7

2B Monday	of	Week	8 Wednesday	of	Week	8

Midterm

• Date	still	not	set
• Considering	different	plan:	25	&	5

First OpenGL programs

•Remember: none of these programs have
windowing or events

•They contain just the code to put
primitives on the screen, with lighting and
colors.

First OpenGL programs

First OpenGL programs

glEnable/glDisable: important
functions

First OpenGL programs

Visualization use case

Why is there purple in this picture?

First OpenGL programs

Textures

¨ “Textures” are a mechanism for adding “texture” to
surfaces.
¤ Think of texture of a cloth being applied to a surface
¤ Typically used in 2D form

¨ We will start with a 1D form, and work our way up
to 2D later.

1D textures: basic idea

¨ Store color map on GPU as a texture
¤ An array of colors

¨ Old color interpolation of fragment on a scanline:
¤ For (int j = 0 ; j < 3 ; j++)

n RGB[j] = leftRGB[j] + proportion*(rightRGB[j]-leftRGB[j])

¨ New color interpolation of fragment on a scanline:
¤ textureVal = leftTextureVal

+ proportion*(rightTextureVal-leftTextureVal)
¤ RGB ß textureLookup[textureVal]

Example

¨ sdf
¨ Triangle with vertices with scalar values 2.9, 3.3,

and 3.1.
¨ T for 2.9 = (2.9-3.0)/(3.25-3) = -0.4
¨ T for 3.1 = (3.1-3.0)/(3.25-3) = 0.4
¨ T for 3.3 = (3.3-3.0)/(3.25-3) = 1.2
¨ Fragment colors come from interpolating texture

coordinates and applying texture

T=0 T=1

First OpenGL Texture Program

(advanced texture features &
2D textures on Weds)

Project 2A (START RECORDING)

We will replace these and write our own GL calls.

We will re-use these.

Project #2A (8%), Due Feb. 21st

¨ Goal: OpenGL program that does regular colors and
textures

¨ New VTK-based project2A.cxx
¨ New CMakeLists.txt (but same as old ones)

Hints
¨ I recommend you “walk before you run” & “take

small bites”. OpenGL can be very punishing. Get a
picture up and then improve on it. Make sure you
know how to retreat to your previously working
version at every step.

¨ OpenGL “state thrashing” is common and tricky to
debug.
¤ Get one window working perfectly.
¤ Then make the second one work perfectly.
¤ Then try to get them to work together.

n Things often go wrong, when one program leaves the
OpenGL state in a way that doesn’t suit another renderer.

Hints

¨ MAKE MANY BACKUPS OF YOUR PROGRAM

¨ USE VTK 6
¨ If you are having issues on your laptop with a GL

program, then use Room 100
¤ (There’s only 2 of these projects)

How to do colors (traditional)…

¨ The Triangle class now has a “fieldValue” data
member, which ranges between 0 and 1.

¨ You will map this to a color using the GetColorMap
function.

n GetColorMap returns 256 colors.

¨ Mappings
¤ A fieldValue value of 0 should be mapped to the first color
¤ A fieldValue value of 1 should be mapped to the 255th

color.
¤ Each fieldValue in between should be mapped to the closest

color of the 256, but interpolation of colors is not required.

How to do colors (texture)…

¨ Same idea, but use texture infrastructure
¨ (easier)

END RECORDING

More on Textures

Textures with GL_REPEAT

1D, 2D, 3D textures

¨ 2D textures most common
¨ 1D textures: color maps (e.g., what we just did)
¨ 3D textures: “volume rendering”

¤ Use combination of opacity
and color (i.e., RGBA)

2D Textures

¨ Pre-rendered images painted onto geometry
¨ glTexImage1D à glTexImage2D
¨ GL_TEXTURE_WRAP_S à GL_TEXTURE_WRAP_S

+ GL_TEXTURE_WRAP_T
¨ glTexCoord1f à glTexCoord2f

2D Texture Program

What do we expect
the output to be?

GL_TEXTURE_MIN_FILTER /
GL_TEXTURE_MAG_FILTER

¨ Minifying: texture bigger than triangle.
¤ How to map multiple texture elements onto a pixel?

n GL_NEAREST: pick closest texture
n GL_LINEAR: average neighboring textures

¨ Magnifying (GL_TEXTURE_MAG_FILTER): triangle
bigger than texture
¤ How to map single texture element onto multiple pixels?

n GL_NEAREST: no interpolation
n GL_LINEAR: interpolate with neighboring textures

GL_TEXTURE_MAG_FILTER with
NEAREST and LINEAR

2D Texture Program

Texture is not 1:1, should probably
scale geometry.

This is a terrible program … why?

glBindTexture: tell the GPU about
the texture once and re-use it!

More on Geometric Primitives

Geometric Specification: glBegin

Geometric Primitives

Geometric Primitives

Geometric Primitives

What can go inside a glBegin?

Lighting Model

Lighting

¨ glEnable(GL_LIGHTING);
¤ Tells OpenGL you want to have lighting.

¨ Eight lights
¤ Enable and disable individually

n glEnable(GL_LIGHT0)
n glDisable(GL_LIGHT7)

¤ Set attributes individually
n glLightfv(GL_LIGHTi, ARGUMENT, VALUES)

glLightfv parameters

¨ Ten parameters (ones you will use):

glLightfv in action

For each light source, we can set an RGBA for the
diffuse, specular, and ambient components:
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
Glfloat diffuse0[4] = { 0.7, 0.7, 0.7, 1 };
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
… // set ambient, specular, position
glDisable(GL_LIGHT1); // do we need to do this?
…
glDisable(GL_LIGHT7); // do we need to do this?

How do we tell OpenGL
about the surface normals?

¨ Flat shading:
glNormal3f(0, 0.707, -0.707);

glVertex3f(0, 0, 0);

glVertex3f(1, 1, 0);

glVertex3f(1, 0, 0);

¨ Smooth shading:
glNormal3f(0, 0.707, -0.707);

glVertex3f(0, 0, 0);

glNormal3f(0, 0.707, +0.707);

glVertex3f(1, 1, 0);

glNormal3f(1, 0, 0);

glVertex3f(1, 0, 0);

47Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Distance and Direction

• The source colors are specified in RGBA
• The position is given in homogeneous
coordinates

- If w =1.0, we are specifying a finite location
- If w =0.0, we are specifying a parallel source

with the given direction vector

glLightfv parameters (2)

¨ Ten parameters (ones you will never use)

49Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Spotlights

•Use glLightv to set
- Direction GL_SPOT_DIRECTION
- Cutoff GL_SPOT_CUTOFF

- Attenuation GL_SPOT_EXPONENT

• Proportional to cosaf

q-q f

49

What happens with multiple lights?

glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);

¨ à the effects of these lights are additive.
¤ Individual shading factors are added and combined
¤ Effect is to make objects brighter and brighter

n Same as handling of high specular factors for 1E

51Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Global Ambient Light

•Ambient light depends on color of light
sources

- A red light in a white room will cause a red
ambient term that disappears when the light is
turned off

•OpenGL also allows a global ambient
term that is often helpful for testing
-glLightModelfv(GL_LIGHT_MODEL_AMBIENT,
global_ambient)
• VTK turns this on by default!

– Affects lighting of materials colored with
glColor, but not glTexCoord1f!!

Shading Model

53Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Polygonal Shading

•Shading calculations are done for each
vertex

- Vertex colors become vertex shades
•By default, vertex shades are interpolated
across the polygon
-glShadeModel(GL_SMOOTH);

• If we use glShadeModel(GL_FLAT); the
color at the first vertex will determine the
shade of the whole polygon

- We will come back to this in a few slides

54Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Polygon Normals

• Polygons have a single normal
- Shades at the vertices as computed by the

Phong model can be almost same
- Identical for a distant viewer (default) or if there

is no specular component
• Consider model of sphere
• Different normals at
each vertex, want single normal

55Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Smooth Shading

•We can set a new
normal at each vertex

•Easy for sphere model
- If centered at origin n = p

•Now smooth shading
works

•Note silhouette edge

56Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Mesh Shading

•The previous example is not general
because we knew the normal at each
vertex analytically

•For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

glShadeModel

glShadeModel

glShadeModel
affects normals
and colors

Material Model

glMaterial: coarser controls for
color

¨ You specify how much light is reflected for the
material type.

¨ Command:
glMaterialfv(FACE_TYPE, PARAMETER, VALUE(S))

¨ FACE_TYPE =
¤ GL_FRONT_AND_BACK
¤ GL_FRONT
¤ GL_BACK (We will talk about this later)

glMaterialfv Parameters

glMaterialfv Parameters

OpenGL: very complex model
for lighting and colors

http://www.sjbaker.org/steve/omniv/opengl_lighting.html

glColor
is no-op

glMaterial
not used

Basic OpenGL light model

¨ The OpenGL light model presumes that the light
that reaches your eye from the polygon surface
arrives by four different mechanisms:
¤ AMBIENT
¤ DIFFUSE
¤ SPECULAR
¤ EMISSION - in this case, the light is actually emitted by

the polygon - equally in all directions.

http://www.sjbaker.org/steve/omniv/opengl_lighting.html

Difference between lights and
materials

¨ There are three light colours for each light:
¤ Ambient, Diffuse and Specular (set with glLight)

¨ There are four colors for each surface
¤ Same three + Emission(set with glMaterial).

¨ All OpenGL implementations support at least eight
light sources - and the glMaterial can be changed
at will for each polygon

http://www.sjbaker.org/steve/omniv/opengl_lighting.html

Interactions between lights and
materials

¨ The final polygon colour is the sum of all four light
components, each of which is formed by multiplying
the glMaterial colour by the glLight colour (modified
by the directionality in the case of Diffuse and
Specular).

¨ Since there is no Emission colour for the glLight, that
is added to the final colour without modification.

http://www.sjbaker.org/steve/omniv/opengl_lighting.html

Display Lists

CPU and GPU

¨ Most common configuration has CPU and GPU on
separate dies
¤ I.e., plug GPU in CPU

CPU
(typically 4-12

cores,
~10GFLOPs)

GPU
(typically 100-

1000 cores,
~100GFLOPs-
~1000GFLOPs)

PCIe

Peripheral Component Interconnect Express

What are the performance ramifications of this architecture?

Display lists

¨ Idea:
¤ send geometry and settings to GPU once, give it an

identifier
¤ GPU stores geometry and settings
¤ Just pass the identifier for every subsequent render

Display lists

¨ Generate an idenfitier:
GLUint displayList = glGenLists(1);

¨ Tell GPU that all subsequent geometry is part of the
list:
glNewList(displayList,GL_COMPILE);

¨ Specify geometry (i.e., glVertex, etc)
¨ Tell GPU we are done specifying geometry:

glEndList();

¨ Later on, tell GPU to render all the geometry and
settings associated with our list:
glCallList(displayList);

Display lists in action

What are the performance ramifications between the two?

glNewList

¨ GL_COMPILE
¤ Make the display list for later use.

¨ GL_COMPILE_AND_EXECUTE
¤ Make the display list and also execute it as you go.

