(X1S'441/541: Intro to Computer Graphics
Lecture 9: More OpenGL!

February 7, 2019 Hank Childs, University of Oregon

Office Hours: Week 5

* Monday: 1-2 (Roscoe)

* Tuesday: 1-2 (Roscoe)
 Wednesday: 1-3 (Roscoe)
 Thursday: 1130-1230 (Hank)
e Friday: 1130-1230 (Roscoe)

Timeline (1/2)
e 1F: assigned Feb 7t (Feb 1), due Feb 19th
— =2 not as tough as 1E

e 2A: posted now, due Feb 215t

* - you need to work on both 1F and 2A during
Week 6 (Feb 11-15)

e 2B: posted now, due Feb 27t
* YouTube lectures for Feb 12t" and 14t"

UNIVERSITY OF OREGON

O

Timeline (2/2)

. “"

Feb 5 Feb 6 Feb 7 Feb 8 Feb 9
Lec 8 1E due Begin 1F,
begin 2A

Feb 10 Feb 11 YouTube Feb 13 YouTube?? Feb 15 Feb 16

; »\,‘

Feb 17 Feb 18 Feb 19 Feb 20 Feb 21 Feb 22 Feb 23
1F due 2A due,
begin 2B

UNIVERSITY OF OREGON

O

Comparing to previous terms (1/2)

* Way ahead on lecture

— If | complete today’s lecture, we will be 1.5
lectures ahead of the pace from previous term
— Why?:
* YouTube videos saving on material repeat

* Bad materials in previous terms, and then have to
waste class time fixing things

— May only need 1 YouTube lecture from Japan

UNIVERSITY OF OREGON

O

Comparing to previous terms (2/2)

* A little behind on project pace
“project | Duedate(F16) | Duedate(wis)

1E Monday of Week 5 Weds of Week 5

1F Monday of Week 6 Tuesday of Week 7
2A Monday of Week 7 Thursday of Week 7
2B Monday of Week 8 Wednesday of Week 8

e The W19 plan only works if you pursue *both*
1F and 2A during Week 6!

Midterm

* Date still not set
* Considering different plan: 25 & 5

<+ First OpenGL programs

 Remember: none of these programs have
windowing or events

* They contain just the code to put
primitives on the screen, with lighting and
colors.

<+ First OpenGL programs

The Universily ol New Mexico

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:
static vtk441PolyDataMapper sNew();
virtual void RenderPiece(vtkRenderer xren, vtkActor xact)
{
float ambient[3] = { 1, 1, 1 };
gWMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glBegin(GL_TRIANGLES);
glVertex3f(0,0,0);
glVertex3f(0,1,0);
glVertex3f(1,1,0);
glEnd();

- First OpenGL programs

i miversily ol New Mexico

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:
static vtk441PolyDataMapper xNew();
virtual void RenderPiece(vtkRenderer xren, vtkActor xact)

{

—> gLlEnable(GL_COLOR_MATERIAL);
float ambient([3] = {1, 1, 1 };
gWMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glBegin(GL_TRIANGLES);

> glColor3ub(@, @, 255);
glVertex3f(0,0,0);
glVertex3f(0,1,0);
glVertex3f(1,1,0);
glEnd();

}

I

‘.?‘IEnablelngisable: important
functions

The Universily ol New Mexico

7 = g —

€ C

() www.opengl.org/sdk/docs/man/xhtml/glEnable.xml|

Name

glEnable — enable or disable server-side GL capal

C Specification
void glEnable(GLenum cap);

Parameters

cap

Specifies a symbolic constant indicating a GL capability.

C Specification

void glDisable(GLenum cap);

Parameters

cap

Both glEnable and glDisable take a single argument, cap, which can assume one of the following values:

GL_BLEND

If enabled, blend the computed fragment color values with the values in the color buffers. See glBlendFunc.

GL_CULL_FACE

If enabled, cull polygons based on their winding in window coordinates. See glCullFace.

GL_DEPTH_TEST

If enabled, do depth comparisons and update the depth buffer. Note that even if the depth buffer exists and the
depth mask is non-zero, the depth buffer is not updated if the depth test is disabled. See glDepthFunc and
glDepthRangef.

GL_DITHER

If enabled, dither color components or indices before they are written to the color buffer.

GL_POLYGON_OFFSET_FILL

If enabled, an offset is added to depth values of a polygon's fragments produced by rasterization. See
glPolygonOffset.

GL_SAMPLE_ALPHA_TO_COVERAGE

If enabled, compute a temporary coverage value where each bit is determined by the alpha value at the
corresponding sample location. The temporary coverage value is then ANDed with the fragment coverage value.

GL_SAMPLE_COVERAGE

If enabled, the fragment's coverage is ANDed with the temporary coverage value. If
GL_SAMPLE_COVERAGE_INVERT is set to GL_TRUE, invert the coverage value. See glSampleCoverage.

GL_SCISSOR_TEST

If enabled, discard fragments that are outside the scissor rectangle. See glScissor.

GL_STENCIL_TEST

If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and glStencilOp.

Specifies a symbolic constant indicating a GL capability.

- First OpenGL programs

i ity o New Mexico

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:
static vtk441PolyDataMapper xNew();
virtual void RenderPiece(vtkRenderer xren, vtkActor xact)
{
glEnable(GL_COLOR_MATERIAL);
float ambient[3] = { 1, 1, 1 };
gWMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glBegin(GL_TRIANGLES);
glColor3ub(@, @, 255);
glVertex3f(0,0,0);
——> glColor3ub(@, 255, 0);
glVertex3f(0,1,0);
> glColor3ub(255, 0, 0);
glVertex3f(1,1,0);
glEnd();

Visualization use case

Why is there purple in this picture?

- First OpenGL programs

i ity o New Mexico

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:
static vtk441PolyDataMapper xNew();
virtual void RenderPiece(vtkRenderer xren, vtkActor xact)
{
glEnable(GL_COLOR_MATERIAL);
float ambient[3] = { 1, 1, 1 };
gWMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glBegin(GL_TRIANGLES);
glColor3ub(@, @, 255);
glVertex3f(0,0,0);
——> glColor3ub(@, 255, 0);
glVertex3f(0,1,0);
> glColor3ub(255, 0, 0);
glVertex3f(1,1,0);
glEnd();

Textures O

0 “Textures” are a mechanism for adding “texture” to

surfaces.
O Think of texture of a cloth being applied to a surface

O Typically used in 2D form

0 We will start with a 1D form, and work our way up
to 2D later.

1D textures: basic idea O

0 Store color map on GPU as a texture

O An array of colors

0 Old color interpolation of fragment on a scanline:
OFor(intj=0,;i<3;jtt)
m RGB[j] = leftRGB[j] + proportion®(rightRGBJj]-leftRGBj])
0 New color interpolation of fragment on a scanline:
O textureVal = leftTextureVal
+ proportion*(rightTextureVal-leftTextureVal)
O RGB < textureLookup[textureVal]

Example O

T=1

3.062 3.125 3.188 3.250
O Triangle with vertices with scalar values 2.9, 3.3,

and 3.1.
o T for 2.9 = (2.9-3.0)/(3.25-3) = -0.4
o T for 3.1 =(3.1-3.0)/(3.25-3) = 0.4
o T for 3.3 =(3.3-3.0)/(3.25-3) = 1.2

0 Fragment colors come from interpolating texture

3.000

coordinates and applying texture

First OpenGL Texture Program

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:
static vtk441PolyDataMapper xNew();

virtual void RenderPiece(vtkRenderer xren, vtkActor xact)
{
— T2 GLubyte Texture3[9] = {
9, @, 255, // blue
255, 255, 255, // white
255; 0' 0; // red
};
glTexImagelD(GL_TEXTURE_1D, @, GL_RGB, 3, 0, GL_RGB,
GL_UNSIGNED_BYTE, Texture3);
glEnable(GL_COLOR_MATERIAL);
glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

Le}glEnable(GL_TEXTURE_lD);
— float ambient([3] = {1, 1, 1 };
gWMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glBegin(GL_TRIANGLES);
> glTexCoord1f(0);
glVertex3f(0,0,0);
——>glTexCoord1f(0.0);
glVertex3f(0,1,0);
— > glTexCoord1f(1.); (advanced texture features &
glVertex3f(1,1,0);

glEnd(); 2D textures on Weds)

2

}
};

Project 2A (START RECORDING) O

Source

Data

Y

Mapper

Y

Actor

Y

Renderer

Y

Window

Y

Interactor

We will replace these and write our own GL calls.

Cone.py Pipeline Diagram (type "python Cone.py" to run)

Either reads the data from a
file or creates the data from
scratch.

Moves the data from VTK
into OpenGL.

For setting colors, surface
properties, and the position
of the object.

The rectangle of the
computer screen that
VTK draws into.

The window, including title
bar and decorations.

Allows the mouse to be used
to interact wth the data.

We will re-use these.

from vtkpython import *

cone = vtkConeSource()
cone.SetResolution(10)

coneMapper = vtkPolyDataMapper()
coneMapper.SetInput(cone.GetOutput())

coneActor = vtkActor()
coneActor.SetMapper(coneMapper)

ren = vtkRenderer()
ren.AddActor(coneActor)

renWin = vtkRenderWindow()
renWin.SetWindowName("Cone")
renWin.SetSize(300,300)
renWin.AddRenderer(ren)

iren = vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
iren.Initialize()

iren. Start()

Project #2A (8%), Due Feb. 21 s’rO

0 Goal: OpenGL program that does regular colors and
textures

0 New VTK-based project2A.cxx

0 New CMakelists.txt (but same as old ones)

Hints

0 | recommend you “walk before you run” & “take
small bites”. OpenGL can be very punishing. Get a
picture up and then improve on it. Make sure you
know how to retreat to your previously working
version at every step.

0 OpenGL “state thrashing” is common and tricky to
debug.

O Get one window working perfectly.
O Then make the second one work perfectly.

O Then try to get them to work together.

® Things often go wrong, when one program leaves the
OpenGL state in a way that doesn’t suit another renderer.

Hints O

0 MAKE MANY BACKUPS OF YOUR PROGRAM

o USE VTIK 6

0 If you are having issues on your laptop with a GL
program, then use Room 100

O (There’s only 2 of these projects)

How to do colors (’rrc:di’rionc:l).o

0 The Triangle class now has a “fieldValue” data

member, which ranges between O and 1.

0 You will map this to a color using the GetColorMap
function.
m GetColorMap returns 256 colors.
0 Mappings
O A fieldValue value of O should be mapped to the first color

O A fieldValue value of 1 should be mapped to the 255th
color.

O Each fieldValue in between should be mapped to the closest
color of the 256, but interpolation of colors is not required.

How to do colors (’rex’rure)...O

0 Same idea, but use texture infrastructure

0 (easier)

END RECORDING O

More on Textures O

Textures with GL__REPEAT O

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:

static vtk441PolyDataMapper *New();

virtual void RenderPiece(vtkRenderer xren, vtkActor xact)
{
GLubyte Texture3[9] = {
9, @0, 255, // blue
255, 255, 255, // white
255, @, 0, // red
};
glTexImagelD(GL_TEXTURE_1D, @, GL_RGB, 3, 0, GL_RGB,
GL_UNSIGNED_BYTE, Texture3);
glEnable(GL_COLOR_MATERIAL);
—> glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glEnable(GL_TEXTURE_1D);
float ambient([3] = { 1, 1, 1 };
gWMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glBegin(GL_TRIANGLES);

> glTexCoord1f(-2);
glVertex3f(0,0,0);

—> glTexCoord1f(0);
glVertex3f(0,1,0);

> glTexCoord1f(4.);
glVertex3f(1,1,0);
glEnd();

}
b

1D, 2D, 3D textures

0 2D textures most common
0 1D textures: color maps (e.g., what we just did)

0 3D textures: “volume rendering”

O Use combination of opacity
and color (i.e., RGBA)

DB: astro_1TZ.bov
Cycle: 0
Volume

2D Textures O

0 Pre-rendered images painted onto geometry

0 glTeximage1D =2 glTexlmage2D

0 GL_TEXTURE_WRAP_S - GL_TEXTURE_WRAP_S
+ GL_TEXTURE_WRAP_T

0 glTexCoord1f =2 glTexCoord2f

—> glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
—> glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
——> glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

——> glEnable(GL_TEXTURE_2D);

——> glTexCoord2f(0,0);
—> glTexCoord2f(1, 0);
——> glTexCoord2f(1., 1.);

2D Texture Program

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:
static vtk441PolyDataMapper xNew();

virtual void RenderPiece(vtkRenderer xren, vtkActor xact)
{
—> vtkJPEGReader xrdr = vtkJPEGReader: :New();
rdr->SetFileName("HankChilds_345.jpg");
rdr->Update();
vtkImageData *img = rdr->GetOutput();
int dims[3];
img->GetDimensions(dims);
unsigned char xbuffer = (unsigned char %) img->GetScalarPointer(9,0,0);
" glTexImage2D(GL_TEXTURE_2D, @, GL_RGB, dims[@], dims[1], @, GL_RGB,
—> GL_UNSIGNED_BYTE, buffer); What do we expect
glEnable(GL_COLOR_MATERIAL);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); the output to be?

float ambient([3] = { 1, 1, 1 };
gWaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
gBegin(GL_TRIANGLES);

glvertex3f(0,0,0);

glertex3f(0,1,0);

glvertex3f(1,1,0);
glEnd();

GL_TEXTURE_MIN_FILTER /
GL_TEXTURE_MAG_FILTER

O Minifying: texture bigger than triangle.

O How to map multiple texture elements onto a pixel?
m GL_NEAREST: pick closest texture
m GL_LINEAR: average neighboring textures
0 Magnifying (GL_TEXTURE_MAG_FILTER): triangle
bigger than texture
O How to map single texture element onto multiple pixels?

m GL_NEAREST: no interpolation
B GL_LINEAR: interpolate with neighboring textures

GL TEXTURE MAG FILTER with
NEAREST and LINEAR

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:

static vtk441PolyDataMapper xNew();

virtual void RenderPiece(vtkRenderer xren, vtkActor xact)
{
GLubyte Texture3[9] = {
9, 0, 255, // blue
255, 255, 255, // white
255, 0, 0, // red
| H
glTexImagelD (GL_TEXTURE_1D, @, GL_RGB, 3, @, GL_RGB, GL_UNSIGNED_BYTE,
Texture3);
glEnable(GL_COLOR_MATERIAL);
glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
—— OR ——
glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glEnable(GL_TEXTURE_1D);

float ambient([3] = { 1, 1, 1 };
gWaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
gBegin(GL_TRIANGLES);
glTexCoord1f(0.);
glvertex3f(0,0,0);
glTexCoord1f(0.0);
glvertex3f(0,1,0);
glTexCoord1f(1.);
glvertex3f(1,1,0);

glEnd();

};

le

2D Texture Program

virtual void RenderPiece(vtkRenderer xren, vtkActor xact)

{

tkJPEGRead dr = vtkJPEGReader: :New(); 1 .
\ridr—>Set(;ailgrza>n':g('r:HanlChilds_§25?;pg"()eY TeXTure IS nOT]°] 4 ShOUId prObCIny

rdr->Update();

vtkImageData ximg = rdr->GetOutput(); SCCIle geomefry.

int dims[3];

img->GetDimensions(dims);

unsigned char xbuffer = (unsigned char x) img->GetScalarF

glTexImage2D(GL_TEXTURE_2D, @, GL_RGB, dims[@], dims[1], b,
GL_UNSIGNED_BYTE, buffer);

glEnable(GL_COLOR_MATERIAL);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glEnable(GL_TEXTURE_2D);

float amhientI1 = { 1 1 1 Y-

gWatr

glBe¢

glTex

glVer

glTex

‘e This is a terrible program ... why?

glVer

glTexCo

glvertex3f(1.1,0,0);

glTexCoord2f(0, 0);
L_e,QIVerteXBf(O.l,o,o);

glEnd();
}

glBindTexture: tell the GPU about
the texture once and re-use it!

class vtk441PolyDataMapper : public vtkOpenGLPolyDataMapper
{
public:

static vtk441PolyDataMapper sNew();

GLuint texture;
bool initialized;

vtk441PolyDataMapper()
{

initialized = false;
void SetUpTexture()
{

glGenTextures(1l, &texture);
glBindTexture(GL_TEXTURE_2D, texture);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

vtkJPEGReader *xrdr = vtkJPEGReader: :New();

rdr->SetFileName("HankChilds_345.jpg");

rdr->Update();

vtkImageData *ximg = rdr->GetOutput();

int dims[3];

img->GetDimensions(dims);

unsigned char xbuffer = (unsigned char *) img->GetScalarPointer(9,0,0);

glTexImage2D(GL_TEXTURE_2D, @, GL_RGB, dims[@], dims[1], @, GL_RGB,
GL_UNSIGNED_BYTE, buffer);

initialized = true;

virtual void RenderPiece(vtkRenderer xren, vtkActor xact

{

if (!initialized)
SetUpTexture();
glEnable(GL_COLOR_MATERIAL);

glBindTexture(GL_TEXTURE_2D, texture);
glEnable(GL_TEXTURE_2D);

float ambient[3] = {1, 1, 1 };
gWaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
g\Begin(GL_TRIANGLES);
glTexCoord2f(0,0);

glVertex3f(0,0,0);

glTexCoord2f(1, @);

glVertex3f(0,1,0);

glTexCoord2f(1., 1.);
glVertex3f(1,1,0);

glTexCoord2f(1., 1.
glvertex3f(1.1,1,0)
glTexCoord2f(0,1);
glvertex3f(1.1,0,0);
glTexCoord2f(0, 0);
glVertex3f(0.1,0,0);

);

glEnd();

More on Geometric Primitives O

Geometric Specification: glBegin

Name
glBegin — delimit the vertices of a primitive or a group of like primitives
C Specification

void glBegin(GLenum mode);

Parameters

mode

Specifies the primitive or primitives that will be created from vertices presented between glBegin and the subsequent glEnd. Ten
symbolic constants are accepted: GL_POINTS, GL_LINES, GL_LINE STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_ STRIP,
GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

C Specification
void glEnd(void);
Description

glBegin and glEnd delimit the vertices that define a primitive or a group of like primitives. glBegin accepts a single argument that
specifies in which of ten ways the vertices are interpreted. Taking n as an integer count starting at one, and N as the total number of
vertices specified, the interpretations are as follows:

Geometric Primitives

GL_POINTS

Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
GL_LINES

Treats each pair of vertices as an independent line segment. Vertices 2 Xin - 1 and 2 Xi n define line n. N 2 lines are drawn.
GL_LINE_STRIP

Draws a connected group of line segments from the first vertex to the last. Vertices n and n + 1 define line n. N - 1 lines are
drawn.

GL_LINE LOOP

Draws a connected group of line segments from the first vertex to the last, then back to the first. Vertices n and n + 1 define line
n. The last line, however, is defined by vertices N and 1 . N lines are drawn.

Geometric Primitives

GL_TRIANGLES

are drawn.
GL_TRIANGLE STRIP

Draws a connected group of triangles. One triangle is defined for each vertex presented after the first two vertices. For odd n,
vertices n,n + 1 , and n + 2 define triangle n. For even n, vertices n + 1 , n, and n + 2 define triangle n. N - 2 triangles are
drawn.

GL_TRIANGLE FAN

Draws a connected group of triangles. One triangle is defined for each vertex presented after the first two vertices. Vertices 1 ,n
+ 1 ,and n + 2 define triangle n. N - 2 triangles are drawn.

Geometric Primitives

GL_QUADS

Treats each group of four vertices as an independent quadrilateral. Vertices 4 Xin -3 ,4Xin-2 ,4Xin -1, and 4 X n define
quadrilateral n. N 4 quadrilaterals are drawn.

GL_QUAD STRIP
Draws a connected group of quadrilaterals. One quadrilateral is defined for each pair of vertices presented after the first pair.
Vertices 2 Xin-1,2Xn,2Xin+2,and 2 X/ n + 1 define quadrilateral n. N 2 - 1 quadrilaterals are drawn. Note that the order
in which vertices are used to construct a quadrilateral from strip data is different from that used with independent data.

GL_POLYGON

Draws a single, convex polygon. Vertices 1 through N define this polygon.

What can go inside a glBegin? O

Only a subset of GL commands can be used between glBegin
and glEnd. The commands are glVertex, glColor,

g
&

SecondaryColor, g

Index, glNormal, g

1IFogCoord, glTexCoord,

g

IMultiTexCoord, glVertex Attrib, glEval

Coord, glEvalPoint,

ArrayElement, glMaterial, and glEdgeFlag. Also, it is
acceptable to use glCallList or glCallLists to execute display lists
that include only the preceding commands. If any other GL
command is executed between glBegin and glEnd, the error flag
is set and the command 1s ignored.

Lighting Model O

Lighting O

0 glEnable(GL_LIGHTING);

O Tells OpenGL you want to have lighting.
0 Eight lights
O Enable and disable individually

m glEnable(GL_LIGHTO)
m gIDisable(GL_LIGHT?)

O Set attributes individually
m glLightfv(GL_LIGHTi, ARGUMENT, VALUES)

glLightfv parameters

0 Ten parameters (ones you will use):

GL_AMBIENT

params contains four fixed-point or floating-point values that specify the ambient RGBA intensity of the light. Both fixed-point and floating-point
values are mapped directly. Neither fixed-point nor floating-point values are clamped. The initial ambient light intensity is (0, 0,0, 1).

GL_DIFFUSE

params contains four fixed-point or floating-point values that specify the diffuse RGBA intensity of the light. Both fixed-point and floating-point
values are mapped directly. Neither fixed-point nor floating-point values are clamped. The initial value for cL_rxcrTo0 is (1, 1, 1, 1). For other
lights, the initial value is (0,0, 0,0).

GL_SPECULAR

params contains four fixed-point or floating-point values that specify the specular RGBA intensity of the light. Both fixed-point and floating-point
values are mapped directly. Neither fixed-point nor floating-point values are clamped. The initial value for cL_r1crT0 is (1, 1, 1, 1). For other
lights, the initial value is (0,0, 0,0).

GL_POSITION

params contains four fixed-point or floating-point values that specify the position of the light in homogeneous object coordinates. Both fixed-point
and floating-point values are mapped directly. Neither fixed-point nor floating-point values are clamped.

The position is transformed by the modelview matrix when glrLight is called (just as if it were a point), and it is stored in eye coordinates. If the w
component of the position is 0, the light is treated as a directional source. Diffuse and specular lighting calculations take the light's direction, but not
its actual position, into account, and attenuation is disabled. Otherwise, diffuse and specular lighting calculations are based on the actual location of
the light in eye coordinates, and attenuation is enabled. The initial position is (0, 0, 1, 0); thus, the initial light source is directional, parallel to, and in
the direction of the - z axis.

glLightfv in action O

For each light source, we can set an RGBA for the
diffuse, specular, and ambient components:

glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);

Glfloat diffuse0[4] = { 0.7, 0.7, 0.7, 1 };
gllightfv(GL_LIGHTO, GL_DIFFUSE, diffuseOQ);

... // set ambient, specular, position
glDisable(GL_LIGHT1); // do we need to do this?

gIDisable(GL_LIGHT7); // do we need to do this?

How do we tell OpenGL
about the surface normals?

0 Flat shading:
glNormal3£(0, 0.707, -0.707);
glVertex3f(0, O, O);
glVertex3f(1, 1, O);
glVertex3f(1, O, O);

O Smooth shading:
glNormal3f(0, 0.707, -0.707);
glVertex3f(0, O, 0);
glNormal3f(0, 0.707, +0.707);
glVertex3f(1, 1, 0);
glNormal3f(1, O, 0);
glVertex3f(1, O, 0);

~ Distance and Direction

* The source colors are specified in RGBA

* The position is given in homogeneous
coordinates

- If w =1.0, we are specifying a finite location

- If w =0.0, we are specifying a parallel source
with the given direction vector

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

47

glLightfv parameters (2)

0 Ten parameters (ones you will never use)

GL_SPOT_DIRECTION

params contains three fixed-point or floating-point values that specify the direction of the light in homogeneous object coordinates. Both fixed-poin
and floating-point values are mapped directly. Neither fixed-point nor floating-point values are clamped.

The spot direction is transformed by the upper 3x3 of the modelview matrix when glright is called, and it is stored in eye coordinates. It is
significant only when cL_spoT_cuToFF is not 180, which it is initially. The initial direction is (0, 0, -1).

GL_SPOT_EXPONENT

params is a single fixed-point or floating-point value that specifies the intensity distribution of the light. Fixed-point and floating-point values are
mapped directly. Only values in the range [0, 128] are accepted.

Effective light intensity is attenuated by the cosine of the angle between the direction of the light and the direction from the light to the vertex being
lighted, raised to the power of the spot exponent. Thus, higher spot exponents result in a more focused light source, regardless of the spot cutoff
angle (see GL_SPOT_CUTOFF, next paragraph). The initial spot exponent is 0, resulting in uniform light distribution.

GL_SPOT_CUTOFF

params i a single fixed-point or floating-point value that specifies the maximum spread angle of a light source. Fixed-point and floating-point
values are mapped directly. Only values in the range [0, 90] and the special value 180 are accepted. If the angle between the direction of the light
and the direction from the light to the vertex being lighted is greater than the spot cutoff angle, the light is completely masked. Otherwise, its
intensity is controlled by the spot exponent and the attenuation factors. The initial spot cutoff is 180, resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, GL_QUADRATIC_ATTENUATION

params is a single fixed-point or floating-point value that specifies one of the three light attenuation factors. Fixed-point and floating-point values
are mapped directly. Only nonnegative values are accepted. If the light is positional, rather than directional, its intensity is attenuated by the
reciprocal of the sum of the constant factor, the linear factor times the distance between the light and the vertex being lighted, and the quadratic
factor times the square of the same distance. The initial attenuation factors are (1, 0, 0), resulting in no attenuation.

~ Spotlights

The Universily ol New Mexico

* Use glLightv to set
- Direction GL._sSPOT DIRECTION
- Cutoff GL_SPOT CUTOFF

- Attenuation GL_SPOT EXPONENT
Proportional to cos*¢

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009
49

<,

Intensity

y

P

49

What happens with multiple Iigh’rs?O

glEnable(GL_LIGHTO);
glEnable(GL_LIGHT1);

0 2 the effects of these lights are additive.
O Individual shading factors are added and combined

O Effect is to make objects brighter and brighter

B Same as handling of high specular factors for 1E

- Global Ambient Light

Umversily ol New Mexico

* Ambient light depends on color of light
sources

- A red light in a white room will cause a red
ambient term that disappears when the light is
turned off

* OpenGL also allows a global ambient

term that is often helpful for testing

-glLightModelfv (GL LIGHT MODEL AMBIENT,

global ambient)
VTK turns this on by default!

— Affects lighting of materials colored with
glColor, but not glTexCoordlf!!

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 51

Shading Model O

- Polygonal Shading

Umversily ol New Mexico

* Shading calculations are done for each
vertex

- Vertex colors become vertex shades

* By default, vertex shades are interpolated

across the polygon
—glShadeModel (GL SMOOTH) ;

*If we use glshadeModel (GL_FLAT) ; the
color at the first vertex will determine the
shade of the whole polygon

- We will come back to this in a few slides

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 53

& Polygon Normals

mversily ol New Mexico

* Polygons have a single normal

- Shades at the vertices as computed by the
Phong model can be almost same

- Identical for a distant viewer (default) or if there
IS N0 specular component

» Consider model of sphere
* Different normals at
each vertex, want single normal

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 54

Umversily ol New Mexico

- Smooth Shading

*\We can set a new
normal at each vertex

* Easy for sphere model
- If centered at originn =p

* Now smooth shading
works

 Note silhouette edge —

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 55

- Mesh Shading

Umversily ol New Mexico

* The previous example is not general
because we knew the normal at each
vertex analytically

 For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (n,+nytngtng)/ [nn,tnyTny|

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 56

glShadeModel

glShadeModel — select flat or smooth shading IP itive Type of Polygon ‘H Vertex ‘
C Specification Single polygon (i==1) | 1 |
Triangle strip] i+2 \
void glShadeModel(GLenum mode); Triangle fan | i+2 |
’Independent triangle H 3Xii ‘
Parameters Quad strip 2%+ 2
Independent quad 4 X
mode

Specifies a symbolic value representing a shading technique. Accepted values are GL_FLAT and
GL_sMoOTH. The initial value is GL_SMOOTH.

Description

GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the computed colors
of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to each resulting
pixel fragment. Flat shading selects the computed color of just one vertex and assigns it to all the pixel
fragments generated by rasterizing a single primitive. In either case, the computed color of a vertex is the result
of lighting if lighting is enabled, or it is the current color at the time the vertex was specified if lighting is
disabled.

Flat and smooth shading are indistinguishable for points. Starting when glBegin is issued and counting vertices
and primitives from 1, the GL gives each flat-shaded line segment i the computed color of vertex i + 1 , its
second vertex. Counting similarly from 1, the GL gives each flat-shaded polygon the computed color of the
vertex listed in the following table. This is the last vertex to specify the polygon in all cases except single
polygons, where the first vertex specifies the flat-shaded color.

glShadeModel

glShadeModel
affects normals
and colors

Material Model O

glMaterial: coarser controls for O

color

O You specify how much light is reflected for the
material type.

0 Command:
glMaterialfv(FACE_TYPE, PARAMETER, VALUE(S))

0 FACE_TYPE =
O GL_FRONT_AND_BACK
0 GLFRONT
0 GL—BACK-

glMaterialfvy Parameters

GL AMBIENT

params contains four fixed-point or floating-point values that specify the ambient RGBA
reflectance of the material. The values are not clamped. The initial ambient reflectance is (0.2,
0.2,0.2,1.0).

GL_DIFFUSE

params contains four fixed-point or floating-point values that specify the diffuse RGBA
reflectance of the material. The values are not clamped. The initial diffuse reflectance is (0.8,
0.8,0.8,1.0).

GL_SPECULAR

params contains four fixed-point or floating-point values that specify the specular RGBA
reflectance of the material. The values are not clamped. The initial specular reflectance is (0, 0,
0, 1).

glMaterialfvy Parameters

GL_EMISSION

params contains four fixed-point or floating-point values that specify the RGBA emitted light
intensity of the material. The values are not clamped. The initial emission intensity is (0,0, 0,

1).
GL_SHININESS

params is a single fixed-point or floating-point value that specifies the RGBA specular
exponent of the mate2:Paly values in the range [0, 128] are accepted. The initial specular
exponent is 0.

GL_AMBIENT AND DIFFUSE

Equivalent to calling glMaterial twice with the same parameter values, once with GL,_AMBIENT
and once with GL_DIFFUSE.

OpenGL: very complex model
for lighting and colors

glMaterial
not used

glColor
IS no-op

Is OpenGL Lighting Enabled?

glEnable{GL_LIGHTING);
glDisable(GL_LIGHTING);

NO

b

Final polygon colour is determined
hy: glColor*(...);

Final polygon colours for Ambient,
Diffuse, Specular and Emission components
are determined by: giMaterial*(...);

Are Colour-driven Materials
Enabled?

glEnable(GL_COLOR_MATERIAL);
glDisable(GL_COLOR_MATERIAL);

Which colour components are set by
glColor* and which by giMaterial?

glColorMaterial(...)

b & b

Final polygon colours for components specified by glColorMaterial are set by
glCoalor*(); - the remaining components are set by gihaterial®();

http://www.sjbaker.org/steve/omniv/opengl _lighting.html

Basic OpenGL light model O

0 The OpenGL light model presumes that the light

that reaches your eye from the polygon surface
arrives by four different mechanisms:

O AMBIENT
o DIFFUSE
o SPECULAR

O EMISSION - in this case, the light is actually emitted by
the polygon - equally in all directions.

http://www.sjbaker.org/steve/omniv/opengl _lighting.html

Difference between lights and

materials

0 There are three light colours for each light:
O Ambient, Diffuse and Specular (set with glLight)

0O There are four colors for each surface

O Same three + Emission(set with glMaterial).

0 All OpenGL implementations support at least eight
light sources - and the glMaterial can be changed
at will for each polygon

http://www.sjbaker.org/steve/omniv/opengl _lighting.html

Interactions between lights and

materials

0 The final polygon colour is the sum of all four light
components, each of which is formed by multiplying
the glMaterial colour by the glLight colour (modified
by the directionality in the case of Diffuse and
Specular).

0 Since there is no Emission colour for the glLight, that
is added to the final colour without modification.

http://www.sjbaker.org/steve/omniv/opengl _lighting.html

Display Lists O

CPU and GPU

0 Most common configuration has CPU and GPU on
separate dies

g l.e., plug GPU in CPU

CPU GPU
: (typically 100-
(Typlzzllzs4-1 2 1000 cores,
’ PCle ~100GFLOPs-
IREIiol, ~1000GFLOPs)

Peripheral Component Interconnect Express

[What are the performance ramifications of this architecture? }

Display lists O

O send geometry and settings to GPU once, give it an

O ldea:

identifier
O GPU stores geometry and settings

O Just pass the identifier for every subsequent render

Display lists O

0 Generate an idenfitier:
GLUint displaylList = glGenlLists(1);

0O Tell GPU that all subsequent geometry is part of the
list:
gINewlist(displayList, GL_COMPILE);

O Specify geometry (i.e., glVertex, etc)

0 Tell GPU we are done specifying geometry:
glEndList();

O Later on, tell GPU to render all the geometry and
settings associated with our list:
glCalllist(displayList);

Display lists in action

for (int frame = @0 ; frame < nFrames ; frame++)
{
SetCamera(frame, nFrames);
gBegin(GL_TRIANGLES);
for (int 1 = @ ; i < triangles.size() ; i++)
{
for (int § =0 ; j <3 ; j++)

{
glColor3ubv(triangles[i].colors[j]);
glColor3fv(triangles[i].vertices[j]);
}
glEnd();
}
N

GLUint displayList = glGenLists(1);
gWNewList(displayList, GL_COMPILE);
glBegin(GL_TRIANGLES);
for (int 1 = @ ; i < triangles.size() ; i++)
{
for (int j =0 ; j < 3 ; j++)
{
glColor3ubv(triangles[i].colors[jl);
glColor3fv(triangles[i].vertices[j]);
}
glEnd();
glEndList();

for (int frame = @ ; frame < nFrames ; frame++)
{
SetCamera(frame, nFrames);
glCallList(displayList);
}

[What are the performance ramifications between the two? }

gINewlList O
1 GL_COMPILE

O Make the display list for later use.
0 GL_COMPILE_AND_EXECUTE

O Make the display list and also execute it as you go.

