(X1S'441/541: Intro to Computer Graphics
Lecture 9: OpenGL

May 4, 2021 Hank Childs, University of Oregon

UNIVERSITY OF OREGON

O

Current Plan (1/2)

mmmmmm

Lec 7 (shading), Lec 8 (finish
1F-assigned; shading,
1E due GL), 2A
assigned
1F assigned
6 HFdue Lec9 (GL), 1F due 2B-assigned 2A-due
58 s I Bi :
2A assigned of-final
(sort of) prejects/
More GL
Quiz 3
7 tec11—ray More 2B
tracing discussion due
Even more GL of final
2B assigned projects

2A due Quiz 3

Quiz 3

e Old: Thursday of Week 6 (in two days)

* Old: on matrices

 New: Thursday of Week 7 (in nine days)
* New: on Phong shading

Current Plan (2/2)

* Early part of Week 8: 2B due

* Rest of Week 8 -> Week 10 = you work on final
orojects

* Lectures will be on misc. topics in graphics, esp.
in support of final projects

+Quiz 3{Week 6)1likelyonmatrices

* Quiz 3 (Week 7): Phong shading

* Quiz 4 (Week 8): likely on GL

* Quiz 5 (Week 10): likely on topics in final weeks

0 UNIVERSITY OF OREGON

Office Hours
A Edit

How to access Office Hours Apr 4 at 2:02pm
Hank Childs

All Sections

Hi Everyone,

We currently have an asymmetry for accessing Hank and Abhishek's Office Hours.
And Hank's are accessible via the Zoom Meetings area in Canvas.

Let's chat on Tuesday about the most standard way to do this.

Finally, here is the OH schedule again:

Monday (Abhishek): 10am-11am
Tuesday (Abhishek): 945am-1045am
Wednesday (Hank): 230pm-330pm
Thursday (Abhishek): 945am-1045am

Best,
Hank

Project #1F (8%), Wed May 5th

* Goal: add shading, movie

e Extend your projectlE code
* Important:

e add #define NORMALS

 Download new file, update
to new file

Changes to data structures

class Triangle
{

public:
double X[3], Y[3], Z[3];
double colors[3][3];
double normals[3][3];

Iy
—readerle.cxx will not compile (with #define
NORMALS) until you make these changes

—>readerle.cxx will initialize normals at each vertex

O

UNIVERSITY OF OREGON

More comments (1/3)

* This project in a nutshell:
— Add method called “CalculateShading”

* My version of CalculateShading is about ten lines of
code.

— Call CalculateShading for each vertex
— This is a new field, which you will LERP
— Modify RGB calculation to use shading

More comments (2/3)

* New: more data to help debug

— | will make the shading value for each pixel
available

— | will also make it available for ambient, diffuse,
specular

* REVERSAL: do one-sided lighting

UNIVERSITY OF OREGON

O

, (c_x,c_y, c_z)/camera=(0,1,0)
A

This example has a
triangle vertex, v, at the
origin, the camera one
unit along the Y-axis and
the light source one unit
along the X-axis.

viewDir = normalize(c_x-v_x, c_y-v.y, c_z-v_z)=(0,1,0)

(0.707,0.707,0) / view normal

> * (I_x, 1y, z)/light source =(1,0,0)
lightDir

=normalize(l_x-v_x, |_y-v_y | z-v_z)
=(1,0,0)

The lightDir and viewDir
formulas show the
conventions we should
use for direction for
general positions.

=(0,0,0)

More comments (3/3)

* | haven’t said anything about movie encoders

) o oromeon Project #1F (8%),
Due Weds May 5th

* Goal: add shading, movie

(Lecture Begins)

GLFW:
Graphics Library FrameWork

* Open Source, multi-platform library for
— OpenGl,
— OpenGL ES, and
— Vulkan development

* on the desktop

Source: https://www.glfw.org/

UNIVERSITY OF OREGON

OpenGL ES?

OpenGL ES is an “embeddable subset” of OpenGL
e Slims down large OpenGL API to bare essentials

* Enables implementation on devices with
— simpler, cheaper hardware

— power requirements (runs on batteries)

e Standard on smartphones running both
Apple’s 10S and Google’s Android operating

Source: khronos.org

UNIVERSITY OF OREGON

O

Vulkan?

* New generation graphics and compute API

* Features:
— high-efficiency
— cross-platform access to modern GPUs

* PCs

e consoles

* mobile phones
 embedded platforms

Source: khronos.org

GLFW:
Graphics Library FrameWork
* Writtenin C
* Supports
— Windows
— macOS

— two Unix (X11 and Wayland)

Source: https://www.glfw.org/

GLFW:
Does Things We Don’t Want to Do

 GLFW provides a simple API for
— creating windows

— receiving input and events

Source: https://www.glfw.org/

Gives you a window and OpenGL context with just two
function calls

Support for OpenGL, OpenGL ES, Vulkan and related
options, flags and extensions

Support for multiple windows, multiple monitors, high-DPI

and gamma ramps

Support for keyboard, mouse, gamepad, time and window
event input, via polling or callbacks

Comes with a tutorial, guides and reference

documentation, examples and test programs

Open Source with an OSl-certified license allowing

commercial use

Access to native objects and compile-time options for

platform specific features

Community-maintained bindings for many different

languages

Source: https://www.glfw.org/

Layout of Simple OpenGL Program

* Set up windows
e Set up things to render (VBOs)
e Set up how to render (shaders)
* While (1)

— Accept events, make changes

 New camera positions, new geometry, etc.

— Render

Layout of Simple OpenGL Program

This is done for you in 2A

. .—| Simple through GLFW
° SEt up WlndOWS Will talk about this first

e Set up things to render (VBOs)
e Set up how to render (shaders)
* While (1)

— Accept events, make changes

 New camera positions, new geometry, etc.

— Render

Layout of Simple OpenGL Program

* Set up windows
e Set up things to render (VBOs)
e Set up how to render (shaders)
* While (1)

— Accept events, make changes

* New camera positions, new geometry, etc.
— Render — _
\ This is done for you in 2A

Simple through GLFW

Will talk about this second

Layout of Simple OpenGL Program

* Set up windows
e Set up things to render (VBOs)
e Set up how to render (shaders)
* While (1)

— Accept events, make changes

This will be discussed for
2B. In 2A, renders one
/ time and you are done.

 New camera positions, new geometry, etc.

— Render

Layout of Simple OpenGL Program

* Set up windows
* Set up things to render (VBOs) . |Maiority of this lecture &

next.

e Set up how to render (shaders)” [Youdobothin2A.
* While (1)

— Accept events, make changes

 New camera positions, new geometry, etc.

— Render

The remainder of this lecture and
Thursday’s lecture are made up of 4 parts

1) Set up windows

2) Doing a render

3) Set up things to render (VBOs)

4) Set up how to render (shaders) (Thursday)

UNIVERSITY OF OREGON

O

Part 1

This is done for you in 2A

. .—| Simple through GLFW
¢ Set up WlndOWS Will talk about this first

e Set up things to render (VBOs)
e Set up how to render (shaders)
* While (1)

— Accept events, make changes

 New camera positions, new geometry, etc.

— Render

0 ‘ UNIVERSITY OF OREGON

int main(void)

{

GLFWwindow* window;

/* Initialize the library */
if (!glfwInit())

return -1;

/* Create a windowed mode window and its OpenGL context */
window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
if (!window)
{

glfwTerminate();

return -1;

/* Make the window's context current, */

glfwMakeContextCurrent (window) ;

https://www.glfw.org/documentation.html#fexample-code

OpenGL Context

* An OpenGL context represents many things

— A context stores all of the state associated with
this instance of OpenGL

— All of your buffers are within this context

* |f you have two OpenGL programs running,
they can co-exist since each works in its own
context

* (Not something you need to worry about
when writing your first GL programs)

https://www.khronos.org/opengl/wiki/OpenGL_Context

Note: Abhishek’s program has some
extra stuff — not worth worrying about

 EXCEPT:

// uncomment these lines if on Apple OS X
glfwWindowHint(GLFW_CONTEXT_VERSION_MAIJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2);

glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT,
GL_TRUE);

glfwWindowHint(GLFW_OPENGL_PROFILE,
GLFW_OPENGL_CORE_PROFILE);

UNIVERSITY OF OREGON

O

Part 2

* Set up windows
e Set up things to render (VBOs)
e Set up how to render (shaders)
* While (1)

— Accept events, make changes

* New camera positions, new geometry, etc.
— Render — _
\ This is done for you in 2A

Simple through GLFW

Will talk about this second

Render: 3 steps

1) Initialize
2) Perform Render Actions
3) Finalize

Rendering Step #1: Initialize (1/2)

* Need to clear everything off the screen from the
last render

* You did this in Project 1
for (inti=0 ;i< npixels; i++)
{
zbuffer[i] =-1.0;
ouffer[3*i+0] = O;
ouffer[3*i+1] = 0;
ouffer[3*i+2] = 0;

S

Rendering Step #1: Initialize (2/2)

* GL command: glClear
* Arguments: what to clear

— Color buffer
— Depth buffer € = Z buffer

e Actual invocation:
glClear(GL_COLOR BUFFER BIT | GL_ DEPTH BUFFER_BIT);

Render Step #2:
Perform Render Actions

* GL needs to know:
— Geometry to render

— How to render that geometry

* After a clear, you have to instruct GL to render
geometry

* You can optionally tell it how to render that
geometry during a render cycle

— Or you can tell it ahead of time

UNIVERSITY OF OREGON

From Example Program (a little
modified)

glUseProgram(shader_programme);
glBindVertexArray(vao);
while (!glfwWindowShouldClose(window)) {
// wipe the drawing surface clear
glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);
// draw points 0-3 from the currently bound VAO
gIDrawElements(GL_TRIANGLES, 6,
GL_UNSIGNED_INT, NULL);

glUseProgram, glBindVertexArray, gIDrawElements .

O

UNIVERSITY OF OREGON

O

... But this works too

while (!glfwWindowShouldClose(window)) {
// wipe the drawing surface clear
glClear(GL_COLOR_BUFFER_BIT |

GL _DEPTH_BUFFER_BIT);
glUseProgram(shader_programme); // modify shader each render
glBindVertexArray(vao); // modify geometry each render
// draw points 0-3 from the currently bound VAO
gIDrawElements(GL_TRIANGLES, 6,
GL_UNSIGNED_INT, NULL);

glUseProgram, glBindVertexArray, gIDrawElements .

UNIVERSITY OF OREGON

O

Rendering Step #3: Finalize

* Finalize means getting the image to the viewer on
the display
* In graphics, maintain two copies of buffers

— Copy #1 (“front buffer”): given to the display for user
to see

— Copy #2 (“back buffer”): being generated “right now”

* When rendering is done, swap “copy #2” into
“copy #1” and start over

* Command: glfwSwapBuffers(window);

— (And there is an OpenGL equivalent| -

UNIVERSITY OF OREGON

Why Double Buffered?

O

* General computer science idea: double buffering

(or “multiple buffering”)
— use of more than one buffer to hold a block of data
— Why?

* "reader" sees a complete (though perhaps old) version of
the data, rather than a partially updated version of the data

being created by a “writer”

* |In other words: if you are continuously working

on something, then regularly make a copy and
show that to the user, rather than risking them

see incomplete/partial versions

https://en.wikipedia.org/wiki/Multiple_buffering

UNIVERSITY OF OREGON

O

Part 3

e Set up windows

* Set up things to render (VBOs) .| Majority of this lecture
and you ao botn In .

e Set up how to render (shaders)
* While (1)

— Accept events, make changes

 New camera positions, new geometry, etc.

— Render

UNIVERSITY OF OREGON

O

Game Plan

* Plan

— Set up small things

— Wrap the small things up into one big thing
* More detalil

— Small things are buffers / Vertex Buffer Objects (VBOs)

— Big things are arrays of buffers / Vertex Array Object
(VAOs)

* Lecture
— Starts with VBO and then go on to VAO

— Focuses on starter code for 2A -

UNIVERSITY OF OREGON

Walking Through the Starter Code

float points[] = {0.5f, @.0f,
0.0f, 0.0f,

0.0f, 0.5f, ! points:
-0.5f, 0.0f,
—V0=(0.5,0,0), red

O

Hleee cellorsl] =2 dal.0i, @007,

Gl el —-V1=(0,0,0), green
1.09f, 0.of,
. —-V2=(0, .5, 0), blue
GLuint indices[] = {0 ,1, 2,
e L — V3 =(-0.5, 0, 0), red

* 6 indices for 2 triangles
— Triangle 0: (VO,V1,V2)
— Triangle 1: (V1,Vv2,V3)

glGenBuffers / gIBindBuffers /
g|BufferData

GLuint points_vbo = 0;
glGenBuffers(1l, &points_vbo);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glBufferData(GL_ARRAY_BUFFER, 12 x sizeof(float), points, GL_STATIC_DRAW);

* GLuint: this is an unsigned integer, but
OpenGL defines its own type so it can deal
with portability issues (like 32 bits vs 64 bits)

O

UNIVERSITY OF OREGON

glGenBuffers / gIBindBuffers /
g|BufferData

GLuint points_vbo = 0;
glGenBuffers(1l, &points_vbo);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glBufferData(GL_ARRAY_BUFFER, 12 x sizeof(float), points, GL_STATIC_DRAW);

* glGenBuffers

— Asks OpenGL to generate a new buffer for the
programmer to work with

— That buffer will have a unique identifier (points_vbo)

— This unique identifier is useful: lets programmer tell
OpenGL which buffer they want to operate on

UNIVERSITY OF OREGON

glGenBuffers / gIBindBuffers /
g|BufferData

O

GLuint points_vbo = 0;
glGenBuffers(1l, &points_vbo);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glBufferData(GL_ARRAY_BUFFER, 12 x sizeof(float), points, GL_STATIC_DRAW);

* glBindBuffer

— Buffers can operate on different types of “targets”
(I think types would be a better word than targets)

— glBindBuffer says what type of target a buffer will
operate on

— |t also makes the buffer “active,” meaning subsequent
GL calls will use this buffer

UNIVERSITY OF OREGON

O

Targets for gIBindBuffers

Buffer Binding Target

Purpose

GL ARRAY BUFFER

Vertex attributes

GL _ATOMIC COUNTER BUFFER

Atomic counter storage

GL COPY READ BUFFER

Buffer copy source

GL _COPY WRITE BUFFER

Buffer copy destination

GL DISPATCH INDIRECT BUFFER

Indirect compute dispatch commands

GL_DRAW_INDIRECT BUFFER

Indirect command arguments

GL ELEMENT ARRAY BUFFER

Vertex array indices

GL PIXEL PACK BUFFER

Pixel read target

GL PIXEL UNPACK BUFFER

Texture data source

GL_QUERY BUFFER

Query result buffer

GL SHADER STORAGE BUFFER

Read-write storage for shaders

GL_TEXTURE BUFFER

Texture data buffer

GL TRANSFORM FEEDBACK BUFFER

Transform feedback buffer

GL_UNIFORM BUFFER

Uniform block storage

e We will use the

ohes underlined
in red

* Distinction

— |s this the data?

— Or are these
indices into
existing data?

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/gIBindBuffer.xhtml

UNIVERSITY OF OREGON

glGenBuffers / gIBindBuffers /
g|BufferData

O

GLuint points_vbo =
glGenBuffers(1l, &points_vbo);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glBufferData(GL_ARRAY_BUFFER, 12 x sizeof(float), points, GL_STATIC_DRAW);

* gl|BufferData
— Tells OpenGL about your actual data
— Notes:

e “target” (GL_ARRAY_BUFFER) is repeated

* Passing 48 bytes, but not saying anything (yet) about how to
interpret the data

 GL_STATIC_DRAW tells OpenGL about the usage

UNIVERSITY OF OREGON

O

glBufferData: usage types

* Hint to OpenGL about how data will be used
* Two parts:

STREAM
The data store contents will be modified once and used at most a few times.

— Frequenc
q y STATIC
Of access The data store contents will be modified once and used many times.
DYNAMIC
The data store contents will be modified repeatedly and used many times.
DRAW

The data store contents are modified by the application, and used as the source for GL drawing
and image specification commands.

— Nature of e

The data store contents are modified by reading data from the GL, and used to return that data
dCCesS when queried by the application.

COPY

The data store contents are modified by reading data from the GL, and used as the source for
GL drawing and image specification commands.

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/gIBufferData.xhtml

glGenBuffers / gIBindBuffers /
g|BufferData

GLuint points_vbo = 0;
glGenBuffers(1l, &points_vbo);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glBufferData(GL_ARRAY_BUFFER, 12 x sizeof(float), points, GL_STATIC_DRAW);

* So what did this code do?
e 1) asked GL to make a buffer

e 2) told GL the buffer would be used to store
an array

e 3) told GL the actual data to put in the buffer

O UNIVERSITY OF OREGON

More Starter Code

GLuint points_vbo = 0;

glGenBuffers(1l, &points_vbo);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);

glBufferData(GL_ARRAY_BUFFER, 12 % sizeof(float), points, GL_STATIC_DRAW);

GLuint colors_vbo = 0;

glGenBuffers(1l, &colors_vbo);

glBindBuffer (GL_ARRAY_BUFFER, colors_vbo);

glBufferData(GL_ARRAY_BUFFER, 12 x sizeof(float), colors, GL_STATIC_DRAW);

GLuint index_vbo; // Index buffer object

glGenBuffers(1, &index_vbo);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_vbo);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6xsizeof(GLuint), indices, GL_STATIC_DRAW);

This one is indices, not data

UNIVERSITY OF OREGON

Vertex Buffer Object versus
Vertex Array Object

* Vertex Buffer Object (VBO):

— Memory buffer in your GPU
— Contains information about vertices

* Vertex Array Object (VAO):

— Contains one or more VBOs

— Should contain a “complete” renderable object
* Summary:

— VBOs store your vertex data
— VAOs wrap up VBOs into something that can be

rendered -

O

O

UNIVERSITY OF OREGON

Next Step in Starter Code:
Make a VAO and put VBOs into VAO

GLuint vao = 0;

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glVertexAttribPointer(®, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer (GL_ARRAY_BUFFER, colors_vbo);

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_vbo);

glEnableVertexAttribArray(9);
glEnableVertexAttribArray(1);

* glGenVertexArrays

— Just like glGenBuffers, but for VAOs

— Asks OpenGL to generate a new VAO for the
programmer to work with

— That buffer will have a unique identifier (vao)

— This unique identifier is useful: lets programmer tell
OpenGL which buffer they want to operate on

UNIVERSITY OF OREGON

Next Step in Starter Code:
Make a VAO and put VBOs into VAO

O

GLuint vao = 0;

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glVertexAttribPointer(®, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer (GL_ARRAY_BUFFER, colors_vbo);

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_vbo);

glEnableVertexAttribArray(9);
glEnableVertexAttribArray(1);

* glBindVertexArray

— Just like gIBindBuffer, but for VAOs

— It also makes the buffer “active,” meaning
subsequent GL calls will use this buffer

* glBindBuffer commands will put the VBOs into this VAO

O

UNIVERSITY OF OREGON

Next Step in Starter Code:

Make a VAO and put VBOs into VAO

e \We've seen this before!

GLuint vao = 0;

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glVertexAttribPointer(®, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer (GL_ARRAY_BUFFER, colors_vbo);

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_vbo);

glEnableVertexAttribArray(9);
glEnableVertexAttribArray(1);

ner, this code could be tightened up
d start by building VAO, and then build VBOs

e Furt
e Cou
are

— (Call gIBindBuffer once, not twice)

nart of the VAO building process

* | like how Abhishek set it up — easier to understand

UNIVERSITY OF OREGON

Next Step in Starter Code:
Make a VAO and put VBOs into VAO

O

GLuint vao = 0;

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glVertexAttribPointer (@, 3, GL_FLOAT, GL_FALSE, 9, NULL);
glBindBuffer (GL_ARRAY_BUFFER, colors_vbo);

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_vbo);

glEnableVertexAttribArray(9);
glEnableVertexAttribArray(1);

* Tells GL how to interpret a VBO within the VAO
* This one is for the 0" VBO, which is points_vbo

* Arguments:
— 0: the Oth VBO — goes in “location 0” of the shader program
— 3:there are 3 values per vertex
— GL_FLOAT: they are floats
— GL_FALSE: don’t normalize this data
— O0/NULL: deals with data layout stuff (always O/NULL for 441)

O

UNIVERSITY OF OREGON

Next Step in Starter Code:
Make a VAO and put VBOs into VAO

GLuint vao = 0;

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

glBindBuffer (GL_ARRAY_BUFFER, points_vbo);
glVertexAttribPointer(®, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer (GL_ARRAY_BUFFER, colors_vbo);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_vbo);

glEnableVertexAttribArray(9);
glEnableVertexAttribArray(1);

e Tells GL how that array O (i.e., points_vbo) should
be enabled — it should be processed when vao is
processed

 We always want to enable for 441

 Why disable? Improved performance if not using an
array

O

UNIVERSITY OF OREGON

(REPEAT SLIDE FROM PART 2)

From Example Program

while (!glfwWindowShouldClose(window)) {

// wipe the drawing surface clear
glClear(GL_COLOR_BUFFER _BIT |

GL DEPTH_BUFFER_BIT);
glUseProgram(shader_programme);
glBindVertexArray(vao);
// draw points 0-3 from the currently bound VAO
gIDrawElements(GL_TRIANGLES, 6,

GL_UNSIGNED_INT, NULL);

glUseProgram, glBindVertexArray, giDrawElements .

(REPEAT SLIDE FROM PART 2)
From Example Program

glBindVertexArray(vao);

// draw points 0-3 from the currently bound VAO
gIlDrawElements(GL_TRIANGLES, 6,
GL _UNSIGNED INT, NULL);

* Tells OpenGL that commands that follow will be
for vertex array object “vao”

s |

UNIVERSITY OF OREGON

(REPEAT SLIDE FROM PART 2)
From Example Program

O

glBindVertexArray(vao);
// draw points 0-3 from the currently bound VAO
gIlDrawElements(GL_TRIANGLES, 6,

GL _UNSIGNED INT, NULL);

e Tells OpenGL to draw the elements in the current VAO

 And:
— GL_TRIANGLES: the indices are describing triangles
— 6: there are 6 indices (2 triangles total)
— GL_UNSIGNED_INT: the indices are unsigned int

— NULL: something for fancy array layouts (we don’t need this
for 441)

UNIVERSITY OF OREGON

O

Project 2A

e Assigned today, due in one week (Tuesday May 11)
Worth 8% of your grade
* Implementing Project 1 within OpenGL

* 5 phases
— Phase 1: install GLFW
— Phase 2: run example program
— Phase 3: modify VBO/VAO
— Phases 4 & 5: shader programs

* Please start ASAP on Phase 1-3
* Thursday’s lecture will be on Phase 4 & 5

Finish lecture by talking again
about compiling shaders

How to Use Shaders O

0 You write a shader program: a tiny C-like program

0 You write C/C++ code for your application

0 Your application loads the shader program from a
text file

0 Your application sends the shader program to the
OpenGlL library and directs the OpenGL library to
compile the shader program

O If successful, the resulting GPU code can be
attached to your (running) application and used

0 It will then supplant the built-in GL operations

How to Use Shaders:
Visual Version

sends “char *”
version of
program to GL via

g++

- \‘unction call
reads OpenGL
text compiles program,
file binary made just for
when the current
running \?xecution

Program is use
on GPU to suppo
Project2A’ binary

Compiling Shader

GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);

std::string vertexProgram = loadFileToString("vs.glsl");

const char xvertex_shader_source = vertexProgram.c_str();

GLint const vertex_shader_length = strlen(vertex_shader_source);
glShaderSource(vertexShader, 1, &vertex_shader_source, &vertex_shader_length);
glCompileShader(vertexShader);

GLint isCompiledVS = 0;

glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &isCompiledVS);

Compiling Shader: inspect if it

works

if(isCompiledVS == GL_FALSE)
{

cerr << "Did not compile VS" << endl;

GLint maxLength = 0;
glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength);

// The maxLength includes the NULL character

std::vector<GLchar> errorLog(maxLength);
glGetShaderInfoLog(vertexShader, maxLength, &maxLength, &errorLog[@]);
cerr << "Vertex shader log says " << &(errorLog[@]) << endl;

exit (EXIT_FAILURE);

Compiling Multiple Shaders

GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);

std::string vertexProgram = loadFileToString("vs.glsl");

const char xvertex_shader_source = vertexProgram.c_str();

GLint const vertex_shader_length = strlen(vertex_shader_source);
glShaderSource(vertexShader, 1, &vertex_shader_source, &vertex_shader_length);
glCompileShader(vertexShader);

GLint isCompiledVS = 0;

glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &isCompiledVS);

if(isCompiledVS == GL_FALSE)
{

cerr << "Did not compile VS" << endl;

GLint maxLength = 0;
glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength);

// The maxLength includes the NULL character
std::vector<GLchar> errorLog(maxLength);
glGetShaderInfoLog(vertexShader, maxLength, &maxLength, &errorLog([@]);
cerr << "Vertex shader log says " << &(errorLog[@]) << endl;
exit (EXIT_FAILURE);

}

GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER) ;

std::string fragmentProgram = loadFileToString("fs.gls1");

const char xfragment_shader_source = fragmentProgram.c_str();

GLint const fragment_shader_length = strlen(fragment_shader_source);
glShaderSource(fragmentShader, 1, &fragment_shader_source, &fragment_shader_length);
glCompileShader(fragmentShader);

GLint isCompiledFS = 0;

glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &isCompiledFS);

Attaching Shaders to o O
Program

GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);

glLinkProgram(program);

glDetachShader(program, vertexShader);
glDetachShader(program, fragmentShader);

Inspecting if program link
worked...

GLint isLinked = 0;
glGetProgramiv(program, GL_LINK_STATUS, (int *)&isLinked);
if(isLinked == GL_FALSE)
{
GLint maxLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength);

//The maxLength includes the NULL character

std::vector<GLchar> infolLog(maxLength);
glGetProgramInfoLog(program, maxLength, &maxLength, &infolLog[Q]);
cerr << "Couldn't link" << endl;

cerr << "Log says " << &(infolLog[@]) << endl;

exit (EXIT_FAILURE);

Simplest Vertex Shader O

void main(void)

{
}

gl_Position = gl_ModelViewProjectionMatrixxgl_Vertex;

Many built-in variables.
Some are input.
Some are required output (gl_Position).

