
Hank Childs, University of OregonMay 4, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 9: OpenGL



Current	Plan (1/2)
Week Sun Mon Tues Weds Thurs Fri Sat

5 Lec 7	(shading),	
1F assigned,	
1E	due

Lec 8	(finish
shading,	
GL),	2A	
assigned
1F assigned

6 1F	due Lec 9	(GL),	
2B assigned
2A	assigned	
(sort of)

1F	due 2B	assigned
Discussion	
of	final	
projects	/	
More GL	
Quiz 3

2A	due

7 Lec 11	– ray	
tracing
Even	more	GL
2B	assigned
2A	due

More	
discussion	
of	final	
projects
Quiz 3

2B	
due



Quiz	3

• Old:	Thursday	of	Week	6	(in	two	days)
• Old:	on	matrices
• New:	Thursday	of	Week	7	(in	nine	days)
• New:	on	Phong shading



Current	Plan (2/2)

• Early	part	of	Week	8:	2B	due
• Rest	of	Week	8	->	Week	10	à you	work	on	final	
projects

• Lectures	will	be	on	misc.	topics	in	graphics,	esp.	
in	support	of	final	projects

• Quiz	3	(Week	6):	likely	on	matrices
• Quiz	3	(Week	7):	Phong shading
• Quiz	4	(Week	8):	likely	on	GL
• Quiz	5	(Week	10):	likely	on	topics	in	final	weeks



Office	Hours



Project	#1F	(8%),	Wed	May	5th

• Goal:	add	shading,	movie
• Extend	your	project1E	code
• Important:
• add	#define	NORMALS
• Download	new	file,	update	
to	new	file



Changes	to	data	structures
class	Triangle
{
public:
double	X[3],	Y[3],	Z[3];
double	colors[3][3];
double	normals[3][3];

};
àreader1e.cxx	will	not	compile	(with	#define	
NORMALS)	until	you	make	these	changes
àreader1e.cxx	will	initialize	normals at	each	vertex



More	comments	(1/3)

• This	project	in	a	nutshell:
– Add	method	called	“CalculateShading”

• My	version	of	CalculateShading is	about	ten	lines	of	
code.

– Call	CalculateShading for	each	vertex
– This	is	a	new	field,	which	you	will	LERP
– Modify	RGB	calculation	to	use	shading



More	comments	(2/3)

• New:	more	data	to	help	debug
– I	will	make	the	shading	value	for	each	pixel	
available

– I	will	also	make	it	available	for	ambient,	diffuse,	
specular

• Don’t	forget	to	do	two-sided	lighting
• REVERSAL:	do	one-sided	lighting



(v_x,	v_y,	v_z)
=	(0,0,0)

(c_x,	c_y,	c_z)	/	camera	=	(0,1,0)

(l_x,	l_y ,	l_z)	/	light	source	=	(1,0,0)

(0.707,0.707,0)	/	view	normal

viewDir =	normalize(c_x-v_x,				c_y-v_y,					c_z-v_z)	=	(0,	1,	0)

lightDir
=	normalize(l_x-v_x,				l_y-v_y,				l_z-v_z)
=	(1,	0,	0)

This	example	has	a	
triangle	vertex,	v,	at	the	
origin,	the	camera	one	
unit	along	the	Y-axis	and	
the	light	source	one	unit	
along	the	X-axis.

The	lightDir and	viewDir
formulas	show	the	
conventions	we	should	
use	for	direction	for	
general	positions.



More	comments	(3/3)

• I	haven’t	said	anything	about	movie	encoders



Project	#1F	(8%),	
Due	Weds	May	5th

• Goal:	add	shading,	movie



(Lecture	Begins)



GLFW:	
Graphics	Library	FrameWork

• Open	Source,	multi-platform	library	for
– OpenGL,	
– OpenGL	ES,	and
– Vulkan	development	

• on	the	desktop

Source:	https://www.glfw.org/



OpenGL	ES?

• OpenGL	ES is	an	“embeddable	subset”	of	OpenGL
• Slims	down	large	OpenGL	API	to	bare	essentials
• Enables	implementation	on	devices	with

– simpler,	cheaper	hardware
– power	requirements	(runs	on	batteries)

• Standard	on	smartphones	running	both	
Apple’s IOS and	Google’s Android operating

Source:	khronos.org



Vulkan?

• New	generation	graphics	and	compute	API
• Features:

– high-efficiency
– cross-platform	access	to	modern	GPUs	

• PCs
• consoles
• mobile	phones
• embedded	platforms

Source:	khronos.org



GLFW:	
Graphics	Library	FrameWork

• Written	in	C
• Supports	

– Windows	
– macOS	
– two	Unix	(X11	and	Wayland)

Source:	https://www.glfw.org/



GLFW:	
Does	Things	We	Don’t	Want	to	Do

• GLFW	provides	a	simple	API	for	
– creating	windows
– receiving	input	and	events

Source:	https://www.glfw.org/



GLFW	

Source:	https://www.glfw.org/



Layout	of	Simple	OpenGL	Program

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render



Layout	of	Simple	OpenGL	Program

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render

This	is	done	for	you	in	2A
Simple	through	GLFW
Will	talk	about	this	first



Layout	of	Simple	OpenGL	Program

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render
This	is	done	for	you	in	2A
Simple	through	GLFW
Will	talk	about	this	second



Layout	of	Simple	OpenGL	Program

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render

This	will	be	discussed	for	
2B.		In	2A,	renders	one	
time	and	you	are	done.



Layout	of	Simple	OpenGL	Program

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render

Majority	of	this	lecture	&	
next.
You	do	both	in	2A.



The	remainder	of	this	lecture	and	
Thursday’s	lecture	are	made	up	of	4	parts
1) Set	up	windows
2) Doing	a	render
3) Set	up	things	to	render	(VBOs)
4) Set	up	how	to	render	(shaders)		(Thursday)



Part	1

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render

This	is	done	for	you	in	2A
Simple	through	GLFW
Will	talk	about	this	first



???

https://www.glfw.org/documentation.html#example-code



OpenGL	Context

• An OpenGL	context represents	many	things
– A	context	stores	all	of	the	state	associated	with	
this	instance	of	OpenGL

– All	of	your	buffers	are	within	this	context
• If	you	have	two	OpenGL	programs	running,	
they	can	co-exist	since	each	works	in	its	own	
context

• (Not	something	you	need	to	worry	about	
when	writing	your	first	GL	programs)

https://www.khronos.org/opengl/wiki/OpenGL_Context



Note:	Abhishek’s	program	has	some	
extra	stuff	– not	worth	worrying	about
• EXCEPT:

//	uncomment	these	lines	if	on	Apple	OS	X
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR,	3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR,	2);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT,			

GL_TRUE);
glfwWindowHint(GLFW_OPENGL_PROFILE,	

GLFW_OPENGL_CORE_PROFILE);



Part	2

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render
This	is	done	for	you	in	2A
Simple	through	GLFW
Will	talk	about	this	second



Render:	3	steps

1) Initialize
2) Perform	Render	Actions
3) Finalize



Rendering	Step	#1:	Initialize	(1/2)

• Need	to	clear	everything	off	the	screen	from	the	
last	render

• You	did	this	in	Project	1
for	(int i =	0	;	i <	npixels ;	i++)
{
zbuffer[i]	=	-1.0;
buffer[3*i+0]	=	0;
buffer[3*i+1]	=	0;
buffer[3*i+2]	=	0;

}



Rendering	Step	#1:	Initialize	(2/2)

• GL	command:	glClear
• Arguments:	what	to	clear

– Color	buffer
– Depth	buffer	çè Z	buffer

• Actual	invocation:
glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);



Render	Step	#2:	
Perform	Render	Actions	

• GL	needs	to	know:
– Geometry	to	render
– How	to	render	that	geometry

• After	a	clear,	you	have	to	instruct	GL	to	render	
geometry

• You	can	optionally	tell	it	how	to	render	that	
geometry	during	a	render	cycle
– Or	you	can	tell	it	ahead	of	time



From	Example	Program	(a	little	
modified)

glUseProgram(shader_programme);
glBindVertexArray(vao);
while	(!glfwWindowShouldClose(window))	{
//	wipe	the	drawing	surface	clear
glClear(GL_COLOR_BUFFER_BIT	|	

GL_DEPTH_BUFFER_BIT);
//	draw	points	0-3	from	the	currently	bound	VAO
glDrawElements(	GL_TRIANGLES,	6,	

GL_UNSIGNED_INT,	NULL	);
…

glUseProgram,	glBindVertexArray,	glDrawElements
will	be	discussed	later	this	lecture



...	But	this	works	too
while	(!glfwWindowShouldClose(window))	{
//	wipe	the	drawing	surface	clear
glClear(GL_COLOR_BUFFER_BIT	|	

GL_DEPTH_BUFFER_BIT);
glUseProgram(shader_programme);	//	modify	shader each	render

glBindVertexArray(vao);	//	modify	geometry	each	render

//	draw	points	0-3	from	the	currently	bound	VAO
glDrawElements(	GL_TRIANGLES,	6,	

GL_UNSIGNED_INT,	NULL	);
…

glUseProgram,	glBindVertexArray,	glDrawElements
will	be	discussed	later	this	lecture



Rendering	Step	#3:	Finalize

• Finalize	means	getting	the	image	to	the	viewer	on	
the	display

• In	graphics,	maintain	two	copies	of	buffers
– Copy	#1	(“front	buffer”):	given	to	the	display	for	user	
to	see

– Copy	#2	(“back	buffer”):	being	generated	“right	now”
• When	rendering	is	done,	swap	“copy	#2”	into	
“copy	#1”	and	start	over

• Command:		glfwSwapBuffers(window);
– (And	there	is	an	OpenGL	equivalent)



Why	Double	Buffered?

• General	computer	science	idea:	double	buffering	
(or	“multiple	buffering”)
– use	of	more	than	one	buffer to	hold	a	block	of	data
– Why?

• "reader"	sees	a	complete	(though	perhaps	old)	version	of	
the	data,	rather	than	a	partially	updated	version	of	the	data	
being	created	by	a	“writer”

• In	other	words:	if	you	are	continuously	working	
on	something,	then	regularly	make	a	copy	and	
show	that	to	the	user,	rather	than	risking	them	
see	incomplete/partial	versions

https://en.wikipedia.org/wiki/Multiple_buffering



Part	3

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render

Majority	of	this	lecture	
and	you	do	both	in	2A.



Game	Plan

• Plan
– Set	up	small	things
– Wrap	the	small	things	up	into	one	big	thing

• More	detail
– Small	things	are	buffers	/	Vertex	Buffer	Objects	(VBOs)
– Big	things	are	arrays	of	buffers	/	Vertex	Array	Object	
(VAOs)

• Lecture
– Starts	with	VBO	and	then	go	on	to	VAO
– Focuses	on	starter	code	for	2A



Walking	Through	the	Starter	Code

• 4	points:	
– V0	=	(0.5,	0,	0),	red
– V1	=	(0,	0,	0),	green
– V2	=	(0,	.5,	0),	blue
– V3	=	(-0.5,	0,	0),	red

• 6	indices	for	2	triangles
– Triangle	0:	(V0,V1,V2)
– Triangle	1:	(V1,V2,V3)



glGenBuffers /	glBindBuffers /	
glBufferData

• GLuint:	this	is	an	unsigned	integer,	but	
OpenGL	defines	its	own	type	so	it	can	deal	
with	portability	issues	(like	32	bits	vs	64	bits)



glGenBuffers /	glBindBuffers /	
glBufferData

• glGenBuffers
– Asks	OpenGL	to	generate	a	new	buffer	for	the	
programmer	to	work	with

– That	buffer	will	have	a	unique	identifier	(points_vbo)
– This	unique	identifier	is	useful:	lets	programmer	tell	
OpenGL	which	buffer	they	want	to	operate	on



glGenBuffers /	glBindBuffers /	
glBufferData

• glBindBuffer
– Buffers	can	operate	on	different	types	of	“targets”

• (I	think	types	would	be	a	better	word	than	targets)
– glBindBuffer says	what	type	of	target	a	buffer	will	
operate	on

– It	also	makes	the	buffer	“active,”	meaning	subsequent	
GL	calls	will	use	this	buffer



Targets	for	glBindBuffers

• We	will	use	the	
ones	underlined	
in	red

• Distinction
– Is	this	the	data?
– Or	are	these	
indices	into	
existing	data?

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glBindBuffer.xhtml



glGenBuffers /	glBindBuffers /	
glBufferData

• glBufferData
– Tells	OpenGL	about	your	actual	data
– Notes:	

• “target”	(GL_ARRAY_BUFFER)	is	repeated
• Passing	48	bytes,	but	not	saying	anything	(yet)	about	how	to	
interpret	the	data

• GL_STATIC_DRAW	tells	OpenGL	about	the	usage



glBufferData:	usage	types
• Hint	to	OpenGL	about	how	data	will	be	used
• Two	parts:	

– Frequency
of	access

– Nature	of
access

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glBufferData.xhtml



glGenBuffers /	glBindBuffers /	
glBufferData

• So	what	did	this	code	do?
• 1)	asked	GL	to	make	a	buffer
• 2)	told	GL	the	buffer	would	be	used	to	store	
an	array

• 3)	told	GL	the	actual	data	to	put	in	the	buffer



More	Starter	Code

This	one	is	indices,	not	data



Vertex	Buffer	Object	versus
Vertex	Array	Object

• Vertex	Buffer	Object	(VBO):	
– Memory	buffer	in	your	GPU
– Contains	information	about	vertices

• Vertex	Array	Object	(VAO):
– Contains	one	or	more	VBOs
– Should	contain	a	“complete”	renderable object

• Summary:
– VBOs	store	your	vertex	data
– VAOs	wrap	up	VBOs	into	something	that	can	be	
rendered



Next	Step	in	Starter	Code:
Make	a	VAO	and	put	VBOs	into	VAO

• glGenVertexArrays
– Just	like	glGenBuffers,	but	for	VAOs
– Asks	OpenGL	to	generate	a	new	VAO	for	the	
programmer	to	work	with

– That	buffer	will	have	a	unique	identifier	(vao)
– This	unique	identifier	is	useful:	lets	programmer	tell	
OpenGL	which	buffer	they	want	to	operate	on



Next	Step	in	Starter	Code:
Make	a	VAO	and	put	VBOs	into	VAO

• glBindVertexArray
– Just	like	glBindBuffer,	but	for	VAOs
– It	also	makes	the	buffer	“active,”	meaning	
subsequent	GL	calls	will	use	this	buffer

• glBindBuffer commands	will	put	the	VBOs	into	this	VAO



Next	Step	in	Starter	Code:
Make	a	VAO	and	put	VBOs	into	VAO

• We’ve	seen	this	before!
• Further,	this	code	could	be	tightened	up
• Could	start	by	building	VAO,	and	then	build	VBOs	
are	part	of	the	VAO	building	process
– (Call	glBindBuffer once,	not	twice)

• I	like	how	Abhishek	set	it	up	– easier	to	understand



Next	Step	in	Starter	Code:
Make	a	VAO	and	put	VBOs	into	VAO

• Tells	GL	how	to	interpret	a	VBO	within	the	VAO
• This	one	is	for	the	0th VBO,	which	is	points_vbo
• Arguments:

– 0:	the	0th	VBO	– goes	in	“location	0”	of	the	shader program
– 3:	there	are	3	values	per	vertex
– GL_FLOAT:	they	are	floats
– GL_FALSE:	don’t	normalize	this	data
– 0/NULL:	deals	with	data	layout	stuff	(always	0/NULL	for	441)



Next	Step	in	Starter	Code:
Make	a	VAO	and	put	VBOs	into	VAO

• Tells	GL	how	that	array	0	(i.e.,	points_vbo)	should	
be	enabled	– it	should	be	processed	when	vao is	
processed

• We	always	want	to	enable	for	441
• Why	disable?	Improved	performance	if	not	using	an	
array



(REPEAT	SLIDE	FROM	PART	2)
From	Example	Program

while	(!glfwWindowShouldClose(window))	{
//	wipe	the	drawing	surface	clear
glClear(GL_COLOR_BUFFER_BIT	|	

GL_DEPTH_BUFFER_BIT);
glUseProgram(shader_programme);
glBindVertexArray(vao);
//	draw	points	0-3	from	the	currently	bound	VAO
glDrawElements(	GL_TRIANGLES,	6,	

GL_UNSIGNED_INT,	NULL	);
…

glUseProgram,	glBindVertexArray,	glDrawElements
will	be	discussed	later	this	lecture	now



(REPEAT	SLIDE	FROM	PART	2)
From	Example	Program

glBindVertexArray(vao);
//	draw	points	0-3	from	the	currently	bound	VAO
glDrawElements(	GL_TRIANGLES,	6,	

GL_UNSIGNED_INT,	NULL	);
…• Tells	OpenGL	that	commands	that	follow	will	be	
for	vertex	array	object	“vao”



(REPEAT	SLIDE	FROM	PART	2)
From	Example	Program

glBindVertexArray(vao);
//	draw	points	0-3	from	the	currently	bound	VAO
glDrawElements(	GL_TRIANGLES,	6,	

GL_UNSIGNED_INT,	NULL	);
…• Tells	OpenGL	to	draw	the	elements	in	the	current	VAO

• And:
– GL_TRIANGLES:	the	indices	are	describing	triangles
– 6:	there	are	6	indices	(2	triangles	total)
– GL_UNSIGNED_INT:	the	indices	are	unsigned	int
– NULL:	something	for	fancy	array	layouts	(we	don’t	need	this	
for	441)



Project	2A
• Assigned	today,	due	in	one	week	(Tuesday	May	11)
• Worth	8%	of	your	grade
• Implementing	Project	1	within	OpenGL
• 5	phases

– Phase	1:	install	GLFW
– Phase	2:	run	example	program
– Phase	3:	modify	VBO/VAO
– Phases	4	&	5:	shader programs

• Please	start	ASAP	on	Phase	1-3
• Thursday’s	lecture	will	be	on	Phase	4	&	5



Finish	lecture	by	talking	again	
about	compiling	shaders



How to Use Shaders

¨ You write a shader program: a tiny C-like program
¨ You write C/C++ code for your application
¨ Your application loads the shader program from a 

text file
¨ Your application sends the shader program to the 

OpenGL library and directs the OpenGL library to 
compile the shader program

¨ If successful, the resulting GPU code can be 
attached to your (running) application and used

¨ It will then supplant the built-in GL operations



OpenGL
library

How to Use Shaders: 
Visual Version

Project2A’
C++ code

Project2A’
binary

g++ 

shader
program

reads
text
file

when
running

sends “char *”
version of
program to GL via 
function call

shader
program is a 

binary

OpenGL 
compiles program, 
binary made just for
the current 
execution

Program is used
on GPU to support
Project2A’ binary



Compiling Shader



Compiling Shader: inspect if it 
works



Compiling Multiple Shaders



Attaching Shaders to a 
Program



Inspecting if program link 
worked…



Simplest Vertex Shader

Many built-in variables.
Some are input.
Some are required output (gl_Position).


