
Hank Childs, University of Oregon February 5, 2019

CIS 441/541: Intro to Computer Graphics
Lecture 8: 1F overview, OpenGL

Office	
 Hours:	
 Week	
 5	

•  Monday:	
 1-­‐2	
 (Roscoe)	

•  Tuesday:	
 1-­‐2	
 (Roscoe)	

•  Wednesday:	
 1-­‐3	
 (Roscoe)	

•  Thursday:	
 1130-­‐1230	
 (Hank)	

•  Friday:	
 1130-­‐1230	
 (Roscoe)	

Timeline	
 (1/2)	

•  1E:	
 assigned	
 Thurs	
 Jan	
 31st,	
 due	
 Weds	
 Feb	
 6th	

– à	
 will	
 be	
 extra	
 support	
 with	
 this.	
 	
 Tough	
 project.	

•  1F:	
 assigned	
 Feb	
 7th	
 (Feb	
 1),	
 due	
 Feb	
 19th	

– à	
 shading	
 is	
 easier	
 than	
 camera,	
 but:	
 movie	

•  2A:	
 posted	
 now,	
 due	
 Feb	
 21st	

•  à	
 you	
 need	
 to	
 work	
 on	
 both	
 1F	
 and	
 2A	
 during	

Week	
 6	
 (Feb	
 11-­‐15)	

•  2B:	
 posted	
 now,	
 due	
 Feb	
 27th	

•  YouTube	
 lectures	
 for	
 Feb	
 12th	
 and	
 14th	
 	

Timeline	
 (2/2)	

Sun	
 Mon	
 Tues	
 Weds	
 Thurs	
 Fri	
 Sat	

Feb	
 3	
 Feb	
 4	
 Feb	
 5	

Lec	
 8	

Feb	
 6	

1E	
 due	

Feb	
 7	

Begin	
 1F,	

begin	
 2A	

Feb	
 8	
 Feb	
 9	

Feb	
 10	
 Feb	
 11	

	

	

YouTube	
 Feb	
 13	
 YouTube??	
 Feb	
 15	
 Feb	
 16	

Feb	
 17	
 Feb	
 18	
 Feb	
 19	

1F	
 due	

Feb	
 20	
 Feb	
 21	

2A	
 due,	

begin	
 2B	

Feb	
 22	
 Feb	
 23	

Comparing	
 to	
 previous	
 terms	
 (1/3)	

•  Way	
 ahead	
 on	
 lecture	

–  If	
 I	
 complete	
 today’s	
 lecture,	
 we	
 will	
 be	
 1.5	

lectures	
 ahead	
 of	
 the	
 pace	
 from	
 previous	
 term	

– Why?:	
 	

•  YouTube	
 videos	
 saving	
 on	
 material	
 repeat	

•  Bad	
 materials	
 in	
 previous	
 terms,	
 and	
 then	
 have	
 to	

waste	
 class	
]me	
 fixing	
 things	

– May	
 only	
 need	
 1	
 YouTube	
 lecture	
 from	
 Japan	

Comparing	
 to	
 previous	
 terms	
 (2/3)	

•  A	
 li_le	
 behind	
 on	
 project	
 pace	

•  The	
 W19	
 plan	
 only	
 works	
 if	
 you	
 pursue	
 both	

1F	
 and	
 2A	
 during	
 Week	
 6!	

Project	
 Due	
 date	
 (F16)	
 Due	
 date	
 (W19)	

1E	
 Monday	
 of	
 Week	
 5	
 Weds	
 of	
 Week	
 5	

1F	
 Monday	
 of	
 Week	
 6	
 Tuesday	
 of	
 Week	
 7	

2A	
 Monday	
 of	
 Week	
 7	
 Thursday	
 of	
 Week	
 7	

2B	
 Monday	
 of	
 Week	
 8	
 Wednesday	
 of	
 Week	
 8	

Comparing	
 to	
 previous	
 terms	
 (3/3)	

•  Grading	
 way	
 ahead	
 of	
 previous	
 terms	

– Solved	
 a	
 lot	
 of	
 issues	
 &	
 happy	
 about	
 this	

•  1E,1F,2A,2B:	
 not	
 quite	
 as	
 prompt	

Midterm	

•  Date	
 s]ll	
 not	
 set	

•  Considering	
 different	
 plan:	
 25	
 &	
 5	

Asking	
 good	
 ques]ons:	
 	

my	
 own	
 experience	

(start	
 recording)	

Phong Model

¨  Combine three lighting effects: ambient, diffuse, specular

Phong Model

¨  Simple version: 1 light, with “full intensity” (i.e., don’t
add an intensity term)

¨  Phong model
¤ Shading_Amount = Ka + Kd*Diffuse + Ks*Specular

¨  Signature:
¤ double CalculatePhongShading(LightingParameters &,

double *viewDirection, double *normal)
¤ Will have to calculate viewDirection for each pixel!

Specular Term of Phong Model

¨  Specular part of Phong: Ks*Specular

¨  and Specular is: (Shininess strength) * cos(α) ^
(shininess coefficient)

¨  Putting it all together would be:
¤ Ks * (Shininess strength) * cos(α) ^ (shininess coefficient)

¨  But now we have two multipliers, Ks and (Shininess
Strength). Not needed.

¨  So: just use one. Drop Shininess Strength and only
use Ks
¨  Ks * cos(α) ^ (shininess coefficient)

Lighting parameters

Project #1F (8%), Due Feb 19th

¨  Goal: add shading, movie
¨  Extend your project1E code
¨  Important:
¨  add #define NORMALS

Changes to data structures

class Triangle
{
 public:
 double X[3], Y[3], Z[3];
 double colors[3][3];
 double normals[3][3];
};
à reader1e.cxx::GetTriangles() will not compile (with
#define NORMALS) until you make these changes
à Now initializes normals at each vertex

More comments (1/3)

¨  This project in a nutshell:
¤ Add method called “CalculateShading”.

n My version of CalculateShading is about ten lines of code.

¤ Call CalculateShading for each vertex
¤ This is a new field, which you will LERP.
¤ Modify RGB calculation to use shading.

More comments (2/3)

¨  Data to help debug
¤  I will make the shading value for each pixel available.
¤  I will also make it available for ambient, diffuse,

specular.

¨  Don’t forget to do two-sided lighting for diffuse,
one-sided lighting for specular

More comments (3/3)

¨  I haven’t said anything about movie encoders
¨  ffmpeg

Where Hank spent his
debugging time…

Convex surface

Lighting
direction

Concave surface

Lighting
direction

Where Hank spent his
debugging time…

(end recording)

Some notes about OpenGL

¨  OpenGL has evolved a lot over 25+ years
¨  The slides that follow and the homeworks will detail

an early version of OpenGL (OpenGL V1.0)
¨  This is the easiest version to understand and

implement
¤  It is also inefficient

¨  Since efficiency is important, newer versions are
more complex and also faster
¤ Optional final projects (developed by Roscoe) will let

you play with this

OOPS

¨  Problem! (big one)
¤ VTK8 does not work with OpenGL1
¤ And learning OpenGL3 would require weeks of time
¤ So we have to roll back to VTK6
¤  I am very sorry for this

¤  IMPORTANT: I installed VTK6 in Room 100. You can
use that for 2A/2B if you don’t want to install again.

2
5Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Models and Architectures

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2
6Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Objectives

• Learn the basic design of a graphics
system

• Introduce pipeline architecture
• Examine software components for an
interactive graphics system

2
7Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Image Formation Revisited

• Can we mimic the synthetic camera model
to design graphics hardware software?

• Application Programmer Interface (API)
- Need only specify

•  Objects
•  Materials
•  Viewer
•  Lights

• But how is the API implemented?

2
8Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Physical Approaches

• Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

- Can handle global effects
•  Multiple reflections
•  Translucent objects

-  Slow
- Must have whole data base
available at all times

• Radiosity: Energy based approach
-  Very slow

2
9Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Practical Approach

• Process objects one at a time in the order
they are generated by the application

- Can consider only local lighting
• Pipeline architecture

• All steps can be implemented in hardware
on the graphics card

application
 program

display

3
0Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Vertex Processing

• Much of the work in the pipeline is in converting
object representations from one coordinate
system to another

- Object coordinates
- Camera (eye) coordinates
-  Screen coordinates

• Every change of coordinates is equivalent to a
matrix transformation

• Vertex processor also computes vertex colors

3
1Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Projection

• Projection is the process that combines
the 3D viewer with the 3D objects to
produce the 2D image

- Perspective projections: all projectors meet at
the center of projection

- Parallel projection: projectors are parallel,
center of projection is replaced by a direction of
projection

3
2Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Primitive Assembly

Vertices must be collected into geometric
objects before clipping and rasterization
can take place

- Line segments
- Polygons
- Curves and surfaces

3
3Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Clipping

Just as a real camera cannot “see” the
whole world, the virtual camera can only
see part of the world or object space

- Objects that are not within this volume are said
to be clipped out of the scene

3
4Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Rasterization

• If an object is not clipped out, the appropriate
pixels in the frame buffer must be assigned colors

• Rasterizer produces a set of fragments for each
object

• Fragments are “potential pixels”
- Have a location in frame bufffer
- Color and depth attributes

• Vertex attributes are interpolated over objects by
the rasterizer

3
5Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Fragment Processing

• Fragments are processed to determine
the color of the corresponding pixel in the
frame buffer

• Colors can be determined by texture
mapping or interpolation of vertex colors

• Fragments may be blocked by other
fragments closer to the camera

- Hidden-surface removal

3
6Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

The Programmer’s Interface

• Programmer sees the graphics system
through a software interface: the
Application Programmer Interface (API)

3
7Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

API Contents

• Functions that specify what we need to
form an image

- Objects
- Viewer
- Light Source(s)
- Materials

• Other information
-  Input from devices such as mouse and keyboard
- Capabilities of system

3
8Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Object Specification

• Most APIs support a limited set of
primitives including

- Points (0D object)
- Line segments (1D objects)
- Polygons (2D objects)
- Some curves and surfaces

• Quadrics
• Parametric polynomials

• All are defined through locations in space
or vertices

3
9Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Example

glBegin(GL_POLYGON);
 glVertex3f(0.0, 0.0, 0.0);
 glVertex3f(0.0, 1.0, 0.0);
 glVertex3f(0.0, 0.0, 1.0);
glEnd();

type of object
location of vertex

end of object definition

4
0Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Lights and Materials

• Types of lights
- Point sources vs distributed sources
- Spot lights
- Near and far sources
- Color properties

• Material properties
- Absorption: color properties
- Scattering

• Diffuse
• Specular

4
1Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Programming with OpenGL
Part 1: Background

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

4
2Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Objectives

• Development of the OpenGL API
• OpenGL Architecture

- OpenGL as a state machine

• Functions
- Types
- Formats

• Simple program

Early Graphics APIs

• IFIPS
• FKS
• PHIGS

4
3Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

4
4Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

SGI and GL

• Silicon Graphics (SGI) revolutionized the
graphics workstation by implementing the
pipeline in hardware (1982)

• To access the system, application
programmers used a library called GL

• With GL, it was relatively simple to
program three dimensional interactive
applications

4
5Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL

The success of GL lead to OpenGL (1992),
a platform-independent API that was

- Easy to use
- Close enough to the hardware to get excellent

performance
- Focus on rendering
- Omitted windowing and input to avoid window

system dependencies

4
6Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL Evolution

• Originally controlled by an Architectural
Review Board (ARB)

- Members included SGI, Microsoft, Nvidia, HP,
3DLabs, IBM,…….

- Relatively stable
•  Evolution reflects new hardware capabilities

–  3D texture mapping and texture objects
–  Vertex programs

- Allows for platform specific features through
extensions

- ARB replaced by Kronos

4
7Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL Libraries

• OpenGL core library
- OpenGL32 on Windows
- GL on most unix/linux systems (libGL.a)

• OpenGL Utility Library (GLU)
- Provides functionality in OpenGL core but

avoids having to rewrite code
• Links with window system

- GLX for X window systems
- WGL for Windows
- AGL for Macintosh

4
8Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

GLUT

• OpenGL Utility Toolkit (GLUT)
- Provides functionality common to all window

systems
•  Open a window
•  Get input from mouse and keyboard
•  Menus
•  Event-driven

- Code is portable but GLUT lacks the
functionality of a good toolkit for a specific
platform

•  No slide bars

• <GLUT no longer well maintained, we will use VTK>

4
9Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL Architecture

Immediate Mode

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

geometry
 pipeline

5
0Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL Functions

• Primitives
-  Points
-  Line Segments
-  Polygons

• Attributes
• Transformations

-  Viewing
- Modeling

• Control (GLUT)
• Input (GLUT)
• Query }

VTK

5
1Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL State

• OpenGL is a state machine
• OpenGL functions are of two types

- Primitive generating
•  Can cause output if primitive is visible
•  How vertices are processed and appearance of primitive

are controlled by the state

- State changing
•  Transformation functions
•  Attribute functions

5
2Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Lack of Object Orientation

• OpenGL is not object oriented so that
there are multiple functions for a given
logical function
- glVertex3f
- glVertex2i
- glVertex3dv

• Underlying storage mode is the same
• Easy to create overloaded functions in
C++ but issue is efficiency

5
3Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL function format

glVertex3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glVertex3fv(p)

p is a pointer to an array

dimensions

5
4Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL #defines

• Most constants are defined in the include
files gl.h, glu.h and glut.h

- Note #include <GL/glut.h> should
automatically include the others

- Examples
- glBegin(GL_POLYGON)
- glClear(GL_COLOR_BUFFER_BIT)

• include files also define OpenGL data
types: GLfloat, GLdouble,….

5
5Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

A Simple Program

Generate a square on a solid background

5
6Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

simple.c

#include <GL/glut.h>
void mydisplay(){
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);
 glVertex2f(-0.5, -0.5);
 glVertex2f(-0.5, 0.5);
 glVertex2f(0.5, 0.5);
 glVertex2f(0.5, -0.5);
 glEnd();
 glFlush();

}
int main(int argc, char** argv){

 glutCreateWindow("simple");
 glutDisplayFunc(mydisplay);
 glutMainLoop();

}

5
7Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Event Loop

• Note that the program defines a display
callback function named mydisplay

- Every glut program must have a display
callback

- The display callback is executed whenever
OpenGL decides the display must be refreshed,
for example when the window is opened

- The main function ends with the program
entering an event loop

VTK will be similar … callback
issued to render geometry

5
8Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Defaults

• simple.c is too simple
• Makes heavy use of state variable default
values for

- Viewing
- Colors
- Window parameters

• Next version will make the defaults more
explicit

How to make a graphics
program?

• Need to create a window
- This window contains a “context” for OpenGL to

render in.

• Need to be able to deal with events/
interactions

• Need to render graphics primitives
- OpenGL!

Windows and Events

• Creating windows and dealing with events
varies from platform to platform.

XWindow

• “Hello World”
with X-
Windows.

Windows and Events

• Creating windows and dealing with events varies
from platform to platform.

• Some packages provide implementations for key
platforms (Windows, Unix, Mac) and abstractions
for dealing with windows and events.

• GLUT: library for cross-platform windowing &
events.

- My experiments: doesn’t work as well as it used to.

• VTK: library for visualization
- But also contains cross-platform windowing & events.

Visualization with VTK

Content from: Erik Vidholm, Univ of Uppsula, Sweden
David Gobbi, Robarts Research Institute, London, Ontario, Canada

VTK – The Visualization ToolKit

• Open source, freely available software for
3D computer graphics, image processing,
and visualization

• Managed by Kitware Inc.
• Use C++, Tcl/Tk, Python, Java

The visualization pipeline

DATA

FILTER

MAPPING

DISPLAY

Visualization algorithms

Interactive feedback

We will replace these and write our own GL calls.

We will re-use these.

How to make a graphics
program?

• Need to create a window
- This window contains a “context” for OpenGL to

render in.

• Need to be able to deal with events/
interactions

• Need to render graphics primitives
- OpenGL!

Borrow Build

OpenGL Functions

• Primitives
-  Points
-  Line Segments
-  Polygons

• Attributes
• Transformations

-  Viewing
- Modeling

• Control (VTK)
• Input (VTK)
• Query

Today

next week

First OpenGL programs

• Remember: none of these programs have
windowing or events

• They contain just the code to put
primitives on the screen, with lighting and
colors.

First OpenGL programs

First OpenGL programs

glEnable/glDisable: important
functions

First OpenGL programs

Visualization use case

Why is there purple in this picture?

First OpenGL programs

